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Abstract

The commuting graph of an arbitrary ring R, denoted by I'(R), is the
graph whose vertices are all non-central elements of R, and two distinct
vertices a and b are adjacent if and only if ab = ba. In this paper,
we investigate the connectivity, the diameter, the mazimum degree
and the minimum degree of the commuting graph of the quaternion
algebra Z,[i, j, k].
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1 | Introduction

The commuting graph of an arbitrary ring R denoted by I'(R), is the graph
with vertex set R\Z(R), where Z(R) is the center of R, and two distinct
vertices a and b are adjacent if and only if ab = ba. In this paper, we study
some properties of the commuting graphs of the quaternion algebra over Z,,,
which is denoted by H,, = Zy[i,j, k] = {a + bi + cj + dk|a, b, c,d € Z,}, where
Z, = {0,1,...,n =1} is the ring of integers modulo n and i, j, k are formal
symbols called basic units with i* = j2 = k? = jjk = —1.

The properties of H, were discussed in [10] and [11], and we proved that
Hy, = M,(Z,) if and only if n is odd. Moreover, a new isomorphism relation
between Z,[i, j, k] and Mz(Z,) was given in [9], for all odd primes p. It is clear
that the ring of Gaussian integers modulo n, Z,[i] = {a + bi|a,b € Z,,i2 =
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~1}, is a subring of Z,[i,j,k]. In [7] and [8], the properties of Zy][i] were
studied. Also, the zero-divisor graph for Z,[i] was investigated in [2].

Let R be a ring and R* = R\{0}. We use D(R), U(R) to denote the set
of zero-divisors of R and the group of units of R respectively. Given integers
a and b, we denote by (a,b) the greatest common divisor of a and b. If pis a
prime and ¢ is a nonnegative integer, then we use the notation p*|la to mean
that p*|a and p*+1{a. The ring of n by n full matrices over a ring R is denoted
by Myn(R).

In this paper, all graphs are simple and undirected and |G| denotes the
number of vertices of the graph G. In a graph G, the degree of a vertex v
is denoted by d(v). And the minimum degree and maximum degree of G
are denoted by 6(G) and A(G), respectively. We denote the vertex set of G
as V(G). A path of length r from a vertex z to another vertex y in G is a
sequence of 7+ 1 distinct vertices starting with z and ending with y such that
consecutive vertices are adjacent. For a connected graph H, the diameter
of H is denoted by diam(H). An induced subgraph of G that is maximal,
subject to being connected, is called a connected component of G.

In this paper, we investigate some connections between number theory,
quaternion theory and graph theory motivated by the work of (1], [3], [4] and
[5]. In section 2, we show that I'(H,) is connected if and only if n # p, 2p, 22
for all odd primes p. If I'(H,) is connected then diam(I'(H,)) = 3, and if
I['(H,,) is disconnected then every connected component of I'(Hy) is a complete
graph with the same size and we completely determine the vertices of every
connected component. In section 3, we determine the degree of each vertex
in I'(H,) and the maximum degree and minimum degree of '(H,).

2 The connectivity and diameter of I'(H,)

Lemma 2.1. [3, Theorem 2] If F is a finite field, then I'(M2(F)) is a graph
with |F|?+ |F|+1 connected components of size |F|? —|F| which each of them
is a complete graph.

The statements of Lemma 2.2 were proved in [10] and [11].

Lemma 2.2. Let H, = Z,[i,j, k], n > 2.

(1) Hp is commutative.

(2) Hp = M2(Z,) if and only if n is odd.

(3) Let n = pﬁ‘ ...ptm, where m 2 1, p1,...,pm are pairwise distinct
primes, t; > 1, fori€ {1,...,m}. Then Hp & Hpi‘ ®- OHm.

Lemma 2.3. (1) If 2 | n, then the center Z(H,) of Hy is Zn. Therefore
|Z(H,)| = n and [T(H,)| =n* —n.
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(2) If 2[n, then Z(H,) = {a+b’i +5+dk|a € Zn; 5,5, =0 or }Z}
Therefore |Z(H,)| = 23n and |I'(H,)| = n* - 23n.
Proof. First of all, for a =@+ bi +&j + dk, 8 = @ + Ti + 7j + zk € Hy,

we have o8 = Sa if and only if the following system of congruence equations
holds.

2(cz = dy) = 0(modn) (2-1)
(*){ 2(dz — bz) = 0 (mod n) (2-2)
2(by ~ cz) = 0(mod n) (2-3)

(1) Assume that 2{n. Let @ =@+ bi + & + dk € Z(H,,). It is clear that
it = ai. So by system (x), we have 2¢ = 0 (mod ) and 2d = 0 (modn). Since
2 { n, we have n|c and n|d, i.e, €=d =10, so & = @ + bi. Moreover, ja = aj
yields that 2b = 0 (mod n), so b 0. Thus we have Z(H,) = Z,, and therefore

|Z(Hn)| = n, |P(Ha)| =n* - n.
(2) Assume that 2|n. Let @ = @+ bi + & +dk € Z(H,). If b # 0, in 3™

then ja # aj contradicts & € Z(H,). Hence, b = 0 or %n Similarly, we

have g,d = 0 or % Conversely, f « =@+ bi +¢ +dk € H, witha € Zy
and b,2,d = 0 or 1n, it is easy to verify that a € Z(H,). Hence, the result
follows. (M}

In the next, for & = @ +bi+2j+dk € H,, we always suppose that a, b, c,d
are nonnegative integers not greater than n — 1.
Theorem 2.4. Supposen=2%,t>1

(1) Ift =1, then |T(H,)| =0

(2) Ift=2, thenT'(H,) is a graph with 7 connected components of size 2°
which each of them is a complete graph.

(3) Ift > 3, then T'(H,) is connected and diam(I'(H,)) = 3.

Proof. (1) By Lemma 2.2 (1), H; is a commutative ring, so IT(H,)| = 0.

(2) Clearly, U(Z4) = {1,3}, D(Zs) = {0,2}. We construct 7 subsets of
H, \ Z(H,) as follows.

A = {a+$i+aj+3k|ae Zy; BeUZy); cde D(Z4)}
Ay = {a+3i+aj+ak|aez4; ze U(Zy); B,Eep(z,,)}
Ag={a+bi+5+3k|aeZ; TeUZy; bze D(z4) }
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Ag= {a+3i+6j+3k|a'ez4; g,d € U(Zy); EGD(Z4)}
As = {a+5i+aj+2k|aez4; 5,deU(Z,); e D(Z4)}
Ag = {a+3i+6j+3k|aez4; 5,2 € U(Zs): EeD(Z4)}
A7 = {a+5i+6j+2k|EeZ4; 5,5,3GU(24)}

Clearly, A;UA2U---UA7 = Ho \ Z(Ho). And AxN A, =0, for A # s.
|Ai| = |A2| = +-- = |As] = 25, Moreover, it is easy to verify that for
A=1,...,7, if € Ay, B € ['(Hy,), then af = B if and only if 8 € Ay. This
implies that I'(H,) is a graph with 7 connected components of size 2% which
each of them is a complete graph.

(3) For o, B € V(T'(H,)), we put & = G+bi+j+dk and 8 = T+Zi+7j+2zk.

Case 1. Assume that 2*|(b,c,d), 2°|(z,v, 2), for some A, s € {1,2,...,t -
2}. If A+s > t—1then a—p is an edge of ['(Hn). While if A+s<t—1
then & —2¢~2i — 3 is a path of I'(H,).

Case 2. Assume that 2 { (b,¢,d), 2|(z,,2), then 2°=2a ¢ Z(H,), so
a—2t~2a—f is a path of I'(H,).

Case 3. Assume that 2|(b,c,d), 2 { (z,9,2), then 2¢=28 ¢ Z(H,), so
a—2t-23— 3 is a path of I'(H,).

Case 4. Assume that 21 (b,¢,d), 21 (2, ¥, 2), then 2! "2, 2:-20 ¢ Z(H,).
So a—2t—2a—2t=23— 3 is a path of ['(Hy).

Consequently, I'(H,) is connected and diam(I'(Hn)) < 3. Moreover, note
that i, j € V(T'(H,)), suppose that v = @5 + boi + Toj + dok is adjacent to
both i and j. Observe that iy = ~i if and only if 2¢co = 0 (mod 2) and 2dg =
0 (mod 2t), while jvy = #j if and only if 2bp = 0 (mod 2*) and 2do = 0 (mod p*).
Thus we must have bg,co,do € {0,%}. By Lemma 2.3, v € Z(H,). Hence,
there exists no vertex v of I'(H,) such that i—+y—j is a path of I'(H,).
Therefore, diam(I'(H,)) = 3. 0

By Lemma 2.2 (2), Hp & My(Z,) if p is an odd prime. Hence, by Lemma
2.1, I'(H,) is a graph with p*+p+1 connected components of size p? —p which
each of them is a complete graph. In the following theorem, we completely
determine the vertices of each connected component of I'(Hp) .

Theorem 2.5. Suppose n =p’, p is an odd prime, t > 1.

(1) Ift = 1, then T'(H,) is a graph with p? +p+ 1 connected components
of size p? — p which each of them is a complete graph. And the following sets
are the vertez sets of all different connected components of I'(Hy,):

4 ={a+hi|aezbez;)

116



4o={a+a|aez,cez;)

A= {a+3k|ﬁezp;EeZ;}

By = {a+$i+3\'5j|anP;BeZ;}

Cy = {a+ej+ﬁk|aez,,;aez;}
Dy={a+XMi+dk|aez,dez;}
Eyr= {a+ai+€éj+aﬁk|aez,,;éez;}

Where A\, 0, 7=1,2,...,p—1.
(2) Ift > 2, then T'(H,) is connected and diam(I'(H,)) = 3.

Proof. (1) Clearly, the number of sets presented in (1) is equal to 3+3(p—1)+
(p—1)2 =p% +p+1. By an easy calculation we derive that the cardinality of
each set is p? —p, and each vertex of I'(Hp) belongs to a unique set. Moreover,
it is not difficult to verify that for o, 8 € I'(Hy), B = Be if and only if o
and 3 belong to the same set.

(2) For o, B € V(T(Hy)), we put & = @+bi+cj+dk and = W+Fi+7j+zk.

Case 1. Assume that p*|(b,c,d), p*|(z,y, 2), for some A,s € {1,2,...,t —
1}. If A+s > t then o« — B is an edge of I'(H,). If A+s < ¢ then a—pt-li— g
is a path of I'(H,,).

Case 2. Assume that p { (b,¢c,d), pl(z,y,2), then p*~la ¢ Z(H,), so
a—p*~la—pf is a path of I'(H,).

Case 3. Assume that p|(b,c,d), p t (z,4,2), then p*~18 ¢ Z(H,), so
a—p*~18—f is a path of I'(H,).

Case 4. Assume that pt (b,c,d), pt(z,y,2), then p*~la, p*~18 ¢ Z(H,,).
So a—pt~la—p'~13— B is a path of I'(H,).

Hence, I'(H,,) is connected and diam(I'(H,)) < 3. Moreover, note that
i, j € V(I'(H,)), suppose that v = @g + boi + Gj + dok is adjacent to both
i and j. Since iy = #i if and only if 2¢) = 0(modp?) and 2d, = 0 (mod pt),
while jy = +j if and only if 2by = 0 (mod p*) and 2dy = 0 (mod p*), we must
have bp = ¢9 = dp = 0. By Lemma 2.3, vy € Z (H,). Hence, there exists
no vertex vy of I'(H,) such that i—~—j is a path of I'(H,). Therefore,
diam(I'(H,)) = 3. (]

We next consider the commuting graph I'(H,,) in which n has at least two
prime divisors. We need the following two lemmas in the sequel.
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Lemma 2.6. [6, P.161, Exercise 12] The number of solutions of the congru-
ence equation in T1,%2,...,Tk’

a1Z1 + a2z + + - + axzk = b(mod m)
where ay, . ..,ax,b and m are integers with m > 1, is equal to
m*(ay,az,...,ar,m)

‘lf (ali s ,akxm)lb‘
Lemma 2.7. If p is an odd prime, then for b, € Zsp \ {0,P}, there ezists
a unique ordered pair {), s} where A € {1,2,...,p—1} and s € {0,1} such

that
Ab + sp = ¢ (mod 2p) (2-4)

Proof. First, since (b,p,2p) = 1, by Lemma 2.6, the congruence equation
(2-4) in ), s has 2p solutions. Suppose {Xo,so} is a solution of (2-4), for
some Ao, 30 € {0,1,2,...,2p — 1}. Let Ao = zp 4 r for some z € {0,1} and
re{l,...,p—1}. Then

¢ = Aob + sop = b(zp + 1) + sop = rb + (bz + s0)p (mod 2p)

Observe that (bz + so)p = 0 (mod 2p) if bx + so is even, while (bz + so)p =
p (mod 2p) if bz + so is odd. Hence exactly one of

A = r (mod 2p) nd A =7 (mod 2p)
s =0 (mod 2p) @ s =1 (mod 2p)

is a solution of congruence equation (2-4).

Furthermore, if there exist two ordered pairs {1, 81} and {3, s2} satisfy
congruence (2-4), where A;, A2 € {1,2,...,p — 1} and 81,32 € {0,1}. By
equation (2-4), we have

(M = A2)b = (s2 — 81)p (mod 2p) (2-5)
If Ay # Az, since p 1 b, we have p { (A — A2)b, a contradiction. So we must
have A\; = Az. Moreover, if 3; # sg, then s—s; = —1or 1. Hence (s2—s1)p =
p (mod 2p), which is impossible for A; = A2. Therefore, s, = s». (]

Theorem 2.8. Suppose that n has at least two prime factors.

(1) If n = 2p where p is an odd prime, then I'(Hy) is a graph with P +p+1
connected components of size 16p(p — 1) which each of them is a complete
graph.

(2) If n # 2p where p is an odd prime, then I'(Hy,) is a connected graph
and diem(I'(H,)) = 3.
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Proof. (1) By Lemma 2.2 (3), we have H, = H, @ H,.. Let o = (a;,2) and
B = (B1,B2) be two vertices of I'(Hz ® H,). Note that Hy is commutative, so
neither az nor B, belongs to Z(Hp). Thus we have a8 = Ba if and only if
azf32 = faay, if and only if & and B2 belong to the same connected component
of I'(H,). By Theorem 2.5 (1), we can construct the following subsets of

H,\ Z(H,).
Ay={a+bi+570i 4537k | T € Zo; D € 2o \ {0,5); 51,52 € {0, 1}}
A2={a+31—ﬁi+aj+mk | @ € Zn; € € Zo \ {0,5}; 51,52 € {0, 1}}
A3={a'+§mi+337:j+3k|a €Z,;d€Z,\ {0,5}; 51,52 € {0, 1}}
By={a+5i+ 35T 51p)+ 577k | @ € Zn; B € 2\ {0,B); 51,52 € {0, 1}}
Cx={a+3iPi+aj+Xctorpk | € Za; 2 € 2o\ {0,5); o1,82 € {0, 1}}
D,\={a+mi+§§'ﬁj+ﬁk |G € Zn; d e Z,\ {0,); 51,82 € {0, 1}}

E, .,.={&'+é‘i+cre+s;pj+a‘re+sgpk | € ZLp; EE L\ {0,5); 51,52 € {0, 1}}

Where A, 0, 7=1,2,...,p—1.

By Lemma 2.7, one can show that each vertex of I'(H,,) belongs to exactly
one of the sets above. So I'(Hy,) is a graph with p2+p+1 connected components
of size 16p(p — 1). It is not difficult to verify that each connected component
is a complete graph.

(2) Since n has at least two prime divisors and n s 2p, we have three cases
to consider.

Case 1. Suppose that n = 2p*, t > 1 and p is an odd prime. Then by
Lemma 2.2 (3), we have H, = H, @ Hpe. Let a = (a;,03) and 8 = (61, B2)
be two vertices of I'(Hz @ Hp,e). Since Hy is commutative, we have as, B2 €
Hpe\Z(Hpe ). If a2, = B2z then o— 3 is an edge of ['(H, ®H,:). Otherwise,
by Theorem 2.5(2), either ag—€&—fBr or 0o —n— 86—, is a path of I'(H),
where £, 7, § € Hpe \ Z(Hpe). Put v = (0,£), v/ = (0,7), " = (0,6). Then
either a —vy—f or a—~’—+" —f is a path of I'(Hz ® Hpe).

Case 2. Suppose that n = 2p% -..ptm, where m > 2, t, o0 tm 2 1,
and py,...,pm are distinct odd primes. Then by Lemma 2.2 (3), we have
H, =~ H2$Hp:1 D -QHP::‘.. .Let o = (ap, 1,...,a)and 8 = (8o, Brs- -+ Bm)
be two vertices of Hj er:, ® - ®Hym. Put vy =(0,7,0,...,0), v/ =
(0,0,--+,9m), where y; € Hu\Z(H,) and v € Hper \Z(H, ¢ ) such that
ner = N, YmPm = Pmym. Then a—y—+y'—f is a path of I'(H, @

Hp;l @...@Hp:;n).
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Case 3. Suppose that n = git---glm, m 2 2, 2 < q1 <+ < gm are
primes, t1,...,tm > 1 and gi* > 2(this implies either g = 2 with £; > 1 or
@1 > 2 with t; > 1). Then by Lemma 2.2 (3), we have Hp, = Hq:, ®- - OHtm.
Let @ = (a1,...,0m) and 8 = (B1,...,0m) be two vertices ofl"(Hq:, DD
Hem ). If thereexists o € {1,...,m} such that o, € Z(H.:. ) or B, € Z(Hgeo ),
without loss of generality, suppose that a, € Z (Hq;.,). Choose 7, € Hyeo \
(Z(H,2) U {Bs}) such that YoBs = BsYe- Put v = (0,...,0,7%,0,...,0) €
Hq:; -+ -®Htm , clearly v é Z(Hq:, ®---®Hym), and vy # a, 8. So a—y—p
is a path of F(Hq:. @B Hq!.,"')' Otherwise, if for A =1,...,m, neither a,
nor ) belongs to Z(qu\,‘), take v’ = (a1,0,...,0),7" = (0,0,...,8m), then
a—~'—~"—pf is a path of I‘(Hq:1 & - ®Hypn).

Consequently, we have I'(H,,) is connected and diam(I'(Hn)) < 3. Further-
more, by the similar argument of Theorem 2.5, we can conclude that there
exists no vertex a of I'(H,) such that i—a—j is a path of I'(H,). Thus
diam(['(H,)) = 3. O

By Lemma 2.2, Theorem 2.4, Theorem 2.5 and Theorem 2.8, we can get
a general result. :

Theorem 2.9. (1) Let n > 2. Then I'(H,) is connected if and only if n #
p,2p, 22 for all odd primes p. If [(H,) is connected then diam(T'(H,)) must
be 3, while if (H,) is disconnected then every connected component of I'(H,)
must be a complete graph with the same size.

(2) Let m > 1 be an odd integer. Then T'(M2(Zm)) is connected if and
only if m is not a prime. In this case, diam(M2(Zy)) = 3.

3 The maximum degree and minimum degree
of I'(H,)

It follows directly from Theorem 2.4 that if n = 22 then A(I'(H,)) =
5(T(H,)) = 25 — 1. And by Theorem 2.5, we have A(T'(H,)) = 6(I'(Hy,)) =
n? —n —1if n is an odd prime. By Theorem 2.8, if n = 2p, then A(I'(Hy,)) =
§(T(Hn)) = 16p(p — 1) — 1.

Lemma 3.1. Let n =2, where t > 2 and b,%,d € Zg:.

(1) Suppose t > 2 and 21 (b,c,d). Then the number of solutions of system
(%) (see Lemma 2.3) in z,y,z is 22,

(2) Suppose t > 3 and 27 || (b,c,d) where t —2> 7 > 1. Then the number
of solutions of system () in z,y,z is 2:¥37+2,
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Proof. (1) Since 2 { (b, ¢, d), without loss of generality, we can suppose 2 t c.

Case 1.1. Assume that b,d # 0. Since (2b, 2c,2%) = 2, by Lemma 2.6, the
number of solutions of equation (2-3) in z,y is 2!*+!. Suppose

'z =1z,(mod2!), y=y,(mod2?)
are solutions of equation (2-3), s € {1,2,...,2!*!}. Then we have
2(by, — cx,) = 0 (mod 2¢) (3-6)

Substituting y = y, (mod 2°) into equation (2-1), and notice that (2c,2?) = 2,
thus the number of solutions of equation (2-1) in z is equal to 2, denoting
them by z = z,, (mod 2*) where m = 1,2. We have

2(czm — dys) = 0 (mod 2°) (3-7)
Moreover, notice that b,d # 0, so by equations (3-6) and (3-7), we have
2(bdy, — cdz,) = 0 (mod 2°)
2(bczm — bdy,) = 0 (mod 2°)

From the above two equations we derive 2(cdz, — bcz,,) = 0(mod 2t). Since
2fc, we have 2(dz; — bz,,) = 0 (mod 2¢). Hence

T =1z, (mod2%), 2=z, (mod2t)
satisfy equation (2-2). Consequently,
z =z, (mod 2%), y =y, (mod2%), z = 2, (mod 2)

are solutions of system (*). Therefore, the number of solutions of system (%)
is 2t+1 x 2 = 2t+2,

Case 1.2. Assume that b # 0 and d = 0, by Lemma 2.6, the number of
solutions of equation (2-3) in z,y is 2¢+1. Moreover, notice that 2 t ¢, s0 the
number of solutions of equation (2-1) in 2 is 2, i.e., both z = 0 (mod 2t) and
z = 2!~ (mod 2%) satisfy equation (2-2). Hence the number of solutions of
system (x) is 2!*1 x 2 = 2¢+2, Similarly, if d # 0 and b = 0, we also have the
same result.

Case 1.3. Assume that b = d = 0. Notice that 2 { ¢, thus
2=0,2""(mod2%), y=0,1,2,...,2" — 1 (mod 2})
satisfy equation (2-1). While
z=0,2"1(mod2"), y=0,1,2,...,2" - 1(mod 2¢)
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satisfy equation (2-3). Thus
z=0,2"1(mod 2%, y=0,1,2,...,2" — 1 (mod 2%), z=0,2""" (mod 2*)

satisfy system (). Therefore the number of solutions of system () is equal
to 2t x 2 x 2 = 2t+2,

(2) We will divide our proof into two cases.

Case 2.1. Suppose b, c,d # 0. Since 27 || (b, ¢, d), without loss of generality,
we assume that b = 2*b;,¢ = 2°¢c;,d = 27d;, where b1, ¢;,d; are odd and
t—1>A>0>7> 1 Since (2¢,24,2%) = (2971¢,27%2d,,2") = 27+l by
Lemma 2.6, the number of solutions of equation (2-1) in y, z is 2* x 2r+l =
2t+7+1  Suppose

y =y, (mod2?), z=z, (mod2*)
are solutions of equation (2-1), s € {1,2,...,2¢*7+1}. We have
2(29¢12, — 27d1y,) = 0 (mod 2%) (3-8)

Substituting z = 2z, (mod2?) into equation (2-2) then we would derive the
following equation: 27+1djz = 2 +1b;2, (mod 2!). Since (27*1d;,2) = 27+
and observe that 27+1|22+1, the number of solutions of equation (2-2) in z is
97+1, Denoting them by z = z, (mod 2t) where p =1,2,...,27+1. Then we
have

2(27d1z, — 2*b12,) = 0 (mod 2°) (3-9)
Moreover, notice that by, c; # 0, so by congruence (3-8) and (3-9) we have
2(27bydyys — 2°b1c12,) = 0(mod 2°) (3-10)
2(2"ardiz, — 2*by¢,2,) = 0(mod 2%) (3-11)
Furthermore, multiplying both sides of equation (3-10) by 2)~7 . we have:
2(2*bydyys — 29 "bic12,) = 0(mod 2°) (3-12)
Similarly, multiplying both sides of equation (3-11) by 2°~7, we have:
2(2%¢1dyz, — 21 Tb1c12,) = 0(mod 2°) (3-13)

So by equation (3-12) and (3-13), we have 2(2*b1d,ys—2° ¢1d1 z,) = 0 (mod 2t).
Since 21d;, we get 2(2*biys — 2°c17,) = 0(mod2*), ie., 2(bys — cz,) =
0(mod?2t). Hence z = z,(mod2’) and y = y,(mod2’) satisfy equation
(2-3). Thus

z =z, (mod?2), y = ys (mod 2°), z = z, (mod 2°)

is a solution of system (). Therefore, the number of solutions of system (*)
is 2t+7'+1 x 97+l — 2t+2'r+2.

Case 2.2. Assume that at least one of b, c,d is 0. By the similar argument
of Case 2.1, the result follows. a
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By the similar proof of Lemma 3.1, we have the following lemma.

Lemma 3.2. Let n = p*, where p is an odd prime, t > 1 and 5,¢,d € Zyye.

(1) Suppose thatt > 1 and p t (b,c,d). Then the number of solutions of
system (x) in z,y,2z is p‘

(2) Suppose thatt > 2 and p” || (b,c,d), wheret —1> 7 > 1. Then the
number of solutions of system (*) in z,y,z is pt+2r.

Remark 3.3. (1) Suppose o =@+ bi+ g +dk € Hps, s > 1, let A, (o) =
{ve Hgala'y va}. By Lemma 3.1, we have

22842 2t (b,c,d)
|[As(a)| = { 226+2742 5> 3 27 || (b,c,d), where s—2>71>1
248 s=1, or 2°7Y|(b,¢,d) with s > 1

(2) Suppose o =@ +bi+5j+dk € Hye, wheret > 1 and p is an odd prime,
let Bpe(a) = {y € H"l a7y =ya}. By Lemma 3.2 we have
p*  ptbed
[Bpt ()| = ¢ p***27 22 p" || (bc,d), wheret—-1273>1
7 Pl ed)
Theorem 3.4. Suppose n = 2' wheret >3, a =@+ bi +5j + dk € I'(H,,).
(1) If 21 (b,c,d), then d(a) = 22t+2 — 2t+3 _ 1,
(2) If 27 || (b,c,d), then d(a) = 22442742 _ 9t+3 _ | wheret —2> 7> 1.

(3) The minimum degree 6(T(Hn)) = 2%+2 — 243 — 1, while d(a) =
0(T'(Hy)) if and only if 2t (b, ¢, d).

(4) The mazimum degree A(I'(Hy)) = 242 — 243 — 1, while d(a) =
A(T(H,)) if and only if 26=2 || (b, ¢, d).

Proof. (1) By Remark 3.3, we obtain that |A,(a)| = 22+2, Moreover, by
Lemma 2.3, we have |Z (Hn)l = 23n = 2843, Hence

d(o) = |As(@)] — |Z(Ha)| — 1 = 2242 - 9143 _ 1,

(2) By Remark 3.3, we have |A4;(c)| = 22¢+27+2_ Hence
d(a) = |A(a)| = |Z(H,)| — 1 = 22t+27+2 _gt+3 _ 1

(3) and (4) follows directly by (1) and (2). a
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Theorem 3.5. Suppose n = p' where p is an odd prime and t 2> 2, a =
@+ bi+¢cj+ dk € I'(H,).

(1) pr{ (br c, d): then d(a) = pZt "pt -1

(2) If o7 || (b,c,d), wheret —12> 7 > 1, then d(a) = pAt? —pt - 1.

(3) The minimum degree 5(I'(Hy,)) = p* — p* — 1, while d(a) = 6(I'(Ha))
if and only if p1 (b, c,d).

(4) The mozimum degree A'(H,)) = p*~? — pt — 1, while d(a) =
A(T(H,)) if and only if p= || (b, ¢, d).

Proof. By Lemma 3.2, and by the similar proof of Theorem 3.4, the result
follows. (]

Now, it remains to calculate the degree of vertices in I'(H;) where n has
at least two prime divisors and n # 2p for all odd primes p.

Theorem 3.6. Suppose that n = 2topil ... pim (wheretyo 2 0, m,ty,...,tm 2
1 and py < -+ < pm are odd primes) and n # 24,p*,2p (where p is an odd
prime and p > 1). For a =2+ b + @ + dk € H,, we define two subsets
I,JCM=/{1,2,...,m} as follows:

{
{

(1) Assume that tg =0 or 1.
i) The degree of  is d(c) = 2%on? [] pZ™ [] p?*» —2%n-1.
7 st

o€l

p;‘, " (bs c,d), fo'r some 1$To<ta - 1}

pl(b,c,d)} -

I

J

(ii) The minimum degree 6(T'(Ha)) = 22%0n% —2%n—1, while d(a) =
§(T'(H,)) if and only if p, t (b,c,d), for A=1,2,...,m
(iii) The mazimum degree A(T(Ha)) = % — 2%n — 1, while d(a) =
A(T(H,)) if and only if pi* 1 || (b,¢,d) and pi|(b,c,d) for s=2,3,...,m
(2) Assume that to > 2.
(i) Let g = (b, ¢, d), then

22 2 H p2-r, l‘[ p2t;\ 23n - 1’ 2{9
d(a) = 2420 [] g H Pzt* Pn-1, t0>2,2°| g, to—22e>1
I
22ton2 ﬁp?r, H p2t;\ n_ 1’ 2to—1|g
c€el Y
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(i) The minimum degree §(T'(H,)) = 22n% — 2%n — 1, while d(a) =
6(T'(Hn)) if and only if 2t (b,c,d) and for A\=1,2,...,m, p, { (b,¢c,d).

(ili) The mazimum degree A(T(Hn)) = 27 — 2n — 1, while d(a) =
A(T(Hy)) if and only if 2°=2 || (b,¢,d) and pi*|(b,c,d) for A =1,2,...,m.

Proof. (1) (i) First suppose top = 0. By Lemma 2.2 (3), we have H, =
Hp:, ®- --@Hp;.‘... Let o = (a1,...,a,) and 8 = (By,...,Bm) be two vertices

of I'(H,). Then af=pa if and only if axfy = Bray for A = 1,2,...,m.
Hence, for a = @ + bi + ¢j + dk € V(I'(H,.)), by Remark 3.3 and note that
|Z(H,)| = n, we have

da) = |Bu(@)l--- 1By ()l = [Z(Hn)| - 1

= H p3t7+2ra H p:t,\ H pgt. —n—-1

o€l AeJ sgl, J
= nZsz,T" pr"‘ -n-1
o€l aredJ

We next suppose tp = 1. Since H; is commutative, clearly, for v € H,,
| A¢o(v)] = 2%. And note that |Z(H,,)| = 2%n, similarly, we have

dla) = |As(@)l|Byu(a)l- - |Bym(a)| - |Z(Hn)| - 1
= 924 Hpgt,+21‘, H ptt; H pgt, —2n-1
cel Aed s¢l, J
= 2252 H p2Te H P2 —23n -1,
cel AeJ

(ii) Since [T p3™ [] p?*» =1ifand only if p, t (b,c,d) for A=1,...,m,
o€l AeJ
we have §(I'(H,)) = 2%%on? — 23n — 1, as desired.

(iii) By (1)(i), we can write d(c) as

nt

2ty —27a 2t
H Po T H Ps
ocl sgl,J

d(a) = - —2%n 1,

Since p? < [] p2*s~27 [] p?ts, we obtain
o€l s¢l,J

nd
A(T(H,)) = = —2%%n -1,
V51
Hence, if t; = 1, then d(e) = A(T'(H,)) if and only if p; { (b,¢,d) and for
s=2,...,m, pl|(bc,d). While if ¢; > 1, then d(a) = A(I'(H,)) if and only
if p~1 || (b,¢,d) and for s =2,...,m, pi*l(b, ¢, d).
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(2)(i) By the similar argument of (1)(i) and by Remark 3.3, the result
follows.

(ii) Clearly, 1'[ pZTe H p?» =lifandonlyifp, t (b,c,d) forA=1,.

And note that 22 2""""2 92t we derive that §(T'(H,)) = 22n? — 23'n. 1.
Therefore, d(e) = 6(T(H,)) if and only if 2 t (b,¢,d) and p, t (b,¢,d) for
A=12,...,m

(iii) Suppose that to = 2. If 2t (b, ¢, d), then by (2)(i), we can write d(a)
as:

4

n 3

d(a) = 22 l_I pgtc'z'ra I_I pgt’ —-2°n—-1.
cel s¢l,J
If 2|(b, ¢, d), then
4
n
d(e) = -2%n-1.
( ) n pgz,-zr, n pgt.
o€l s¢l,J
Since 22 < 22 [] p2te~2" [] p?+ and 2% < H p2te—2re [] pZ, we have
o€l s¢l,J s¢l,J

A(T(Hp)) = 12‘-;- —23n — 1. Clearly, d(a) = A(I‘(H,,)) if and only if 2 { (b, c, d)
and p?|(b,c,d) for A=1,2,...,m

Now suppose g > 2, by the similar argument of the case to = 2, the result
follows. (|
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