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Abstract

Erd6s and S6s conjectured in 1962 that if the average degree of a graph
G exceeds k — 2, then G contains every tree on k vertices. Results from
Sauer and Spencer (and independent results from Zhou) prove the special
case where G has k vertices. Results from Slater, Teo and Yap prove the
case where G has & + 1 vertices. In 1996, Wozniak proved the case where G
has k + 2 vertices. We prove the conjecture for the case where G has k + 3

vertices.

1 Terminology

We will use standard graph theory notation. We consider simple graphs (finite and
undirected with no loops and no multi-edges). V(G) is the vertex set of G and
E(G) is the edge set of G. G has order n and size e(G).

Let u,v € V(G) be any two vertices in G. The degree of v, the number of
edges incident to v, is denoted dege(v). The set of neighbors of v is denoted
N(v), thatis, N(v) = {w € V(G)lvw € E(G)}. Note that degg(v) = |N(v)|.
If u and v are adjacent (i.e., uv € E(G)}), we say that u hits v or v hits u. If 2
and v are not adjacent, we say that u misses v or v misses u.

The minimum degree among all vertices in V'(G) is denoted §(G). The max-
imum degree among all vertices in V(G) is denoted A(G). For any graph H,
we define the function d(H) to be the average degree of the vertices in H; that is
d(H) = 2¢(H)/|V(H)|.

Aleafw € V(T') in atree T is a vertex of degree one. If v has w (a leaf) as its
neighbor, then w is referred to as a leaf neighbor of v. The set of leaf neighbors
of v is denoted Lg(v) (or simply L(v)), that is, L(v) = {w € N(v)|w is a leaf}.

We denote by emin, the minimum number of edges in a (k + 3)-vertex graph
G that ensures that d(G) > k — 2. That is, emin = 1+ [1(k — 2)(k + 3)).
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Let T be a tree on k vertices and let g : V(T') — V(G) be an isomorphism
from V(T') to a k-subset of V(G). If g preserves edges, that is, if g(u)g(v) €
E(G) for every uv € E(T), then we call g an embedding of T into G. If such
an embedding exists, then G contains a copy of T as a subgraph. Or, we say G
contains T or simply T C G.

Let 7' C T be a proper subtree of T and let g’ be an embedding of T into
G. If there exists an embedding g : V(T) — V/(G) such that g(v) = g'(v)
for all v € V(T’), we say that g’ can be extended to an embedding of T' or
simply, that ¢’ is T-exensible. Given any subtree ' C T and any embedding
g : V(T") = V(G), to prove T C G, it suffices to prove that g’ is T-extensible.

As an example, suppose T' is a tree on k vertices that has a vertex p with 3 leaf
neighbors; say L(p) = {l1,!2,1s}. I f' is an embedding of T — {l4, {2, I3}into G
and if dega(f'(p)) = k—1(so f'(p) hits at least 3 vertices in V(G) — ¢'(V(T"))),
then clearly, f' is T-extensible (just map each of {I1, 3, I3} to a distinct vertex in
V(G) —g'(V(T)).

2 Introduction and Main Theorem

In 1959, Erd8s and Gallai [2] proved the following for a fixed, positive integer k
and for a graph G:

Theorem 1 If d(G) > k — 2, then G contains a path on k vertices.
In 1962, Erd6s and S6s stated the following conjecture:

Conjecture 1 If d(G) > k — 2, then G contains every tree on k vertices as a
subgraph.

Various specific cases of Conjecture 1 have already been proven. Each places
limitations on the graph G or on the tree 7. WoZniak [7] notes that the case where
G has k vertices follows immediately from a theorem of Sauer and Spencer [5].
In 1984, B. Zhou [8] independently proved the case where G has k vertices. The
case where G has k + 1 vertices follows from a theorem on the packing of graphs
by Slater, Teo and Yap [4] in 1985. In 1996, WoZniak [6] proved the following
which we state as a theorem.

Theorem 2 If a graph G has n = k + 2 vertices and d(G) > k — 2, then G
contains every tree on k vertices.

If a longest path in a tree T has r + 1 vertices, then we say that T has diameter
r. In 2003, McLennan [3] proved the following:

Theorem 3 Ifd(G) > k — 2, then every tree of order k whose diameter does not
exceed 4 is contained in G as a subgraph.
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Eaton and the author of this paper [1] proved the following which we state as
two theorems. They will be used in the proof of the main result (i.e., Theorem 6).

Theorem 4 Ifd(G) > k — 2 and 6(G) > k — 4, then G contains every tree on k
vertices.

Theorem 5 Ifk < 8 and d(G) > k— 2, then G contains every tree on k vertices.
In this paper, we establish the following:

Theorem 6 If a graph G has n = k + 3 vertices and d(G) > k — 2, then G
contains every tree on k vertices.

3 Proof of Theorem 6

Assume that G is a connected graph (otherwise, we just apply these results to any
component of G whose average degree exceeds k — 2). We will use induction on
n = |V(G)|. Assume the theorem holds for all graphs on fewer than n vertices
and let G be a graph on n vertices. We will prove that the theorem holds for any
graph on n vertices. Let n = k + 3 and let T be a tree on k vertices.

Theorem 6 holds if k < 8, diameter(T) < 4 or §(G) > k — 4 (by The-
orems 3, 3 and 4, respectively). So, assume k > 9, diameter(T) > 5 and
0(G) <k-5.

Assume €(G) = emin = 1 + | }(k — 2)(k + 3)]. Notice if dega(v) < | %]
for some v € V(G), then d(G - v) > k — 2and G — v C G contains every tree
on k vertices (by Theorem 2). So we assume that 6(G) > | £|.

Let ag,ay,...,a, be a longest path in T (since diameter(T') > 4, we have
T 2 5). Denote the leaf neighbors of a, has Lr(a1) = {b1,b,...,bs} where
8 2 1. Denote the leaf neighbors of a,—; has Lr(a,_1) = {c1,¢2,...,c:} where
t > 1. Without loss of generality, we will assume that s > ¢.

We break the proof down into several cases and subcases. The cases depend
on the value of A(G); noticek -~ 1 < A(G) <k+2=n-1.

In each case, we construct subgraphs 7 C T and G’ C G that satisfy the
induction assumption or that satisfy Theorem 2 (in either case, we obtain that
T’ C @'). Thatis, for n’ = |V(G’)| (< n) and k' = n’ — 3, we have that 7" and
G’ satisfy |V (T")| < k' and d(G') > k' — 2.

Since an embedding f’ of T” into G exists, we will extend/modify f’ to a new
embedding f of T into G proving that T C G.

Let z € V(G) be such that degg(2) = 6(G) < k — 5.

Case1 A(G) =k +2.

145



Let u € V(G) be such that degg(u) = k + 2. Let G' = G — {u, z} and let
T' =T -{a1,b1,...,bs}. Soe(G’) > e(G) — (k+2)— (k—6) > F(k=2)(k+
3)—2k+4=3(k-2)(k-1),d(G) > (k-2)(k—-1)/(k+1) >k —4and
[V(T")| € k — 2. By the induction assumption, T’ C G'.

Let f’ be an embedding of T” into G/, let X = V(G) — f'(V(T")) and let
f = f'. Set f(a1) = u. Since Ng(u) = V(G — u), u hits at least s vertices in X
so f is T-extensible.

Case2 A(G) =k +1.

Let u € V(G) be such that dege(u) = k + 1 and let z be the single vertex in
V(G) — {u} that is not adjacent to u. We consider two subcases: degg(z) < k—2
and dege(z) > k — 1.

Case 2.1 degg(z) < k-2

Let G' = G — {u,z} and let T’ = T — {a1,b1,...,bs}. Thus, e(G’) =
eG)—(k+1)—(k—2) > j(k-2)(k+3)—2k+1= F(k — 4)(k + 1),
dG) > (k—4)(k+1)/(k+1)=k—4and |[V(T")| < k-2s0T' C G'. Let
' be an embedding of T” into G', let X = V(G) — f'(V(T")) and let f = f'.

Observe that u hits all of f/(V(T")). So, set f(a1) = v and f is T-extensible.

Case 2.2 degg(z) 2 k- 1.

LetG' = G — {u,z,2} andlet T’ = T — {ay, bn, .. ., bs, ar}. Thus, (G') 2
e(G) - (k+1)—(k+1) —(k=5)>4(k—2)(k+3)-3k+3= 1k(k - 5),
d(G") > k(k —5)/k = k —5and |V(T")| = k- 3;50 T' C G'. Let f' be an
embedding of T” into G, let X = V(G) — f/(V(T")) and let f = f".

Observe that u hits every vertex in G’ and z hits all but at most two.

If z hits f’(az), then set f(a1) = z, f(a;) = v and f is T-extensible. So,
assume z misses f'(a2).

Suppose z hits f'(ar—1). Set f(ar) = z, f(a1) = v and f it T-extensible.

Suppose = misses f'(ar—1). Then z hits all of V(G') — {f'(a2), f'(ar-1)}.
Set f(ar—1) = z and f(a1) = u. Since degg(x) > k — 1, z hits at least ¢ vertices
in X. And since dege(u) = k + 1, f is T-extensible.

Case3 A(G) =k.

Let u € V(G) be such that dege(u) = k and let z; and z2 be the two
vertices in V(G — ) that miss . Without loss of generality, assume degg(z1) 2
degc(z2). We consider two subcases: degr(a;) > 2 and degr(a1) = 2.

Case 3.1 degT(al) > 2 (ie,s22)
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Case 3.1.1 z; misses z.

Let G' = G~ {u} and ' = T — {ao}. Then, &(G') = e(G) - k >
3(k—2)(k+3)—k = 1(k—3)(k+2). Since d(G’) > (k—3)(k+2)/(k+2) = k-3
and [V(T")| = k — 1, we know that T C G'. Let f’ be an embedding of T into
G let X =V(G) - f/(V(T')) and let f = f'.

Since f'(a1)f'(az) € E(G’), we know w hits at least one of f'(a;), f'(az)
(the only two vertices that u misses are z; and z3 and 2,72 ¢ E(G')). If u hits
f'(a1), then set f(ao) = u and f is an embedding of T into G. So, assume u
misses f'(ay).

Since u misses f’(a;), it must be that « hits all of Ng(f/(a;)). Set f(a;) = u.
Since degg(u) = k, f is T-extensible.

Case 3.1.2 Ty hits x4.
Case 3.1.2.1 degg(z;) + dege(z2) < 2k — 2.

LetG' = G — {u, 2,22} and let T = T — {a,, by, bs, ..., b5 }. So, e(G") >
e(G)—k—(2k-3) > 3(k—2)(k+3) -3k +3 = 1k(k — 5), d(C") >
k(k — 5)/k = k — 5 and |V(T")| < k — 3. Therefore T/ C G'. Let f’ be an
embedding of " into G', let X = V(G) — f'(V(T")) and let = f'.

Since u misses only z; and z9, set f(a1) = u and f is T-extensible.

Case 3.1.2.2 degg(zy) + dega(z2) > 2k — 1.

It must be that 2k — 1 < degg(z1) + dege(z2) < 2k, dege(z1) = k and
k —1 < degg(z2) = k (since degg(x1) > dega(z2). And, notice that z; # z #
z2 (since degg(2) < k — 5) and that v hits z.

Let G' = G — {u,z,z1,z9} and let ' = T — {ay,by,...,bs,a,}. So,
e(G') 2 e(G)—k—(2k—1)—(k~6) > 3(k—2)(k+3)~4k+7 = L (k2 7k+8).
Since d(G') > (k? — 7Tk +8)/(k —1) > k — 6 and [V(T")| < k — 4, we have
that 7' C G'. Let f' be an embedding of T” into G’, let X = V(G) — f'(V(T"))
andlet f = f’.

Notice that v hits all of V(G’) and z; misses at most one vertex in V(G'). In
particular, z; hits either f'(a,—1) or f/(ar—2).

If z; hits f'(ar—1), then set f(a,) = 1. If ) misses f’(a,1), then z; hits
all of G’ — f'(ar—1) so set f(ar—1) = z1 and f(a,) = x.

Set f(a1) = u and f is T-extensible.

Case 3.2 degr(a;) =2, (ie, s =1).

Assume first that there is a w € V(G) — {u, 1, z2} such that w hits both z,
and zp. Let G' = G — {u,w} and let T’ = T — {ay, a;}.
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_ Then,e(G") > e(G)—k—(k—1) > 3(k—2)(k+3)-2k+1 = (k-4)(k+1),
dG) > (k—4)(k+1)/(k+1)=k—4and [V(T")| = k—2;50T' C G'. Let
' be an embedding of T” into G', let X = V(G) — f'(V(T")) and let f = f".

Note that u hits w and that at least one of them hits f’(a2); without loss
of generality, assume w hits f'(a2). Set f(a1) = w, f(ao) = v and f is an
embedding of T into G.

Now, assume there is no such w € V(G) — {u, 21, z2} that hits both z; and
9. Then, each vertex in V(G) — {u, z1, z2} sends at most one edge to {z1, z2}.
Thus, degg(z1) + dege(x2) < k + 2.

Let G =G- {u,:zl,a:g} and T/ =T - {ao,a1}. Then, e(G’) > e(G) -
k—(k+1) > 3(k—2)(k+3)—2k—1= 3(k® - 3k - 8). Since d(G’) >
(k% =3k —8)/k > k—4and |[V(T')| £ k—2,T" C G'. Let f' be an embedding
of T into G', let X = V(G) - f'(V(T")) and let f = f'.

Since u hits all of V(G’) (and at least one additional vertex), set f(az) = u
and f is T-extensible.

Cased A(G)=k-1.

Let {u1,u2,u3,us} C V(G) be four vertices of degree k — 1. Such four
vertices exist as otherwise,
e(G) < 31k — 5) +3(k — 1) + (k= 1)(k = 2)]] = |3k + k — 6)] < emin;
a contradiction.

Each one of {1, ug, us, us} misses exactly 3 vertices in V(G). Let {z1, 72,
23} C V(G) be the three vertices in V/(G) — {u1} that miss u;.

Case 4.1 {z,, 2,3} share at most one edge.

Without loss of generality, assume z; hits z2. Let G' = (G — u1) — z1%2
(so {1, Z2, 3} share no edges in G’). Then, e(G') > e(G)-(k-1)-1>
2(k=2)(k+3)—k = 2(k—3)(k+2). Sod(G") > (k—3)(k+2)/(k+2) = k-3.
Let T' = T — ag. Since [V(T")| < k—1,T' C G'. Let f' be an embedding of
T' into G and let X = V(G) - f'(V(T")).

If uy hits f'(a1), set f(ao) = v and f is an embedding of T into G. So,
assume u; misses f'(a1).

It must be that u, hits all of Ng(f'(a1)) so set f(a1) = u1. Since u; hits
k — 1 vertices in G (and therefore, at least 1 vertex in X), f is T-extensible.

Case4.2 {z),z2,z3} share at least two edges.
Case4.2.1 degr(a;) =2, (i.e, s =1)
Without loss of generality, assume z; hits both of {z2,z3}. Let G’ = (G -

{u1,21}) — zox3. Then, e(G') 2 ¢(G) - (k-1) - (k—1)-1> Lk-2)(k+
3)—2k+1=4(k—4)(k+1). Sod(G") > (k—4)(k+1)/(k+1) =k—4. Let
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=T — {ao,a1}. Since |V(T")| =k — 2, T C G'. Let ' be an embedding of

T’ into G’ and let f = f'.

Suppose u; hits f/(ag). Set f(a1) = uy. Since ug hits k — 1 vertices in G
(and therefore, at least 1 vertex in V(G) — f/(V(T"))), f is T-extensible.

Suppose u; misses f’(az). Then f’(az2) = z2 or z3; without loss of generality,
assume f'(az) = za. Set f(a1) = z1. If z3 ¢ f/(V(T")), then set f(ao) = z3
and f is an embedding of T into G. So, assume z3 € f'(V(T")); and let w €
V(T') be such that z3 = f’(w). Note that f'(w) = z3 does not hit f'(az) = z
s0 it must be that u; hits all of /(N7 (f'(w))). Set f(w) = u1, f(ao) = 3 and
f is an embedding of T into G.

Case4.2.2 degr(a1) > 2, (i.e, s > 2).

If {u1,u2,u3,uq} share no edges, then {z;,22,z3}(= {u2,us, us}) share
no edges and T C G by Case 4.1. So, assume {u;, u, u3, us} share at least one
edge; without loss of generality, assume u; hits ug.

Let G’ = (G — {uy,uz,2}) — {m1$2,17123,$2$3} Then, e(G”) 2 e(G) -
(k=1)—(k—2)—(k-5)—3> 1 (k—2)(k+3)—3k+5= 3(k—4)(k-1).
So d(G') > (k — 4)(k — 1)/k > lc -5 LetT" =T —~ {a;,bl,bg, . bs}.
Since |V(T')] < k-3, T C G'. Let f' be an embedding of T" into G’ Let
X=V(G)-f(V(T')) and let f = f.

Suppose u, hits f'(az). Set f(a1) = 1. Since u; hits k — 1 vertices in G, f
is T-extensible.

Suppose u; misses f'(az). Then u; hits all of N(f’(az)). So, set f(az) = uy
and f(a1) = ua. Since ug hits k — 1 vertices in G, f is T-extensible. O
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