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Abstract

A digraph D is a local out-tournament if the outset of every vertex
is a tounament. Here, we use local out-tournaments, whose strong
components are upset tournaments, to explore the corresponding ranks
of the adjacency matrices. Of specific interest is the out-tournament
whose adjacency matrix has boolean, nonnegative integer, term, and real
rank all equal to the number of vertices, n. Corresponding results for
biclique covers and partitions of the digraph are provided.

1 Introduction

The topics of local tournaments, {0, 1}-matrix ranks, upset tournaments, and digraph
biclique cover and partition numbers have been the foundation of many papers in
the area of graph theory. Work in the area of local tournaments originates with
Bang-Jensen [1). Further work includes Bang-Jensen et al. [3], Bang-Jensen, Hell,
and Huang ([4], [16]), and Huang [17], with the introduction of local in- and out-
tournament digraphs by Bang-Jensen et al. [5).

Biclique cover and partition numbers of bipartite graphs and digraphs, as well as
the related matrix ranks of the corresponding adjacency matrices, have been popular
research topics during the past twenty-five years. As the answer to the interesting
question of what digraphs have adjacency matrices with equal semiring ranks remains
elusive, many have partially answered the question by considering certain classes of
digraphs. The following list represents only a portion of the research that has been
generated by this interest. See Brualdi et al. [7], Barefoot et al. [6], deCaen [9],
Doherty et al. [10], Gregory et al. [11), Hefner (Factor) et al. ([12], [13), [14],[15)),
Lundgren and Siewert ([18], [19], [20]), Maybee and Pullman [21], Monson et al. [22],
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Orlin [23), and Shader [25].

We further this research by bringing together concepts from these areas, and begin-
ning the exploration of matrix ranks of the adjacency matrices of local out-tournaments.
This is done through the use of upset tounaments that serve as the building blocks
of the local out-tournaments. In this paper, we are interested in isolating the di-
graph structures that have adjacency matrices with full real rank, which is equal to
the boolean, nonnegative integer, and term ranks.

The structure of the local out-tournament is determined in the first part of this paper
following the definitions and preliminary results. Additionally, upset tournaments
are defined and then used as the strong components of local out-tournaments. The
resulting adjacency matrices are examined to determine which of these digraphs have
corresponding adjacency matrices, A, wherer (4) = ra(A) =rz+(A) =1 (A) =n.
Similar results follow for the associated biclique cover and partition numbers of the
out-tournaments. Finally, open questions are discussed.

2 Terminology and Preliminaries

Many notational conventions are adopted from Bang-Jensen and Gutin [2). A digraph
D = (V, A), where V (D) is the nonempty vertex set of D and A (D) is the arc set
of D. For any arc (u,v) € A(D), we say that u dominates (or beats) v, and write
u — v. The outset of a vertex v, Ot (v), is the set of all vertices that v dominates, and
|O*(v)| = d*(v). Similarly, the inset of a vertex v, O~ (v), is the set of all vertices
that dominate v, and |0~ (v)] = d~(v). In this paper, all digraphs are considered to
be loopless. If we condense D by replacing each strong component with a vertex,
the strong component digraph, SC (D), is obtained. A digraph D is connected if its
underlying graph is connected.

A tournament is a digraph where each pair of vertices defines exactly one arc. A
local out-tournament (respectively, local in-tournament) is a digraph where the outset
of every vertex is a tournament (respectively, the inset of every vertex). For ease in no-
tation, these digraphs will often be referred to as our-fournaments and in-tournaments.
A local tournament is a digraph where both the inset and outset of every vertex isa
tournament. Local tournaments are also referred to more generally as locally semi-
complete digraphs. To use the language of the majority of the research done on bi-
clique covers and partitions and the associated matrix ranks, the authors will use the
more specialized terms of local, in- and out-tournaments. Related to the results on in-
and out-tournaments is out-branching and in-branching. A subdigraph T of D is an
out-branching if T is a spanning, oriented tree of D and T has only one vertex v of in-
degree zero. An in-branching is defined analogously with only one vertex of outdegree
zero.

The relationship of domination is an important one in defining the structure of the
out-tournament. Therefore, it is necessary to use notation that models certain nuances
in the domination relationships. Let Dy and D; be vertex disjoint digraphs. The
notation D; => D, means that there is no arc from V' (D) to V(Dy). If every
vertex in D; dominates every vertex in Dy, then we use Dy — D,. Since we will be
using tournaments as strong components, it will be the case that if arcs go one direction



between the strong components, then there will not be any going in the other direction.
Therefore, we need to use D, ~ Da, which means that V (D, ) dominates V (D7) and
there is no arc from V (D) to V (D). :

Specifically in this paper, we will be constructing out-tournaments using upset tour-
naments as strong components. An upset fournament is a tournament onn > 3 vertices
with score-list {1,1,2,3,....,n - 3,n—2,n — 2}. The score-list of a tournament is
the multiset of the outdegrees of its vertices.

The adjacency matrix of a digraph D on n vertices is the n x n matrix A = [ai;]
where a;; = 1 if (v;, v;) is an arc in D, and equals 0 otherwise. Ranks corresponding
to the {0, 1}-matrix are the real rank, r (4), the boolean rank, rg (A), and the non-
negative integer rank, rz+ (A). The boolean rank of an m x n {0, 1}-matrix is the
smallest k for which there existan m x k {0, 1}-matrix Bandak x n {0, 1}-matrix C
such that A = BC when boolean arithmetic is used (1 + 1 = 1). Similarly, the non-
negative integer rank is the smallest k for which there exist m x k and k x n matrices B
and C respectively such that A = BC, where the entries of B and C are nonnegative
integers. If A is a {0, 1}-matrix, then both B and C are {0, 1}-matrices. The rela-
tionship between the boolean and nonnegative integer ranks is r5 (4) < rz+ (A) for
any {0, 1}-matrix A. Since real rank can be defined similarly to nonnegative integer
rank, only over all the real numbers, we have  (A) < rz+ (A). There is no standard
relationship between r (4) and r5 (A). Finally, the term rank of a matrix, r, (A), is
the smallest number of rows and columns containing all of the nonzero entries of A.
When A is a {0, 1} —matrix, rg (4) < rz+ (A) < (A). The relationship between
the real rank and nonnegative integer rank also gives us r (4) < rz+ (4) <7 (A).

The real, nonnegative integer, and term ranks for the matrices of n—tournaments,
tournaments on 7 vertices, were bounded by deCaen [9).

Theorem 2.1 [9] If A is an n-tournament matrix, then r (A)2n-1

Corollary 2.2  [9]If A is an n-tournament matrix, then (n. — 1) < r (A) Srz+ (A) <
r(4) < n

These results indicate that if any tournament has equal ranks, then the ranks must
equaln—1orn. Ingeneral, rg (A) is very difficult to obtain. Thus, when looking for
matrices with equal ranks, knowing the bounds on the remaining three ranks forces the
search for tournament matrices where rp (A) = n — 1 orrg (4) = n. Additionally,
we know that rg (A) < r¢(A), so the term rank serves as an upper bound on the
boolean rank in general {0, 1} —matrices.

In this paper, we use the fact that it is known which upset tournaments have r 8 (A) =
7z+ (A), and use it to help us characterize a class of local out-tournaments where all
ranks equal n.

Gregory et al. [11] linked the boolean and nonnegative integer ranks of {0,1}-
matrices to biclique cover and partition numbers of bipartite graphs. The biclique cover
number of a graph G, bc (G), is the smallest number of complete bipartite subgraphs
that cover the edges of G. The biclique partition number of a graph G, bp (G), is



defined similarly using a partitioning of the edges of G. By labeling the rows of the
adjacency matrix of a digraph D with a set of numbers and the columns with a disjoint
set of numbers, the adjacency matrix of D also represents the adjacency matrix of a
bipartite graph B. Using this common matrix, the following result is obtained.

Lemma23 [11] If D is a digraph, then g (A) = bc(D) and 2+ (A) = bp (D).

The bicliques of B correspond to directed bicliques of D. In this paper, we use this
relationship to extend the results obtained for the matrix ranks to include the biclique
cover and partition numbers of the out-tournaments.

3 Local Out-Tournaments and Upset Tournaments

3.1 Out-Tournaments

Before examining the {0, 1}-matrix ranks of the local out-tournaments, it is important
to understand the structure of the digraphs. It is this that will determine which out-
tournaments have adjacency matrices with full and equal ranks.

Bang-Jensen [1] shows that local tournaments have a structure that resembles that of
tournaments. If D is a local tournament, then every strong component is a tournament.
In addition, if two strong components are adjacent in D, then one completely dominates
the other. For an out-tournament, however, not all of this structure is necessary. Since
only the outset of each vertex need be a tournament, the constraints on the structure
of the inset are relaxed. Thus, every strong component of an out-tournament is not
necessarily a tournament, and complete domination is not required.

In-tournament digraphs were examined in depth by Bang-Jensen et al. [5), and
much of the underlying structure identified. The following lemma and theorem are re-
sults for in-tournaments that are of specific interest in this paper in defining the structure
of the out-tournaments. The corollaries following each result are the out-tournament
equivalent, and come from the out-tournament being the converse of the in-tournament.

Lemma 3.1 [5] Every connected in-tournament has an out-branching.
Corollary 3.2  Every connected out-tournament has an in-branching.

Theorem 3.3 [5] Let D be an in-tournament.

(a) Let A and B be distinct strong components of D. Ifa vertexa € A dominates
some vertex in B, then a — B. Furthermore, AN O~ (b) induces a tournament for
eachb € B.

(b) If D is connected, then SC (D) has an out-branching. Furthermore, if R is
the root and A is any other component, there is a path from R to A containing all the
components that can reach A.



Corollary 3.4 Let D be an out-tournament.

(a) Let A and B be distinct strong components of D. Ifavertexb € B is dominated
by some vertex in A, then A — b. Furthermore, BN O+ (a) induces a tournament for
eacha € A.

() If D is connected, then SC (D) has an in-branching. Furthermore, if S is the
vertex with out-degree of zero and A is any other component, there is a path from A4 to
S containing all components that can reach S.

A,
" \$
\\ "'0

(a) (b)

Figure 1: (a) shows an out-tournament where tournaments form one strong component.
(b) shows an out-tournament composed of two transitive tournaments.

In general, when constructing an out-tournament, it is not true that each strong com-
pement is a tournament. Figure 1(a) illustrates the possibility that an out-tournament
might have a strong component that is comprised of separate tournaments. Figure
1(b) shows two transitive tournaments that form a strong component where the re-
sulting digraph is an out-tournament. The strong component digraph for each of the
out-tournaments in Figure 1 condenses down to one vertex. Thus, we can have an
out-tournament where tournaments are some or all of the strong components, or out
tournaments where none of the components are tournaments. Since the structure of
out-tournaments has not been completely characterized, but has been described for the
Strong component structure, we focus on out-toumaments whose strong components

are all tournaments,
3.2 Upset Tournaments

When implementing a structure where tournaments are the strong components, it is
helpful for our purpose to use tournaments for which information exists as to the
boolean, nonnegative integer, and term ranks of the tournament matrices. For this
paper, we restrict our exploration to out-tournaments whose strong components are
upset tournaments. To this end, we first describe the standard form that is used to
represent the upset matrices, then verify that they are, indeed, strong tournaments.

Figure 2 shows an upset tournament in standard form by representing its upset path.
All other arcs are directed in the opposite direction. The arcs (v1,v2) and (vp—1,vy)
are in every upset path. The arc (v;,v;) can only be on the upset path when i < j.
Vertices are presented in the order vy, vy, ..., Un.

As stated by Poet and Shader [24], every upset tournament is isomorphic to exactly



Figure 2: Upset tournament in standard form - all other arcs are directed down.

one upset tournament in standard form. Additionally, this results in having a unique
path from v; to vy,.

Lemma 3.5 [24] Let T be an upset tournament in standard form. Then T has a
unique path from vertex vy to vertex vn, and this path consists of the upset arcs of T.

A result of Lemma 3.5 is that we know that an upset tournament is strongly con-
nected.

Proposition 3.6 IfT is an upset tournament, then T is strongly connected.

Proof. Let T be an upset tounament in standard form. By Lemma 3.5, there isa
unique path from v; to v,. Vertex vp dominates all vertices except vertex v, and
reaches v, using arc (vn, v;) and the upset path. If v is a vertex on the upset path
other than v,,, then v reaches v, and v,. It reaches all other vertices through v,,. If
v is a vertex that is not on the upset path, then v dominates v;, and reaches all vertices
on the upset path through v;. It then reaches all vertices not on the upset path from v,,.
Thus, T' is strongly connected. O

Because the upset tournaments are strong, they can be used as the strong compo-
nents of a local out-tournament D. Corollary 3.4 guides the placement of arcs between
upset tournaments T; and T;. Additionally, the structure of SC (D) is acyclic, but the
underlying graph is not necessarily a tree. The second part of the following lemma
addresses the structure when two upset tournaments are dominated by a third upset
tournament.

Lemma 3.7 Let D be a local out-tournament with strong components T;, Tj, and T},
where v; € V (T3), v; € V (Tj), and v € V (Ti).

(a) If T; and T; are upset tournaments where (vi,vj) is an arc in D, then
T — v;.

) If T, T;, and T are upset tournaments where Ti = T; and T; = Tj,
then T; = Ty or Ty = Tj.



Proof. Since upset tournaments are strong, part (a) follows directly from part (a) of
Corollary 3.4. For (b), we can use part (b) from Corollary 3.4, but will prove it from
the definition to support the further understanding of the tournament structure. Given
that upset tournaments T;, T; and T}, are strong, if T; = T and T; => T}, then
there exists v; € V (T}) and v € V (T%) such that Ty — v; and T} — vy, By
definition of an out-tournament, both v; and vy, are in a tournament, so they must be
adjacent. Thus, v; — vy or v — v;. From part (a), we extend this to Tj — vy, or
Trr— v S0, T =TeorTy = T;. O

4 Matrices and Matrix Ranks

Now that the structure of the out-tournaments with upset tournament strong compo-
nents has been described, we direct our attention to finding which of these digraphs
have adjacency matrices with r (A) = r (4) =rz+ (A) = rp (A) = n. To doso, we
use results on the matrix ranks of upset tournament matrices.

First, consider the basic structure of the adjacency matrix A of out-tournament D
with strong components T;. Let A; be the adjacency matrices of the upset tournaments
T;. Thus SC (D) has vertices T;. We will carefully order the vertices of SC (D)
based upon the following proposition.

Proposition 4.1  [2) Every acyclic digraph has an acyclic ordering of its vertices.

Since SC (D) is only guaranteed an in-branching, there may be more than one
vertex in SC (D) with indegree of zero. Thus, we cannot state that there is a path
including every vertex. However, Proposition 4.1 states that there is an acyclic ordering
of the T;. We will assume this ordering of the T;. This gives the adjacency matrix
structure for SC (D) shown in Figure 3. The ordering places each component along

the diagonal.

L
)
(0]
0's T,

Figure 3: General adjacency matrix structure of SC(D), where D is a local tournament.

Keeping the same acyclic labeling of the T} above, we obtain the adjacency matrix
structure for the adjacency matrix of D shown in Figure 4. The two structures are the
same only because the T; are strong components in D. Note that the upper triangle
regions of both matrices are not labeled with values. That is because these values can
vary, while the values shown are set.

Consider how the structure of D dictates the placement of 1°s in the upper triangular
region of A. According to part (a) of Lemma 3.7, if (v;, v;) is an arc in D, then all of
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Figure 4: Adjacency matrix structure of an out-tournament where A; are the adjacency
matrices of the strong components.

the vertices in T; dominate v;. This translates into a column of 1's to the right of A;
and above A;. Thereisa 1 in every row of A; in the column corresponding to vertex
5. )

In the matrix, it may become necessary to discuss particular rows, columns, and
regions. To help in the identification process, the following notation will be used. Let
n; be the number of vertices in T;. S0, Yt 7 = n. Further, let the vertices of T}
be labeled v;1, vi2, ..., Vin,. If this is extended to the labeling of columns and rows in
A, then vertex vj,, would be represented by column and row ny + ... +n;-1 +m.

To further identify the structure of these matrices, consider part (b) of Lemma 3.7in
conjunction with the acyclic labeling that has been adopted. With the acyclic labeling,
if T; and T; are adjacent, then T; = Tj if and only if i < j. Additionally, if
T; = Tjand T; = T, we will have T; = T} whenever j < k. Since the digraphs
are isomorphic within labeling, we will assume the alpha ordering of i < j < k for
these indices. In A, if there is a submatrix of 1's in the rows of A; that includes some
columns of A; and A, then there will be a submatrix of 1’s in the rows of Aj in the
same columns of Ag.

010110011
001110011
100110011
000010011
000001011
000100011
000000010
000000001
0000001 00

Figure 5: Adjacency matrix of an out-tournament with three upset tournament compo-
nents, each on three vertices.

For an example, consider the out-tournament D consisting of upset tournament
components Ty = {(v1,v2), (v2,vs), (v3,01)}, T2 = {(va,v5), (vs, v6) , (6, va)}
and T3 = {(071 ‘Ug) ) (‘Ug, '09) ) ('099'”7)}' If Tl — {'04’ v5} and Tl — {'USy 1)9}:
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then T; — {vg, vo}. All of T; must dominate vs and g in order to satisfy Lemma
3.7. The vertices in T could also dominate more than {vs,v9}. Itis the minimum set
that must be dominated. The adjacency matrix A (D) is shown in Figure 5.

In an upset tournament, every vertex has an outdegree greater than zero. So, every
row in the adjacency matrix of an upset tournament contains a I. Visually, a directed
biclique of a digraph is a submatrix which forms a block of 1’ in the digraph’s adja-
cency matrix. In a biclique partition, these submatrices must be disjoint. Ina biclique
cover, they may overlap. Given the structure of the adjacency matrices here, every
biclique in A; can be expanded to cover any 1’s to the right of A; in a biclique cover.
This relationship is important in determining what upset tournaments can be used as
strong components in out-tournaments where bc (D) = bp (D) = n.

rg ; (1) g g g By={y,v4,v5,5 }- 4}
T 00100 Bz={Vz.V5oV6}_){V3}
1 83=6r3.vs}-’{"1"’4}
: 1 10 g ; ? B4={V4}_'&1'V2'V5}
= 1V2,V3, V)

111100 Bs = {5} $1,v2,v3.v8 }

Figure 6: Adjacency matrix of an upset tournament on 6 vertices, and a minimum bi-
clique cover.

Consider the matrix in Figure 6 representing an upset tournament with vertices
U1,...,¥6. A minimum biclique cover is given, where B; are the bicliques. Each of
the B; can be expanded to cover any 1’s in a column to the right or the left of this
submatrix. Figure 7 shows the same bicliques expanded to cover 1's representing the
vertices in the original matrix dominating vertices vg and vg.

[0 10000011 B;=ﬁ'th4:Vs»Ve}—'{VzvVe-Vs}
001000011 3§=‘5’2-V5,Ve}-*{"s-"a:"s}
1060100011 B§=5'3'V6}-*{V1-V4’Vao"9}
RO R 1 0 N Sty
t1 1001017 5§=‘5’5}—’{V1»V2:V3v"ev"a,vs}
111100011

Figure 7: Submatrix where all of the vertices of the upset tournament dominate vertices |
vg and vg. The expanded biclique cover is given.

Lemmad.2 Let D be an out-tournament with k upset tournament Strong compo-
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nents, T;. Thenbc(D) < ZLI be (Ts).

Proof. Let B; = X; — Y; be any maximal biclique in a minimum biclique covering
of T;. Suppose that T} is not the terminal vertex in SC (D). Then there exist arcs
from T to at least one other tournament component T;. Let Z; C V (T;) be the set
of vertices dominated by T;, and B! = X; — (Y; U Z;). The collection of all B; in
the biclique covering cover all arcs in T; by definition, so the collection of all B also
cover those arcs. Every vertex in T; dominates Z;. Since T; is strong, each vertex
has outdegree greater than zero, and so must be contained in some Xj of B;. Thus,
every arc from X; to Z; is in Bj, so every arc from T; to T} is covered. Taking every
B! for every T; in D, we obtain a cover for D using only the number of bicliques used
to cover each of the individual upset tournaments. Therefore, bc (D) < Ef___l be (T3).
(]

Corollary 4.3 Let A be the adjacency matrix of an out-tournament with k upset tour-
nament strong components, where A; is the adjacency matrix of strong component T;.
Thentg (A) < ¥ oy B (Ad).

Thus to find the matrices with full and equal ranks, the submatrices, A;, must have
5 (Ai) = ni. So we look for upset tournaments where bc (T:) = ny. Since be(T) <
bp (T;), the upset tournaments must have be (T;) = bp (T3) = ni.

Theorem 4.4 [18] Let T be an upset tournament in standard form onn 2 6 vertices.
Then be (T') = n if and only if the upset path does not contain any arcs of the form
(v,-.v.-+1)ﬁ)r3 S 1 S n-3.

When we have n; > 6, Theorem 4.4 gives us the structure that must be used for
the upset tournament strong components of the out-tournament. What about upset
tournaments on 3, 4 or 5 vertices? To answer this question, we use results from
Gregory, et al. [11]. A set S of independent 1’s of a {0,1} —matrix is said to be

isolated if no two 1’s are in a 2 x 2 submatrix of 1’s.

Lemma 4.5 [11] If the adjacency matrix A of a digraph D has an isolated set of T
1's, thenrp (A) = be(D) 2 .

We use this result in the proof of the following lemma where we establish the
boolean and nonnegative integer ranks of upset tournaments on 3, 4 or 5 vertices.

Lemma 4.6 If T is an upset tournament on n. = 3,4, or 5 vertices with adjacency
matrix A, then be(T) = bp(T) = n, and v (A) = rz+ (A) =n.

Proof. When n = 3, there is exactly one upset tournament on n vertices in standard
form, and it has upset path (v1, v2), (v2,v3). Entries a12, az3 and ag, of the adjacency
matrix are isolated 1’s. When n = 4, there is exactly one upset tournament on n
vertices in standard form, and it has upset path (v1, v2), (v2,v3) and (vs, v4). Entries

12



@12, @23, a34 and aq; of the adjacency matrix are isolated 1’s. When n = 5, there
are two distinct upset tournaments on n vertices in standard form. One has upset path
(v1,v3), (v2,v4) and (vq, vs), and isolated 1’s @y2, azq, a3, 645, and asz. The other
has upset path (vy, v2), (v2,vs), (vs, vs) and (vg,vs), and isolated 1s a2, az3, ass,
a4s, and as1. By Lemma 4.5, all of the above upset tournaments have rg (A) =
be(T) 2 n. Since rz+ (A) = bp(T) > rp(A) = be(T), we have be (T) = bp(T) =
n,andrp (A) =rz+ (A)=n. O

Next, the real rank must be considered in the final characterization of the out-
tournaments. The following theorem relates real rank to nonnegative integer rank
in upset tournaments.

Theorem 4.7 [25] Let A be an adjacency matrix corresponding to an upset tourna-
ment. Thent (A) =rz+ (A). '

This translates to r (A;) = rz+ (A;) for the upset tournament strong components.
Since it is possible for the real rank to be less than both the boolean and nonnegative
integer ranks in general, it remains to show that r (4) = n in the matrices we have
discussed where 5 (A) = 72+ (A) = n. That will be done in the proof of the
following theorem, which characterizes the out-tournaments with upset tournament
strong components with full and equal ranks.

Theorem 4.8 Let D be an out-tournament with k upset tournament strong compo-
nents, T;, and adjacency matrix A. For each T;, either T; is on 3, 4 or 5 vertices or it
does not contain any arcs of the form (vj,vjp1) for3<j<m;—-3forn; > 6 if and
onlyifrp (A) =rz+ (A) =re (A) =r(4)=n

Proof. (=) If n = 3,4 or 5, the calculated real rank of the adjacency matrices for
any upset tournament in standard form is 3, 4 and 5 respectively. This combined with
Lemma 4.6 gives us 75 (4) = rz+ (A) =7 (A) = n. Ifn > 6 and there are no arcs
of the form (v, v;4,) for3 < j < n; — 3,1 < i < k, we know from Theorem 4.4 that
78 (Ai) = rz+ (A;) = n;. Also, from Corollary 4.3, 75 (4) < Ef=1 re (4;) = n.
To show that rg (A) = n, we will show that bc (D) = n. Consider minimum biclique
covers of T; and T;. Because V (T;) NV (T;) = @, no fewer bicliques can be used to
cover A (T;) and A (T}) if arcs are created from T} to Ty. So, be(D) > S5 be(Ty).
In the proof of Lemma 4.2, we know that be(D) < Z:;l bc (T;). Therefore, bc(D) =
2:;1 be(Ti) = n,sorg (A) = n. Since rp (A) < rz+ (A), we have ryz+ (A) =n.
Finally, we examine the real rank of A. The rows of each A; are linearly independent,
so there is no linear combination of these rows that equals the zero vector. For r (4)
to be less than n, there must be a linear combination of the rows of A that equal the
zero vector. The rows of A, cannot be used, as there is no linear combination of these
rows that will give the first n, entries of the zero vector, and all entries below Arin A
are 0’s. Thus, we can only use rows below A;. For similar reasons, we cannot use
the rows of A;. Following this reasoning inductively, we find that there is no linear
combination of the rows of A that equal the zero vector, and so r (A) = n. Inall cases,
since r (A) < r¢ (A), we have ¢ (4) = n.

13



(«) rp (A) = nimplies that ©°_, r5 (4:) = n. So, each A, must have full boolean
rank, rg (A;) = n;. Since rg (A) < rz+ (A), rz+ (Ai) = ni foreachi =1,..., k.
Thus, 75 (A:) = rz+ (A;) = n; for 1 < i < k. This only occurs when T; is on 3, 4, or
5 vertices, or by Theorem 4.4 when n > 6 and there are no arcs of the form (v;, Vj41)
for3<j<n;=3. O

Although this paper concentrates on local out-tournaments, the same results hold
for local in-tournaments.

§ Miles to Go

A characteristic of upset tournaments that makes them interesting is that it is also
known when rg (4) = rz+ (A) = n — 1. If we use these upset tournaments as strong
components in an out-toumament D, the singular matrices A; make for a variety of
rank values.

(=4

000000 - 00 -0
o000 0©0CO ~+~00 -+ 0O
OO0 0000 O0OO0O =000
0O 00 00O o0 -+ 000 o0
- ek ek wd O - A A e o-
- - - 00~ 0 000 O0O0Q
- - 00 = 0 0 0 00 oo
- 00 - 00000 OO0 o
0 0O -~ 000 00O OO O0COoO
0O -~ 0000000 OO0

‘cc 0000 === =00
0O OO0 OO0 = = =00 =

Figure 8: Adjacency matrix of an out-tournament where T; are upset tournaments on 6
vertices, and rg (A) # rz+ (4).

To illustrate this, consider the matrix in Figure 8. The upset tournament compo-
nents T, and 75 have six vertices each with upset paths isomorphic to (v1,v2), (v2,v3),
(va,va), (va,vs). Each hasbc(T3) = bp(T;) =n — 1. All vertices of T} dominate
the first labeled vertex of T to form a local out-tournament. As shown in Section 4,
the bicliques of T can be expanded to cover the arcs from Ty to Tz. So, rg{4) =
(ny = 1) + (n2 — 1) = 10. However, the partitions cannot be expanded in this way.
Nor can the partitions in T be expanded upward to cover the 1’s. While this in itself
is not enough to show that 7z+ > 10, it must be at least 11 since r (A) = 11.

What if, instead of dominating the first labeled vertex of T>, the vertices of T}
dominate the second? Figure 9 shows this slightly different adjacency matrix. Here,’
we have the same boolean rank as in Figure 8, but a biclique in the partition cover
of T, can be extended to cover the column of 1’s above it. Therefore, rg (A) =
rz+ (A) = 10. As a bonus, r (A) = 10 as well. This shows that for a local out-
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(010000010000
001000010000
100100010000
110010010000
111001010000
111100010000
000000010000
000000001000
000000100100
000000110010
000000111001

000000111100]

Figure 9: Adjacency matrix of an out-tournament where T} are upset tournaments on 6
vertices, and rp (A4) = rz+ (A).

tournament, r (A) < n - 1 is possible, unlike the case for tournaments.

So the question now becomes, how can local out-tournaments with upset tourna-
ment strong components be constructed where rg (4) = rz+ (4) <nandrg (A) =
rz+ (A) =1¢(A) =r(A) < n? Additionally, what local out-tournaments have adja-
cency matrices with equality for some subsets of these ranks, and what are the subsets?

Naturally, the ranks of the adjacency matrices of local tournaments and local out-
tournaments with a variety of strong tournaments as components can be explored.
Hopefully, a characterization as to the local, local out- and local in-tournaments whose
adjacency matrices have equal {0, 1} ~matrix ranks can be obtained. This paper pro-
vides the first inroad to that characterization. It has also been an opportunity to bring
together two different areas of research within graph theory.
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