The Commuting Graph of the Quaternion Algebra over Residue Classes of Integers

Wei Yangjiang * Tang Gaohua † Su Huadong School of Mathematical Sciences, Guangxi Teachers Education University, Nanning, Guangxi, 530023, P. R. China

Abstract

The commuting graph of an arbitrary ring R, denoted by $\Gamma(R)$, is the graph whose vertices are all non-central elements of R, and two distinct vertices a and b are adjacent if and only if ab = ba. In this paper, we investigate the *connectivity*, the *diameter*, the *maximum degree* and the *minimum degree* of the commuting graph of the quaternion algebra $\mathbb{Z}_n[\mathbf{i}, \mathbf{j}, \mathbf{k}]$.

AMS Classification: 05C12; 05C40; 15A33; 16L; 16N.

Keywords: Quaternion algebra; Commuting graph; Connected compo-

nent; Maximum degree; Minimum degree.

1 Introduction

The commuting graph of an arbitrary ring R denoted by $\Gamma(R)$, is the graph with vertex set $R \setminus Z(R)$, where Z(R) is the center of R, and two distinct vertices a and b are adjacent if and only if ab = ba. In this paper, we study some properties of the commuting graphs of the quaternion algebra over \mathbb{Z}_n , which is denoted by $H_n = \mathbb{Z}_n[\mathbf{i}, \mathbf{j}, \mathbf{k}] = \{a + b\mathbf{i} + c\mathbf{j} + d\mathbf{k} | a, b, c, d \in \mathbb{Z}_n\}$, where $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \ldots, \overline{n-1}\}$ is the ring of integers modulo n and $\mathbf{i}, \mathbf{j}, \mathbf{k}$ are formal symbols called basic units with $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = \mathbf{i}\mathbf{j}\mathbf{k} = -1$.

The properties of H_n were discussed in [10] and [11], and we proved that $H_n \cong M_2(\mathbb{Z}_n)$ if and only if n is odd. Moreover, a new isomorphism relation between $\mathbb{Z}_n[\mathbf{i}, \mathbf{j}, \mathbf{k}]$ and $M_2(\mathbb{Z}_p)$ was given in [9], for all odd primes p. It is clear that the ring of Gaussian integers modulo n, $\mathbb{Z}_n[\mathbf{i}] = \{a + b\mathbf{i} \mid a, b \in \mathbb{Z}_n, \mathbf{i}^2 = \mathbf{i} \mid a, b \in \mathbb{Z}_n\}$

^{*}E-mail: gus02@163.com

[†]Correspondences: Tang Gaohua, School of Mathematical Sciences, Guangxi Teachers Education University, Yanziling Road, Nanning, Guangxi, 530023, P. R. China; E-mail: tangaohua@163.com

-1), is a subring of $\mathbb{Z}_n[i,j,k]$. In [7] and [8], the properties of $\mathbb{Z}_n[i]$ were studied. Also, the zero-divisor graph for $\mathbb{Z}_n[i]$ was investigated in [2].

Let R be a ring and $R^* = R \setminus \{0\}$. We use D(R), U(R) to denote the set of zero-divisors of R and the group of units of R respectively. Given integers a and b, we denote by (a, b) the greatest common divisor of a and b. If p is a prime and t is a nonnegative integer, then we use the notation $p^t || a$ to mean that $p^t || a$ and $p^{t+1} || a$. The ring of n by n full matrices over a ring n is denoted by n

In this paper, all graphs are simple and undirected and |G| denotes the number of vertices of the graph G. In a graph G, the degree of a vertex v is denoted by d(v). And the minimum degree and maximum degree of G are denoted by $\delta(G)$ and $\Delta(G)$, respectively. We denote the vertex set of G as V(G). A path of length r from a vertex x to another vertex y in G is a sequence of r+1 distinct vertices starting with x and ending with y such that consecutive vertices are adjacent. For a connected graph H, the diameter of H is denoted by diam(H). An induced subgraph of G that is maximal, subject to being connected, is called a connected component of G.

In this paper, we investigate some connections between number theory, quaternion theory and graph theory motivated by the work of [1], [3], [4] and [5]. In section 2, we show that $\Gamma(H_n)$ is connected if and only if $n \neq p$, 2p, 2^2 for all odd primes p. If $\Gamma(H_n)$ is connected then $diam(\Gamma(H_n)) = 3$, and if $\Gamma(H_n)$ is disconnected then every connected component of $\Gamma(H_n)$ is a complete graph with the same size and we completely determine the vertices of every connected component. In section 3, we determine the degree of each vertex in $\Gamma(H_n)$ and the maximum degree and minimum degree of $\Gamma(H_n)$.

2 The connectivity and diameter of $\Gamma(H_n)$

Lemma 2.1. [3, Theorem 2] If F is a finite field, then $\Gamma(M_2(F))$ is a graph with $|F|^2 + |F| + 1$ connected components of size $|F|^2 - |F|$ which each of them is a complete graph.

The statements of Lemma 2.2 were proved in [10] and [11].

Lemma 2.2. Let $H_n = \mathbb{Z}_n[i, j, k], n \ge 2$.

- (1) H₂ is commutative.
- (2) $H_n \cong M_2(\mathbb{Z}_n)$ if and only if n is odd.
- (3) Let $n = p_1^{t_1} \cdots p_m^{t_m}$, where $m \ge 1$, p_1, \ldots, p_m are pairwise distinct primes, $t_i \ge 1$, for $i \in \{1, \ldots, m\}$. Then $H_n \cong H_{p_1^{t_1}} \oplus \cdots \oplus H_{p_m^{t_m}}$.

Lemma 2.3. (1) If $2 \nmid n$, then the center $Z(H_n)$ of H_n is \mathbb{Z}_n . Therefore $|Z(H_n)| = n$ and $|\Gamma(H_n)| = n^4 - n$.

 $(2) If 2|n, then Z(H_n) = \left\{ \overline{a} + \overline{b}\mathbf{i} + \overline{c}\mathbf{j} + \overline{d}\mathbf{k} \, \middle| \, \overline{a} \in \mathbb{Z}_n; \, \overline{b}, \overline{c}, \overline{d} = \overline{0} \text{ or } \frac{\overline{1}n}{2} \right\}.$ Therefore $|Z(H_n)| = 2^3 n$ and $|\Gamma(H_n)| = n^4 - 2^3 n$.

Proof. First of all, for $\alpha = \overline{a} + \overline{b}i + \overline{c}j + \overline{d}k$, $\beta = \overline{w} + \overline{x}i + \overline{y}j + \overline{z}k \in H_n$, we have $\alpha\beta = \beta\alpha$ if and only if the following system of congruence equations holds.

$$(*) \begin{cases} 2(cz - dy) \equiv 0 \pmod{n} & (2-1) \\ 2(dx - bz) \equiv 0 \pmod{n} & (2-2) \\ 2(by - cx) \equiv 0 \pmod{n} & (2-3) \end{cases}$$

- (2-3)
- (1) Assume that $2 \nmid n$. Let $\alpha = \overline{a} + \overline{b}i + \overline{c}j + \overline{d}k \in Z(H_n)$. It is clear that $i\alpha = \alpha i$. So by system (*), we have $2c \equiv 0 \pmod{n}$ and $2d \equiv 0 \pmod{n}$. Since $2 \nmid n$, we have $n \mid c$ and $n \mid d$, i.e., $\overline{c} = \overline{d} = \overline{0}$, so $\alpha = \overline{a} + \overline{b}i$. Moreover, $j\alpha = \alpha j$ yields that $2b \equiv 0 \pmod{n}$, so $\overline{b} = \overline{0}$. Thus we have $Z(H_n) = \mathbb{Z}_n$ and therefore $|Z(\mathbf{H}_n)| = n$, $|\Gamma(\mathbf{H}_n)| = n^4 - n$.
- (2) Assume that 2|n. Let $\alpha = \overline{a} + \overline{b}\mathbf{i} + \overline{c}\mathbf{j} + \overline{d}\mathbf{k} \in Z(\mathbf{H}_n)$. If $\overline{b} \neq \overline{0}, \frac{1}{2}n$, then $\mathbf{j}\alpha \neq \alpha \mathbf{j}$ contradicts $\alpha \in Z(\mathbf{H}_n)$. Hence, $\overline{b} = \overline{0}$ or $\frac{1}{2}n$. Similarly, we have $\overline{c}, \overline{d} = \overline{0}$ or $\overline{\frac{1}{2}n}$. Conversely, if $\alpha = \overline{a} + \overline{b}\mathbf{i} + \overline{c}\mathbf{j} + \overline{d}\mathbf{k} \in \mathbf{H}_n$ with $\overline{a} \in \mathbb{Z}_n$ and $\overline{b}, \overline{c}, \overline{d} = \overline{0}$ or $\frac{1}{2}n$, it is easy to verify that $\alpha \in Z(H_n)$. Hence, the result follows.

In the next, for $\alpha = \overline{a} + \overline{b}i + \overline{c}j + \overline{d}k \in H_n$, we always suppose that a, b, c, dare nonnegative integers not greater than n-1.

Theorem 2.4. Suppose $n = 2^t$, $t \ge 1$.

- (1) If t = 1, then $|\Gamma(H_n)| = 0$.
- (2) If t = 2, then $\Gamma(H_n)$ is a graph with 7 connected components of size 2^5 which each of them is a complete graph.
 - (3) If $t \ge 3$, then $\Gamma(H_n)$ is connected and $\operatorname{diam}(\Gamma(H_n)) = 3$.

Proof. (1) By Lemma 2.2 (1), H_2 is a commutative ring, so $|\Gamma(H_n)| = 0$.

(2) Clearly, $U(\mathbb{Z}_4) = \{\overline{1}, \overline{3}\}, D(\mathbb{Z}_4) = \{\overline{0}, \overline{2}\}.$ We construct 7 subsets of $H_n \setminus Z(H_n)$ as follows.

$$\begin{split} A_1 &= \left\{ \overline{a} + \overline{b}\mathbf{i} + \overline{c}\mathbf{j} + \overline{d}\mathbf{k} \,\middle|\, \overline{a} \in \mathbb{Z}_4; \ \overline{b} \in U(\mathbb{Z}_4); \ \overline{c}, \overline{d} \in D(\mathbb{Z}_4) \right\} \\ A_2 &= \left\{ \overline{a} + \overline{b}\mathbf{i} + \overline{c}\mathbf{j} + \overline{d}\mathbf{k} \,\middle|\, \overline{a} \in \mathbb{Z}_4; \ \overline{c} \in U(\mathbb{Z}_4); \ \overline{b}, \overline{d} \in D(\mathbb{Z}_4) \right\} \\ A_3 &= \left\{ \overline{a} + \overline{b}\mathbf{i} + \overline{c}\mathbf{j} + \overline{d}\mathbf{k} \,\middle|\, \overline{a} \in \mathbb{Z}_4; \ \overline{d} \in U(\mathbb{Z}_4); \ \overline{b}, \overline{c} \in D(\mathbb{Z}_4) \right\} \end{split}$$

$$A_{4} = \left\{ \overline{a} + \overline{b}\mathbf{i} + \overline{c}\mathbf{j} + \overline{d}\mathbf{k} \,\middle|\, \overline{a} \in \mathbb{Z}_{4}; \ \overline{c}, \overline{d} \in U(\mathbb{Z}_{4}); \ \overline{b} \in D(\mathbb{Z}_{4}) \right\}$$

$$A_{5} = \left\{ \overline{a} + \overline{b}\mathbf{i} + \overline{c}\mathbf{j} + \overline{d}\mathbf{k} \,\middle|\, \overline{a} \in \mathbb{Z}_{4}; \ \overline{b}, \overline{d} \in U(\mathbb{Z}_{4}); \ \overline{c} \in D(\mathbb{Z}_{4}) \right\}$$

$$A_{6} = \left\{ \overline{a} + \overline{b}\mathbf{i} + \overline{c}\mathbf{j} + \overline{d}\mathbf{k} \,\middle|\, \overline{a} \in \mathbb{Z}_{4}; \ \overline{b}, \overline{c} \in U(\mathbb{Z}_{4}); \ \overline{d} \in D(\mathbb{Z}_{4}) \right\}$$

$$A_{7} = \left\{ \overline{a} + \overline{b}\mathbf{i} + \overline{c}\mathbf{j} + \overline{d}\mathbf{k} \,\middle|\, \overline{a} \in \mathbb{Z}_{4}; \ \overline{b}, \overline{c}, \overline{d} \in U(\mathbb{Z}_{4}) \right\}$$

Clearly, $A_1 \cup A_2 \cup \cdots \cup A_7 = H_n \setminus Z(H_n)$. And $A_\lambda \cap A_s = \emptyset$, for $\lambda \neq s$. $|A_1| = |A_2| = \cdots = |A_7| = 2^5$. Moreover, it is easy to verify that for $\lambda = 1, \ldots, 7$, if $\alpha \in A_\lambda$, $\beta \in \Gamma(H_n)$, then $\alpha\beta = \beta\alpha$ if and only if $\beta \in A_\lambda$. This implies that $\Gamma(H_n)$ is a graph with 7 connected components of size 2^5 which each of them is a complete graph.

- (3) For $\alpha, \beta \in V(\Gamma(\mathbf{H}_n))$, we put $\alpha = \overline{a} + \overline{b}\mathbf{i} + \overline{c}\mathbf{j} + \overline{d}\mathbf{k}$ and $\beta = \overline{w} + \overline{x}\mathbf{i} + \overline{y}\mathbf{j} + \overline{z}\mathbf{k}$.
- Case 1. Assume that $2^{\lambda}|(b,c,d), 2^{s}|(x,y,z)$, for some $\lambda, s \in \{1,2,\ldots,t-2\}$. If $\lambda + s \geqslant t 1$ then $\alpha \beta$ is an edge of $\Gamma(H_n)$. While if $\lambda + s < t 1$ then $\alpha 2^{t-2}i \beta$ is a path of $\Gamma(H_n)$.
- Case 2. Assume that $2 \nmid (b, c, d)$, $2 \mid (x, y, z)$, then $2^{t-2}\alpha \notin Z(H_n)$, so $\alpha 2^{t-2}\alpha \beta$ is a path of $\Gamma(H_n)$.
- Case 3. Assume that 2|(b,c,d), $2 \nmid (x,y,z)$, then $2^{t-2}\beta \notin Z(H_n)$, so $\alpha-2^{t-2}\beta-\beta$ is a path of $\Gamma(H_n)$.
- Case 4. Assume that $2 \nmid (b, c, d)$, $2 \nmid (x, y, z)$, then $2^{t-2}\alpha$, $2^{t-2}\beta \notin Z(\mathcal{H}_n)$. So $\alpha 2^{t-2}\alpha 2^{t-2}\beta \beta$ is a path of $\Gamma(\mathcal{H}_n)$.

Consequently, $\Gamma(H_n)$ is connected and $diam(\Gamma(H_n)) \leq 3$. Moreover, note that $\mathbf{i}, \mathbf{j} \in V(\Gamma(H_n))$, suppose that $\gamma = \overline{a_0} + \overline{b_0}\mathbf{i} + \overline{c_0}\mathbf{j} + \overline{d_0}\mathbf{k}$ is adjacent to both \mathbf{i} and \mathbf{j} . Observe that $\mathbf{i}\gamma = \gamma\mathbf{i}$ if and only if $2c_0 \equiv 0 \pmod{2^t}$ and $2d_0 \equiv 0 \pmod{2^t}$, while $\mathbf{j}\gamma = \gamma\mathbf{j}$ if and only if $2b_0 \equiv 0 \pmod{2^t}$ and $2d_0 \equiv 0 \pmod{p^t}$. Thus we must have $b_0, c_0, d_0 \in \{0, \frac{n}{2}\}$. By Lemma 2.3, $\gamma \in Z(H_n)$. Hence, there exists no vertex γ of $\Gamma(H_n)$ such that $\mathbf{i} - \gamma - \mathbf{j}$ is a path of $\Gamma(H_n)$. Therefore, $diam(\Gamma(H_n)) = 3$.

By Lemma 2.2 (2), $H_p \cong M_2(\mathbb{Z}_p)$ if p is an odd prime. Hence, by Lemma 2.1, $\Gamma(H_p)$ is a graph with p^2+p+1 connected components of size p^2-p which each of them is a complete graph. In the following theorem, we completely determine the vertices of each connected component of $\Gamma(H_p)$.

Theorem 2.5. Suppose $n = p^t$, p is an odd prime, $t \ge 1$.

(1) If t=1, then $\Gamma(H_n)$ is a graph with p^2+p+1 connected components of size p^2-p which each of them is a complete graph. And the following sets are the vertex sets of all different connected components of $\Gamma(H_n)$:

$$A_1 = \left\{ \overline{a} + \overline{b}\mathbf{i} \, \middle| \, \overline{a} \in \mathbb{Z}_p; \overline{b} \in \mathbb{Z}_p^* \right\}$$

$$\begin{split} A_2 &= \left\{ \overline{a} + \overline{c} \mathbf{j} \, \middle| \, \overline{a} \in \mathbb{Z}_p; \overline{c} \in \mathbb{Z}_p^* \right\} \\ A_3 &= \left\{ \overline{a} + \overline{d} \mathbf{k} \, \middle| \, \overline{a} \in \mathbb{Z}_p; \overline{d} \in \mathbb{Z}_p^* \right\} \\ B_{\lambda} &= \left\{ \overline{a} + \overline{b} \mathbf{i} + \overline{\lambda} \overline{b} \mathbf{j} \, \middle| \, \overline{a} \in \mathbb{Z}_p; \overline{b} \in \mathbb{Z}_p^* \right\} \\ C_{\lambda} &= \left\{ \overline{a} + \overline{c} \mathbf{j} + \overline{\lambda} \overline{c} \mathbf{k} \, \middle| \, \overline{a} \in \mathbb{Z}_p; \overline{c} \in \mathbb{Z}_p^* \right\} \\ D_{\lambda} &= \left\{ \overline{a} + \overline{\lambda} \overline{d} \mathbf{i} + \overline{d} \mathbf{k} \, \middle| \, \overline{a} \in \mathbb{Z}_p; \overline{d} \in \mathbb{Z}_p^* \right\} \\ E_{\sigma \, \tau} &= \left\{ \overline{a} + \overline{e} \mathbf{i} + \overline{\sigma} \overline{e} \mathbf{j} + \overline{\sigma} \overline{\tau} \overline{e} \mathbf{k} \, \middle| \, \overline{a} \in \mathbb{Z}_p; \overline{e} \in \mathbb{Z}_p^* \right\} \end{split}$$

Where λ , σ , $\tau = 1, 2, \ldots, p-1$.

(2) If $t \ge 2$, then $\Gamma(H_n)$ is connected and $\operatorname{diam}(\Gamma(H_n)) = 3$.

Proof. (1) Clearly, the number of sets presented in (1) is equal to $3+3(p-1)+(p-1)^2=p^2+p+1$. By an easy calculation we derive that the cardinality of each set is p^2-p , and each vertex of $\Gamma(H_p)$ belongs to a unique set. Moreover, it is not difficult to verify that for α , $\beta \in \Gamma(H_p)$, $\alpha\beta = \beta\alpha$ if and only if α and β belong to the same set.

(2) For
$$\alpha, \beta \in V(\Gamma(H_n))$$
, we put $\alpha = \overline{a} + \overline{b}i + \overline{c}j + \overline{d}k$ and $\beta = \overline{w} + \overline{x}i + \overline{y}j + \overline{z}k$.

Case 1. Assume that $p^{\lambda}|(b,c,d), \ p^{s}|(x,y,z)$, for some $\lambda, s \in \{1,2,\ldots,t-1\}$. If $\lambda+s \geq t$ then $\alpha-\beta$ is an edge of $\Gamma(H_n)$. If $\lambda+s < t$ then $\alpha-p^{t-1}\mathbf{i}-\beta$ is a path of $\Gamma(H_n)$.

Case 2. Assume that $p \nmid (b, c, d)$, p|(x, y, z), then $p^{t-1}\alpha \notin Z(H_n)$, so $\alpha - p^{t-1}\alpha - \beta$ is a path of $\Gamma(H_n)$.

Case 3. Assume that p|(b,c,d), $p \nmid (x,y,z)$, then $p^{t-1}\beta \notin Z(H_n)$, so $\alpha - p^{t-1}\beta - \beta$ is a path of $\Gamma(H_n)$.

Case 4. Assume that $p \nmid (b, c, d)$, $p \nmid (x, y, z)$, then $p^{t-1}\alpha$, $p^{t-1}\beta \notin Z(H_n)$. So $\alpha - p^{t-1}\alpha - p^{t-1}\beta - \beta$ is a path of $\Gamma(H_n)$.

Hence, $\Gamma(\mathbf{H}_n)$ is connected and $diam(\Gamma(\mathbf{H}_n)) \leqslant 3$. Moreover, note that $\mathbf{i}, \mathbf{j} \in V(\Gamma(\mathbf{H}_n))$, suppose that $\gamma = \overline{a_0} + \overline{b_0}\mathbf{i} + \overline{c_0}\mathbf{j} + \overline{d_0}\mathbf{k}$ is adjacent to both \mathbf{i} and \mathbf{j} . Since $\mathbf{i}\gamma = \gamma\mathbf{i}$ if and only if $2c_0 \equiv 0 \pmod{p^t}$ and $2d_0 \equiv 0 \pmod{p^t}$, while $\mathbf{j}\gamma = \gamma\mathbf{j}$ if and only if $2b_0 \equiv 0 \pmod{p^t}$ and $2d_0 \equiv 0 \pmod{p^t}$, we must have $b_0 = c_0 = d_0 = 0$. By Lemma 2.3, $\gamma \in Z(\mathbf{H}_n)$. Hence, there exists no vertex γ of $\Gamma(\mathbf{H}_n)$ such that $\mathbf{i} - \gamma - \mathbf{j}$ is a path of $\Gamma(\mathbf{H}_n)$. Therefore, $diam(\Gamma(\mathbf{H}_n)) = 3$.

We next consider the commuting graph $\Gamma(H_n)$ in which n has at least two prime divisors. We need the following two lemmas in the sequel.

Lemma 2.6. [6, P.161, Exercise 12] The number of solutions of the congruence equation in x_1, x_2, \ldots, x_k :

$$a_1x_1 + a_2x_2 + \cdots + a_kx_k \equiv b \pmod{m}$$

where a_1, \ldots, a_k, b and m are integers with m > 1, is equal to

$$m^{k-1}(a_1,a_2,\ldots,a_k,m)$$

if $(a_1,\ldots,a_k,m)|b$.

Lemma 2.7. If p is an odd prime, then for $\overline{b}, \overline{c} \in \mathbb{Z}_{2p} \setminus \{\overline{0}, \overline{p}\}$, there exists a unique ordered pair $\{\lambda, s\}$ where $\lambda \in \{1, 2, \dots, p-1\}$ and $s \in \{0, 1\}$ such that

$$\lambda b + sp \equiv c \pmod{2p} \tag{2-4}$$

Proof. First, since (b, p, 2p) = 1, by Lemma 2.6, the congruence equation (2-4) in λ , s has 2p solutions. Suppose $\{\lambda_0, s_0\}$ is a solution of (2-4), for some $\lambda_0, s_0 \in \{0, 1, 2, \dots, 2p-1\}$. Let $\lambda_0 = xp + r$ for some $x \in \{0, 1\}$ and $r \in \{1, \dots, p-1\}$. Then

$$c \equiv \lambda_0 b + s_0 p \equiv b(xp+r) + s_0 p \equiv rb + (bx+s_0)p \pmod{2p}$$

Observe that $(bx + s_0)p \equiv 0 \pmod{2p}$ if $bx + s_0$ is even, while $(bx + s_0)p \equiv p \pmod{2p}$ if $bx + s_0$ is odd. Hence exactly one of

$$\left\{ \begin{array}{l} \lambda \equiv r \pmod{2p} \\ s \equiv 0 \pmod{2p} \end{array} \right. \quad and \quad \left\{ \begin{array}{l} \lambda \equiv r \pmod{2p} \\ s \equiv 1 \pmod{2p} \end{array} \right.$$

is a solution of congruence equation (2-4).

Furthermore, if there exist two ordered pairs $\{\lambda_1, s_1\}$ and $\{\lambda_2, s_2\}$ satisfy congruence (2-4), where $\lambda_1, \lambda_2 \in \{1, 2, \dots, p-1\}$ and $s_1, s_2 \in \{0, 1\}$. By equation (2-4), we have

$$(\lambda_1 - \lambda_2)b \equiv (s_2 - s_1)p \pmod{2p} \tag{2-5}$$

If $\lambda_1 \neq \lambda_2$, since $p \nmid b$, we have $p \nmid (\lambda_1 - \lambda_2)b$, a contradiction. So we must have $\lambda_1 = \lambda_2$. Moreover, if $s_1 \neq s_2$, then $s_2 - s_1 = -1$ or 1. Hence $(s_2 - s_1)p \equiv p \pmod{2p}$, which is impossible for $\lambda_1 = \lambda_2$. Therefore, $s_1 = s_2$.

Theorem 2.8. Suppose that n has at least two prime factors.

- (1) If n = 2p where p is an odd prime, then $\Gamma(H_n)$ is a graph with $p^2 + p + 1$ connected components of size 16p(p-1) which each of them is a complete graph.
- (2) If $n \neq 2p$ where p is an odd prime, then $\Gamma(H_n)$ is a connected graph and $diam(\Gamma(H_n)) = 3$.

Proof. (1) By Lemma 2.2 (3), we have $H_n \cong H_2 \oplus H_p$. Let $\alpha = (\alpha_1, \alpha_2)$ and $\beta = (\beta_1, \beta_2)$ be two vertices of $\Gamma(H_2 \oplus H_p)$. Note that H_2 is commutative, so neither α_2 nor β_2 belongs to $Z(H_p)$. Thus we have $\alpha\beta = \beta\alpha$ if and only if $\alpha_2\beta_2 = \beta_2\alpha_2$, if and only if α_2 and β_2 belong to the same connected component of $\Gamma(H_p)$. By Theorem 2.5 (1), we can construct the following subsets of $H_n \setminus Z(H_n)$.

$$\begin{split} A_1 &= \left\{ \overline{a} + \overline{b} \mathbf{i} + \overline{s_1} \overline{p} \mathbf{j} + \overline{s_2} \overline{p} \mathbf{k} \ \middle| \ \overline{a} \in \mathbb{Z}_n; \ \overline{b} \in \mathbb{Z}_n \setminus \{\overline{0}, \overline{p}\}; \ s_1, s_2 \in \{0, 1\} \right\} \\ A_2 &= \left\{ \overline{a} + \overline{s_1} \overline{p} \mathbf{i} + \overline{c} \mathbf{j} + \overline{s_2} \overline{p} \mathbf{k} \ \middle| \ \overline{a} \in \mathbb{Z}_n; \ \overline{c} \in \mathbb{Z}_n \setminus \{\overline{0}, \overline{p}\}; \ s_1, s_2 \in \{0, 1\} \right\} \\ A_3 &= \left\{ \overline{a} + \overline{s_1} \overline{p} \mathbf{i} + \overline{s_2} \overline{p} \mathbf{j} + \overline{d} \mathbf{k} \ \middle| \ \overline{a} \in \mathbb{Z}_n; \ \overline{d} \in \mathbb{Z}_n \setminus \{\overline{0}, \overline{p}\}; \ s_1, s_2 \in \{0, 1\} \right\} \\ B_{\lambda} &= \left\{ \overline{a} + \overline{b} \mathbf{i} + \overline{\lambda} \overline{b} + s_1 \overline{p} \mathbf{j} + \overline{s_2} \overline{p} \mathbf{k} \ \middle| \ \overline{a} \in \mathbb{Z}_n; \ \overline{b} \in \mathbb{Z}_n \setminus \{\overline{0}, \overline{p}\}; \ s_1, s_2 \in \{0, 1\} \right\} \\ C_{\lambda} &= \left\{ \overline{a} + \overline{s_1} \overline{p} \mathbf{i} + \overline{c} \mathbf{j} + \overline{\lambda} \overline{c} + s_2 \overline{p} \mathbf{k} \ \middle| \ \overline{a} \in \mathbb{Z}_n; \ \overline{c} \in \mathbb{Z}_n \setminus \{\overline{0}, \overline{p}\}; \ s_1, s_2 \in \{0, 1\} \right\} \\ D_{\lambda} &= \left\{ \overline{a} + \overline{\lambda} \overline{d} + s_1 \overline{p} \mathbf{i} + \overline{s_2} \overline{p} \mathbf{j} + \overline{d} \mathbf{k} \ \middle| \ \overline{a} \in \mathbb{Z}_n; \ \overline{d} \in \mathbb{Z}_n \setminus \{\overline{0}, \overline{p}\}; \ s_1, s_2 \in \{0, 1\} \right\} \\ E_{\sigma \tau} &= \left\{ \overline{a} + \overline{e} \mathbf{i} + \overline{\sigma e} + s_1 \overline{p} \mathbf{j} + \overline{\sigma \tau e} + s_2 \overline{p} \mathbf{k} \ \middle| \ \overline{a} \in \mathbb{Z}_n; \ \overline{e} \in \mathbb{Z}_n \setminus \{\overline{0}, \overline{p}\}; s_1, s_2 \in \{0, 1\} \right\} \end{split}$$

Where λ , σ , $\tau = 1, 2, \ldots, p-1$.

By Lemma 2.7, one can show that each vertex of $\Gamma(H_n)$ belongs to exactly one of the sets above. So $\Gamma(H_n)$ is a graph with p^2+p+1 connected components of size 16p(p-1). It is not difficult to verify that each connected component is a complete graph.

- (2) Since n has at least two prime divisors and $n \neq 2p$, we have three cases to consider.
- Case 1. Suppose that $n=2p^t$, t>1 and p is an odd prime. Then by Lemma 2.2 (3), we have $H_n\cong H_2\oplus H_{p^t}$. Let $\alpha=(\alpha_1,\alpha_2)$ and $\beta=(\beta_1,\beta_2)$ be two vertices of $\Gamma(H_2\oplus H_{p^t})$. Since H_2 is commutative, we have $\alpha_2,\,\beta_2\in H_{p^t}\setminus Z(H_{p^t})$. If $\alpha_2\beta_2=\beta_2\alpha_2$ then $\alpha-\beta$ is an edge of $\Gamma(H_2\oplus H_{p^t})$. Otherwise, by Theorem 2.5(2), either $\alpha_2-\xi-\beta_2$ or $\alpha_2-\eta-\delta-\beta_2$ is a path of $\Gamma(H_{p^t})$, where $\xi,\,\eta,\,\delta\in H_{p^t}\setminus Z(H_{p^t})$. Put $\gamma=(\overline{0},\xi),\,\gamma'=(\overline{0},\eta),\,\gamma''=(\overline{0},\delta)$. Then either $\alpha-\gamma-\beta$ or $\alpha-\gamma'-\gamma''-\beta$ is a path of $\Gamma(H_2\oplus H_{p^t})$.
- Case 2. Suppose that $n=2p_1^{t_1}\cdots p_m^{t_m}$, where $m\geqslant 2,\ t_1,\ldots,t_m\geqslant 1$, and p_1,\ldots,p_m are distinct odd primes. Then by Lemma 2.2 (3), we have $\mathbf{H}_n\cong \mathbf{H}_2\oplus \mathbf{H}_{p_1^{t_1}}\oplus\cdots\oplus \mathbf{H}_{p_m^{t_m}}$. Let $\alpha=(\alpha_0,\alpha_1,\ldots,\alpha_m)$ and $\beta=(\beta_0,\beta_1,\ldots,\beta_m)$ be two vertices of $\mathbf{H}_2\oplus \mathbf{H}_{p_1^{t_1}}\oplus\cdots\oplus \mathbf{H}_{p_m^{t_m}}$. Put $\gamma=(\overline{0},\gamma_1,\overline{0},\ldots,\overline{0}),\ \gamma'=(\overline{0},\overline{0},\cdots,\gamma_m)$, where $\gamma_1\in \mathbf{H}_{p_1^{t_1}}\backslash Z(\mathbf{H}_{p_1^{t_1}})$ and $\gamma_m\in \mathbf{H}_{p_m^{t_m}}\backslash Z(\mathbf{H}_{p_m^{t_m}})$ such that $\gamma_1\alpha_1=\alpha_1\gamma_1,\ \gamma_m\beta_m=\beta_m\gamma_m$. Then $\alpha-\gamma-\gamma'-\beta$ is a path of $\Gamma(\mathbf{H}_2\oplus \mathbf{H}_{p_1^{t_1}}\oplus\cdots\oplus \mathbf{H}_{p_m^{t_m}})$.

Case 3. Suppose that $n=q_1^{t_1}\cdots q_m^{t_m},\ m\geqslant 2,\ 2\leqslant q_1<\cdots< q_m$ are primes, $t_1,\ldots,t_m\geqslant 1$ and $q_1^{t_1}>2$ (this implies either $q_1=2$ with $t_1>1$ or $q_1>2$ with $t_1\geqslant 1$). Then by Lemma 2.2 (3), we have $H_n\cong H_{q_1^{t_1}}\oplus\cdots\oplus H_{q_m^{t_m}}$. Let $\alpha=(\alpha_1,\ldots,\alpha_m)$ and $\beta=(\beta_1,\ldots,\beta_m)$ be two vertices of $\Gamma(H_{q_1^{t_1}}\oplus\cdots\oplus H_{q_m^{t_m}})$. If there exists $\sigma\in\{1,\ldots,m\}$ such that $\alpha_\sigma\in Z(H_{q_\sigma^{t_\sigma}})$ or $\beta_\sigma\in Z(H_{q_\sigma^{t_\sigma}})$, without loss of generality, suppose that $\alpha_\sigma\in Z(H_{q_\sigma^{t_\sigma}})$. Choose $\gamma_\sigma\in H_{q_\sigma^{t_\sigma}}\setminus (Z(H_{q_0^{t_\sigma}})\cup\{\beta_\sigma\})$ such that $\gamma_\sigma\beta_\sigma=\beta_\sigma\gamma_\sigma$. Put $\gamma=(\overline{0},\ldots,\overline{0},\gamma_\sigma,\overline{0},\ldots,\overline{0})\in H_{q_1^{t_1}}\oplus\cdots\oplus H_{q_m^{t_m}}$, clearly $\gamma\notin Z(H_{q_0^{t_1}}\oplus\cdots\oplus H_{q_m^{t_m}})$, and $\gamma\ne\alpha,\beta$. So $\alpha-\gamma-\beta$ is a path of $\Gamma(H_{q_1^{t_1}}\oplus\cdots\oplus H_{q_m^{t_m}})$. Otherwise, if for $\lambda=1,\ldots,m$, neither α_λ nor β_λ belongs to $Z(H_{q_\lambda^{t_\lambda}})$, take $\gamma'=(\alpha_1,\overline{0},\ldots,\overline{0}),\gamma''=(\overline{0},\overline{0},\ldots,\beta_m)$, then $\alpha-\gamma'-\gamma''-\beta$ is a path of $\Gamma(H_{q_1^{t_1}}\oplus\cdots\oplus H_{q_m^{t_m}})$.

Consequently, we have $\Gamma(H_n)$ is connected and $diam(\Gamma(H_n)) \leq 3$. Furthermore, by the similar argument of Theorem 2.5, we can conclude that there exists no vertex α of $\Gamma(H_n)$ such that $\mathbf{i} - \alpha - \mathbf{j}$ is a path of $\Gamma(H_n)$. Thus $diam(\Gamma(H_n)) = 3$.

By Lemma 2.2, Theorem 2.4, Theorem 2.5 and Theorem 2.8, we can get a general result.

Theorem 2.9. (1) Let n > 2. Then $\Gamma(H_n)$ is connected if and only if $n \neq p, 2p, 2^2$ for all odd primes p. If $\Gamma(H_n)$ is connected then $diam(\Gamma(H_n))$ must be 3, while if $\Gamma(H_n)$ is disconnected then every connected component of $\Gamma(H_n)$ must be a complete graph with the same size.

(2) Let m > 1 be an odd integer. Then $\Gamma(M_2(\mathbb{Z}_m))$ is connected if and only if m is not a prime. In this case, $\operatorname{diam}(M_2(\mathbb{Z}_m)) = 3$.

3 The maximum degree and minimum degree of $\Gamma(H_n)$

It follows directly from Theorem 2.4 that if $n=2^2$ then $\Delta(\Gamma(H_n))=\delta(\Gamma(H_n))=2^5-1$. And by Theorem 2.5, we have $\Delta(\Gamma(H_n))=\delta(\Gamma(H_n))=n^2-n-1$ if n is an odd prime. By Theorem 2.8, if n=2p, then $\Delta(\Gamma(H_n))=\delta(\Gamma(H_n))=16p(p-1)-1$.

Lemma 3.1. Let $n=2^t$, where $t\geqslant 2$ and $\overline{b}, \overline{c}, \overline{d}\in \mathbb{Z}_{2^t}$.

- (1) Suppose $t \ge 2$ and $2 \nmid (b, c, d)$. Then the number of solutions of system (*)(see Lemma 2.3) in x, y, z is 2^{t+2} .
- (2) Suppose $t \ge 3$ and $2^{\tau} \parallel (b, c, d)$ where $t 2 \ge \tau \ge 1$. Then the number of solutions of system (*) in x, y, z is $2^{t+2\tau+2}$.

Proof. (1) Since $2 \nmid (b, c, d)$, without loss of generality, we can suppose $2 \nmid c$.

Case 1.1. Assume that $b, d \neq 0$. Since $(2b, 2c, 2^t) = 2$, by Lemma 2.6, the number of solutions of equation (2-3) in x, y is 2^{t+1} . Suppose

$$x \equiv x_s \pmod{2^t}, \quad y \equiv y_s \pmod{2^t}$$

are solutions of equation (2-3), $s \in \{1, 2, ..., 2^{t+1}\}$. Then we have

$$2(by_s - cx_s) \equiv 0 \pmod{2^t} \tag{3-6}$$

Substituting $y \equiv y_s \pmod{2^t}$ into equation (2-1), and notice that $(2c, 2^t) = 2$, thus the number of solutions of equation (2-1) in z is equal to 2, denoting them by $z \equiv z_m \pmod{2^t}$ where m = 1, 2. We have

$$2(cz_m - dy_s) \equiv 0 \pmod{2^t} \tag{3-7}$$

Moreover, notice that $b, d \neq 0$, so by equations (3-6) and (3-7), we have

$$2(bdy_s - cdx_s) \equiv 0 \pmod{2^t}$$
$$2(bcz_m - bdy_s) \equiv 0 \pmod{2^t}$$

From the above two equations we derive $2(cdx_s - bcz_m) \equiv 0 \pmod{2^t}$. Since $2 \nmid c$, we have $2(dx_s - bz_m) \equiv 0 \pmod{2^t}$. Hence

$$x \equiv x_s \pmod{2^t}, \quad z \equiv z_m \pmod{2^t}$$

satisfy equation (2-2). Consequently,

$$x \equiv x_s \pmod{2^t}, \ y \equiv y_s \pmod{2^t}, \ z \equiv z_m \pmod{2^t}$$

are solutions of system (*). Therefore, the number of solutions of system (*) is $2^{t+1} \times 2 = 2^{t+2}$.

Case 1.2. Assume that $b \neq 0$ and d = 0, by Lemma 2.6, the number of solutions of equation (2-3) in x, y is 2^{t+1} . Moreover, notice that $2 \nmid c$, so the number of solutions of equation (2-1) in z is 2, i.e., both $z \equiv 0 \pmod{2^t}$ and $z \equiv 2^{t-1} \pmod{2^t}$ satisfy equation (2-2). Hence the number of solutions of system (*) is $2^{t+1} \times 2 = 2^{t+2}$. Similarly, if $d \neq 0$ and b = 0, we also have the same result.

Case 1.3. Assume that b = d = 0. Notice that $2 \nmid c$, thus

$$z \equiv 0, 2^{t-1} \pmod{2^t}, \quad y \equiv 0, 1, 2, \dots, 2^t - 1 \pmod{2^t}$$

satisfy equation (2-1). While

$$x \equiv 0, 2^{t-1} \pmod{2^t}, \quad y \equiv 0, 1, 2, \dots, 2^t - 1 \pmod{2^t}$$

satisfy equation (2-3). Thus

$$x \equiv 0, 2^{t-1} \pmod{2^t}, y \equiv 0, 1, 2, \dots, 2^t - 1 \pmod{2^t}, z \equiv 0, 2^{t-1} \pmod{2^t}$$

satisfy system (*). Therefore the number of solutions of system (*) is equal to $2^t \times 2 \times 2 = 2^{t+2}$.

(2) We will divide our proof into two cases.

Case 2.1. Suppose $b, c, d \neq 0$. Since $2^{\tau} \parallel (b, c, d)$, without loss of generality, we assume that $b = 2^{\lambda}b_1, c = 2^{\sigma}c_1, d = 2^{\tau}d_1$, where b_1, c_1, d_1 are odd and $t-1 \geqslant \lambda \geqslant \sigma \geqslant \tau \geqslant 1$. Since $(2c, 2d, 2^t) = (2^{\sigma+1}c_1, 2^{\tau+1}d_1, 2^t) = 2^{\tau+1}$, by Lemma 2.6, the number of solutions of equation (2-1) in y, z is $2^t \times 2^{\tau+1} = 2^{t+\tau+1}$. Suppose

$$y \equiv y_s \pmod{2^t}, \quad z \equiv z_s \pmod{2^t}$$

are solutions of equation (2-1), $s \in \{1, 2, \dots, 2^{t+\tau+1}\}$. We have

$$2(2^{\sigma}c_1z_s - 2^{\tau}d_1y_s) \equiv 0 \pmod{2^t}$$
 (3-8)

Substituting $z\equiv z_s\pmod{2^t}$ into equation (2-2) then we would derive the following equation: $2^{\tau+1}d_1x\equiv 2^{\lambda+1}b_1z_s\pmod{2^t}$. Since $(2^{\tau+1}d_1,2^t)=2^{\tau+1}$ and observe that $2^{\tau+1}|2^{\lambda+1}$, the number of solutions of equation (2-2) in x is $2^{\tau+1}$. Denoting them by $x\equiv x_\rho\pmod{2^t}$ where $\rho=1,2,\ldots,2^{\tau+1}$. Then we have

$$2(2^{\tau}d_1x_{\rho} - 2^{\lambda}b_1z_s) \equiv 0 \,(\text{mod } 2^t) \tag{3-9}$$

Moreover, notice that $b_1, c_1 \neq 0$, so by congruence (3-8) and (3-9) we have

$$2(2^{\tau}b_1d_1y_s - 2^{\sigma}b_1c_1z_s) \equiv 0 \pmod{2^t}$$
(3-10)

$$2(2^{\tau}c_1d_1x_{\rho} - 2^{\lambda}b_1c_1z_s) \equiv 0 \,(\text{mod } 2^t) \tag{3-11}$$

Furthermore, multiplying both sides of equation (3-10) by $2^{\lambda-\tau}$, we have:

$$2(2^{\lambda}b_1d_1y_s - 2^{\lambda + \sigma - \tau}b_1c_1z_s) \equiv 0 \,(\text{mod } 2^t) \tag{3-12}$$

Similarly, multiplying both sides of equation (3-11) by $2^{\sigma-\tau}$, we have:

$$2(2^{\sigma}c_1d_1x_{\rho} - 2^{\lambda + \sigma - \tau}b_1c_1z_s) \equiv 0 \pmod{2^t}$$
 (3-13)

So by equation (3-12) and (3-13), we have $2(2^{\lambda}b_1d_1y_s-2^{\sigma}c_1d_1x_{\rho})\equiv 0\ (\text{mod}\ 2^t)$. Since $2\nmid d_1$, we get $2(2^{\lambda}b_1y_s-2^{\sigma}c_1x_{\rho})\equiv 0\ (\text{mod}\ 2^t)$, i.e., $2(by_s-cx_{\rho})\equiv 0\ (\text{mod}\ 2^t)$. Hence $x\equiv x_{\rho}\ (\text{mod}\ 2^t)$ and $y\equiv y_s\ (\text{mod}\ 2^t)$ satisfy equation (2-3). Thus

$$x \equiv x_{\rho} \pmod{2^t}, \ y \equiv y_s \pmod{2^t}, \ z \equiv z_s \pmod{2^t}$$

is a solution of system (*). Therefore, the number of solutions of system (*) is $2^{t+\tau+1} \times 2^{\tau+1} = 2^{t+2\tau+2}$.

Case 2.2. Assume that at least one of b, c, d is 0. By the similar argument of Case 2.1, the result follows.

By the similar proof of Lemma 3.1, we have the following lemma.

Lemma 3.2. Let $n = p^t$, where p is an odd prime, $t \ge 1$ and $\overline{b}, \overline{c}, \overline{d} \in \mathbb{Z}_{p^t}$.

- (1) Suppose that $t \ge 1$ and $p \nmid (b, c, d)$. Then the number of solutions of system (*) in x, y, z is p^t .
- (2) Suppose that $t \ge 2$ and $p^{\tau} \parallel (b, c, d)$, where $t 1 \ge \tau \ge 1$. Then the number of solutions of system (*) in x, y, z is $p^{t+2\tau}$.

Remark 3.3. (1) Suppose $\alpha = \overline{a} + \overline{b}\mathbf{i} + \overline{c}\mathbf{j} + \overline{d}\mathbf{k} \in \mathbf{H}_{2^{\bullet}}, \ s \geqslant 1$, let $A_s(\alpha) = \{\gamma \in \mathbf{H}_{2^{\bullet}} \mid \alpha\gamma = \gamma\alpha\}$. By Lemma 3.1, we have

$$|A_s(\alpha)| = \left\{ \begin{array}{ll} 2^{2s+2} & 2 \nmid (b,c,d) \\ 2^{2s+2\tau+2} & s \geqslant 3, \ 2^\tau \parallel (b,c,d), \ where \ s-2 \geqslant \tau \geqslant 1 \\ 2^{4s} & s=1, \ or \ 2^{s-1} | (b,c,d) \ with \ s>1 \end{array} \right.$$

(2) Suppose $\alpha = \overline{a} + \overline{b}\mathbf{i} + \overline{c}\mathbf{j} + \overline{d}\mathbf{k} \in H_{p^t}$, where $t \ge 1$ and p is an odd prime, let $B_{p^t}(\alpha) = \{ \gamma \in H_{p^t} \middle| \alpha \gamma = \gamma \alpha \}$. By Lemma 3.2 we have

$$|B_{p^{t}}(\alpha)| = \begin{cases} p^{2t} & p \nmid (b, c, d) \\ p^{2t+2\tau} & t \geqslant 2, \ p^{\tau} \parallel (b, c, d), \ where \ t-1 \geqslant \tau \geqslant 1 \\ p^{4t} & p^{t} | (b, c, d) \end{cases}$$

Theorem 3.4. Suppose $n = 2^t$ where $t \ge 3$, $\alpha = \overline{a} + \overline{b}i + \overline{c}j + \overline{d}k \in \Gamma(H_n)$.

- (1) If $2 \nmid (b, c, d)$, then $d(\alpha) = 2^{2t+2} 2^{t+3} 1$.
- (2) If $2^{\tau} \parallel (b, c, d)$, then $d(\alpha) = 2^{2t+2\tau+2} 2^{t+3} 1$, where $t 2 \ge \tau \ge 1$.
- (3) The minimum degree $\delta(\Gamma(H_n)) = 2^{2t+2} 2^{t+3} 1$, while $d(\alpha) = \delta(\Gamma(H_n))$ if and only if $2 \nmid (b, c, d)$.
- (4) The maximum degree $\Delta(\Gamma(H_n)) = 2^{4t-2} 2^{t+3} 1$, while $d(\alpha) = \Delta(\Gamma(H_n))$ if and only if $2^{t-2} \parallel (b, c, d)$.

Proof. (1) By Remark 3.3, we obtain that $|A_t(\alpha)| = 2^{2t+2}$. Moreover, by Lemma 2.3, we have $|Z(H_n)| = 2^3 n = 2^{t+3}$. Hence

$$d(\alpha) = |A_t(\alpha)| - |Z(\mathbf{H}_n)| - 1 = 2^{2t+2} - 2^{t+3} - 1.$$

(2) By Remark 3.3, we have $|A_t(\alpha)| = 2^{2t+2\tau+2}$. Hence

$$d(\alpha) = |A_t(\alpha)| - |Z(H_n)| - 1 = 2^{2t+2\tau+2} - 2^{t+3} - 1.$$

(3) and (4) follows directly by (1) and (2).

Theorem 3.5. Suppose $n = p^t$ where p is an odd prime and $t \ge 2$, $\alpha = \overline{a} + \overline{b}i + \overline{c}j + \overline{d}k \in \Gamma(H_n)$.

- (1) If $p \nmid (b, c, d)$, then $d(\alpha) = p^{2t} p^t 1$.
- (2) If $p^{\tau} \parallel (b, c, d)$, where $t 1 \ge \tau \ge 1$, then $d(\alpha) = p^{2t + 2\tau} p^t 1$.
- (3) The minimum degree $\delta(\Gamma(H_n)) = p^{2t} p^t 1$, while $d(\alpha) = \delta(\Gamma(H_n))$ if and only if $p \nmid (b, c, d)$.
- (4) The maximum degree $\Delta(\Gamma(H_n)) = p^{4t-2} p^t 1$, while $d(\alpha) = \Delta(\Gamma(H_n))$ if and only if $p^{t-1} \parallel (b, c, d)$.

Proof. By Lemma 3.2, and by the similar proof of Theorem 3.4, the result follows.

Now, it remains to calculate the degree of vertices in $\Gamma(H_n)$ where n has at least two prime divisors and $n \neq 2p$ for all odd primes p.

Theorem 3.6. Suppose that $n=2^{t_0}p_1^{t_1}\cdots p_m^{t_m}$ (where $t_0\geqslant 0,\ m,t_1,\ldots,t_m\geqslant 1$ and $p_1<\cdots< p_m$ are odd primes) and $n\neq 2^\mu,p^\mu,2p$ (where p is an odd prime and $\mu\geqslant 1$). For $\alpha=\overline{a}+\overline{b}\mathbf{i}+\overline{c}\mathbf{j}+\overline{d}\mathbf{k}\in H_n$, we define two subsets $I,J\subseteq M=\{1,2,\ldots,m\}$ as follows:

$$\begin{array}{lcl} I & = & \left\{\sigma \in M \;\middle|\; p_{\sigma}^{\tau_{\sigma}} \parallel (b,c,d), for \; some \; 1 {\leqslant} \tau_{\sigma} {\leqslant} t_{\sigma} - 1\right\} \\ \\ J & = & \left\{\lambda \in M \;\middle|\; p_{\lambda}^{t_{\lambda}}|(b,c,d)\right\}. \end{array}$$

- (1) Assume that $t_0 = 0$ or 1.
 - (i) The degree of α is $d(\alpha) = 2^{2t_0}n^2 \prod_{\sigma \in I} p_{\sigma}^{2\tau_{\sigma}} \prod_{\lambda \in J} p_{\lambda}^{2t_{\lambda}} 2^{3t_0}n 1$.
- (ii) The minimum degree $\delta(\Gamma(H_n)) = 2^{2t_0}n^2 2^{3t_0}n 1$, while $d(\alpha) = \delta(\Gamma(H_n))$ if and only if $p_{\lambda} \nmid (b, c, d)$, for $\lambda = 1, 2, \ldots, m$.
- (iii) The maximum degree $\triangle(\Gamma(H_n)) = \frac{n^4}{p_1^2} 2^{3t_0}n 1$, while $d(\alpha) = \triangle(\Gamma(H_n))$ if and only if $p_1^{t_1-1} \parallel (b,c,d)$ and $p_s^{t_s} \mid (b,c,d)$ for $s=2,3,\ldots,m$.
 - (2) Assume that $t_0 \geqslant 2$.
 - (i) Let g = (b, c, d), then

$$d(\alpha) = \left\{ \begin{array}{ll} 2^{2}n^{2} \prod\limits_{\substack{\sigma \in I \\ \sigma \in I}} p_{\sigma}^{2\tau_{\sigma}} \prod\limits_{\substack{\lambda \in J \\ \gamma_{\sigma} \in I}} p_{\lambda}^{2t_{\lambda}} - 2^{3}n - 1, & 2 \nmid g \\ 2^{2e + 2}n^{2} \prod\limits_{\substack{\sigma \in I \\ \sigma \in I}} p_{\sigma}^{2\tau_{\sigma}} \prod\limits_{\substack{\lambda \in J \\ \lambda \in J}} p_{\lambda}^{2t_{\lambda}} - 2^{3}n - 1, & t_{0} > 2, \ 2^{e} \parallel g, \ t_{0} - 2 \geqslant e \geqslant 1 \\ 2^{2t_{0}}n^{2} \prod\limits_{\substack{\sigma \in I \\ \sigma \in I}} p_{\sigma}^{2\tau_{\sigma}} \prod\limits_{\substack{\lambda \in J \\ \lambda \in J}} p_{\lambda}^{2t_{\lambda}} - 2^{3}n - 1, & 2^{t_{0} - 1} \mid g \end{array} \right.$$

- (ii) The minimum degree $\delta(\Gamma(H_n)) = 2^2n^2 2^3n 1$, while $d(\alpha) = \delta(\Gamma(H_n))$ if and only if $2 \nmid (b, c, d)$ and for $\lambda = 1, 2, \ldots, m$, $p_{\lambda} \nmid (b, c, d)$.
- (iii) The maximum degree $\triangle(\Gamma(H_n)) = \frac{n^4}{2^2} 2^3n 1$, while $d(\alpha) = \triangle(\Gamma(H_n))$ if and only if $2^{t_0-2} \parallel (b,c,d)$ and $p_{\lambda}^{t_{\lambda}} \mid (b,c,d)$ for $\lambda = 1,2,\ldots,m$.

Proof. (1) (i) First suppose $t_0=0$. By Lemma 2.2 (3), we have $H_n\cong H_{p_1^{t_1}}\oplus\cdots\oplus H_{p_m^{t_m}}$. Let $\alpha=(\alpha_1,\ldots,\alpha_m)$ and $\beta=(\beta_1,\ldots,\beta_m)$ be two vertices of $\Gamma(H_n)$. Then $\alpha\beta=\beta\alpha$ if and only if $\alpha_\lambda\beta_\lambda=\beta_\lambda\alpha_\lambda$ for $\lambda=1,2,\ldots,m$. Hence, for $\alpha=\overline{a}+\overline{b}\mathbf{i}+\overline{c}\mathbf{j}+\overline{d}\mathbf{k}\in V(\Gamma(H_n))$, by Remark 3.3 and note that $|Z(H_n)|=n$, we have

$$\begin{split} d(\alpha) &= |B_{p_1^{t_1}}(\alpha)| \cdots |B_{p_m^{t_m}}(\alpha)| - |Z(\mathbf{H}_n)| - 1 \\ &= \prod_{\sigma \in I} p_\sigma^{2t_\sigma + 2\tau_\sigma} \prod_{\lambda \in J} p_\lambda^{4t_\lambda} \prod_{s \notin I, J} p_s^{2t_s} - n - 1 \\ &= n^2 \prod_{\sigma \in I} p_\sigma^{2\tau_\sigma} \prod_{\lambda \in J} p_\lambda^{2t_\lambda} - n - 1. \end{split}$$

We next suppose $t_0 = 1$. Since H_2 is commutative, clearly, for $\gamma \in H_2$, $|A_{t_0}(\gamma)| = 2^4$. And note that $|Z(H_n)| = 2^3 n$, similarly, we have

$$\begin{split} d(\alpha) &= |A_{t_0}(\alpha)| |B_{p_1^{t_1}}(\alpha)| \cdots |B_{p_m^{t_m}}(\alpha)| - |Z(\mathbf{H}_n)| - 1 \\ &= 2^4 \prod_{\sigma \in I} p_{\sigma}^{2t_{\sigma} + 2\tau_{\sigma}} \prod_{\lambda \in J} p_{\lambda}^{4t_{\lambda}} \prod_{s \notin I, J} p_s^{2t_{\sigma}} - 2^3 n - 1 \\ &= 2^2 n^2 \prod_{\sigma \in I} p_{\sigma}^{2\tau_{\sigma}} \prod_{\lambda \in J} p_{\lambda}^{2t_{\lambda}} - 2^3 n - 1. \end{split}$$

- (ii) Since $\prod_{\sigma \in I} p_{\sigma}^{2\tau_{\sigma}} \prod_{\lambda \in J} p_{\lambda}^{2t_{\lambda}} = 1$ if and only if $p_{\lambda} \nmid (b, c, d)$ for $\lambda = 1, \ldots, m$, we have $\delta(\Gamma(H_n)) = 2^{2t_0} n^2 2^3 n 1$, as desired.
 - (iii) By (1)(i), we can write $d(\alpha)$ as

$$d(\alpha) = \frac{n^4}{\prod\limits_{\sigma \in I} p_{\sigma}^{2t_{\sigma} - 2\tau_{\sigma}} \prod\limits_{s \notin I,J} p_{s}^{2t_{s}}} - 2^{3t_0}n - 1.$$

Since $p_1^2 \leqslant \prod_{\sigma \in I} p_{\sigma}^{2t_{\sigma} - 2\tau_{\sigma}} \prod_{s \notin I,J} p_s^{2t_s}$, we obtain

$$\triangle(\Gamma(\mathbf{H}_n)) = \frac{n^4}{p_1^2} - 2^{3t_0}n - 1.$$

Hence, if $t_1 = 1$, then $d(\alpha) = \Delta(\Gamma(H_n))$ if and only if $p_1 \nmid (b, c, d)$ and for $s = 2, \ldots, m$, $p_s^{t_s} \mid (b, c, d)$. While if $t_1 > 1$, then $d(\alpha) = \Delta(\Gamma(H_n))$ if and only if $p_1^{t_1-1} \parallel (b, c, d)$ and for $s = 2, \ldots, m$, $p_s^{t_s} \mid (b, c, d)$.

- (2)(i) By the similar argument of (1)(i) and by Remark 3.3, the result follows.
- (ii) Clearly, $\prod_{\sigma \in I} p_{\sigma}^{2\tau_{\sigma}} \prod_{\lambda \in J} p_{\lambda}^{2t_{\lambda}} = 1$ if and only if $p_{\lambda} \nmid (b, c, d)$ for $\lambda = 1, \ldots, m$. And note that $2^2 < 2^{2e+2} < 2^{2t_0}$, we derive that $\delta(\Gamma(H_n)) = 2^2n^2 2^3n 1$. Therefore, $d(\alpha) = \delta(\Gamma(H_n))$ if and only if $2 \nmid (b, c, d)$ and $p_{\lambda} \nmid (b, c, d)$ for $\lambda = 1, 2, \ldots, m$.
- (iii) Suppose that $t_0 = 2$. If $2 \nmid (b, c, d)$, then by (2)(i), we can write $d(\alpha)$ as:

$$d(\alpha) = \frac{n^4}{2^2 \prod_{\sigma \in I} p_{\sigma}^{2t_{\sigma} - 2\tau_{\sigma}} \prod_{s \notin I,J} p_s^{2t_{\sigma}}} - 2^3 n - 1.$$

If 2|(b, c, d), then

$$d(\alpha) = \frac{n^4}{\prod\limits_{\sigma \in I} p_{\sigma}^{2t_{\sigma} - 2\tau_{\sigma}} \prod\limits_{s \notin I,J} p_{s}^{2t_{s}}} - 2^3 n - 1.$$

Since $2^2\leqslant 2^2\prod_{\sigma\in I}p_\sigma^{2t_\sigma-2\tau_\sigma}\prod_{s\notin I,J}p_s^{2t_s}$ and $2^2\leqslant\prod_{\sigma\in I}p_\sigma^{2t_\sigma-2\tau_\sigma}\prod_{s\notin I,J}p_s^{2t_s}$, we have $\triangle(\Gamma(\mathcal{H}_n))=\frac{n^4}{2^2}-2^3n-1$. Clearly, $d(\alpha)=\triangle(\Gamma(\mathcal{H}_n))$ if and only if $2\nmid (b,c,d)$ and $p_\lambda^{t_\lambda}|(b,c,d)$ for $\lambda=1,2,\ldots,m$.

Now suppose $t_0 > 2$, by the similar argument of the case $t_0 = 2$, the result follows.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (10771095) and the Guangxi Science Foundation(0832107, 0991102).

References

- A. Abdollahi, Commuting graphs of full matrix rings over finite fields, Linear Algebra Appl. 428 (2008) 2947–2954.
- [2] E.A. Abu Osba, S. Al-Addasi, N. Abu Jaradeh, Zero divisor graph for the ring of gaussian integers modulo n, Comm. Algebra, 36 (10) (2008) 3865-3877.
- [3] S. Akbari, M. Ghandehari, M. Hadian, A. Mohammadian, On commuting graphs of semisimple rings, Linear Algebra Appl. 390 (2004) 345–355.

- [4] S. Akbari, A. Mohammadian, H. Radjavi, P. Raja, On the diameters of commuting graphs, Linear Algebra Appl. 418 (2006) 167-176.
- [5] S. Akbari, P. Raja, Commuting graphs of some subsets in simple rings, Linear Algebra Appl. 416 (2006) 1038-1047.
- [6] C.D. Pan, C.B. Pan, Elementary number theory(In Chinese), 2nd ed, Beijing University Publishing Company, Beijing, 2005.
- [7] H.D. Su, G.H. Tang, The prime spectrum and zero-divisor of $Z_n[i]$ (In Chinese), J. Guangxi Teachers Education University, 23 (4) (2006) 1-4.
- [8] G.H. Tang, H.D. Su, S.X. Zhao, The properties of zero-divisor graph of $\mathbb{Z}_n[i]$ (In Chinese), J. Guangxi Normal University, 25 (3) (2007) 32-35.
- [9] Y.J. Wei, Y.Y. Gao, G.H. Tang, Matrix representation of quaternion algebra over $\mathbb{Z}_p(\text{In Chinese})$, J. Guangxi Teachers Education University, 25 (4) (2008) 11-14.
- [10] Y.J. Wei, G.H. Tang, G.K. Lin, The spectrum and radicals of quaternion algebra $\mathbb{Z}_n[i,j,k]$, J. Guangxi Teachers Education University 26 (1) (2009) 1–10.
- [11] Y.J. Wei, G.H. Tang, G.K. Lin, The zero-divisors and unit group of quaternion algebra $\mathbb{Z}_n[i,j,k]$, Guangxi Sciences, 16 (2) (2009) 147-150.