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ABSTRACT

In this paper a sufficient condition is obtained for the global asmptotic
stability of the following system of difference equations

Zn + Yn-1 Yn + Tn-1
= B __ gn=l = —=- n=012,...
Tnt1 U 1: Yn+1 YnTn-i 1: y Ly &y r

where the initial values (z, yx)e(0, 00) (for k = —1,0).
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1. INTRODUCTION

Difference equations are always attracting very much interest, because
these equations appear in the mathematical models of some problems in
biology, ecology, economy and physics, and numerical solutions of differ-
ential equations. So, recently there has been an increasing interest in the
study of qualitative analyses of rational difference equations and systems of
difference equations.Although difference equations are very simple in form,
it is extremely difficult to understand thoroughly the global behavior of
their solutions. (see [1-13] and the references cited therein).

In [3] De Vault et al. proved that the unique equilibrium of the difference
equation

Tn
Tn-1

where Ae(0, 00), is globally asymptotically stable and proved the oscillatory
behaviour of the positive solutions of this difference equation.

xn+l=A+ 9 n=0,1,2,..-,
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From on, Papaschinopoluos and Schinas (8] extended the results obtained
in [3] to the following system of difference equations:

T
Un i =A+——-, n=0,12,...,

Yn—p Tn—q

Tnt41 = A+

where Ae(0,0), p,q are positive integers and
Tegy T—qtls-+ - L0, Y—py Y=pt1y--- YO
are positive initial values.
Li and Zhu [5] proved that the unique positive equilibrium of the differ-
ence equation
TnTn-1ta

n=0,12,...
$n+$n—1, y L) &y ’

Tnt1 =

where ae[0,00) and z_1,Zo are positive, is globally asymptotically stable.

From on, we [1] extended the results obtained in [5] to the following
rational difference equation

InZn-k + 0

n=012,...
zn+xu_k, -1 ]

Tn+l =
where k is nonnegative integer, ae[0,00) and T_g,...,Zo are positive, is
globally asymptotically stable.

Moreover, in [12] we extended the results obtained in [5] to the following
system of difference equations

Zptp—1+a _ tnZn—1+0
Zn+ i1 » tn + 2n—1

where ae(0,00) and the initial values (zx,tx)e(0,00) (for £ = —1,0), is
globally asymptotically stable.

Also, in [13] we proved that unique positive equilibrium of the system
of difference equations

Zntl = , n=0,1,2,...,

thzn—1+a Zplpn-1+a
z = —_— == " n=012,...
n+1 tn + Zn—1 n+1 Zn + tn1 ’ y Ly 4y »

where ae(0,00) and the initial values (zx,tx)e(0,00) (for & = —1,0), is
globally asymptotically stable.
In this paper, we consider the following system of difference equations

Tn Yn-1 Yn Tn-1
1 = Zntynor oWt g,
( ) In+1 Tnbn1 +1’ Yn+1 YnTn—1 1’ n y 4y &y

where the initial values (zx,yx)e(0,0) (for k = —1,0). Our main aim is to
investigate the global asymptotic behavior of its solutions.
We need the following definitions and theorem [4]:
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Let I be some interval of real numbers and let f,g : I x I — I be
continuously differentiable functions. Then for all initial values (z,ys)el,
k = —1,0, the system of difference equations
(2) Tnil = f(mnr yn—l)y Yn+1 = g(ynaz‘n—l)’ n= Oa 11 21 e

has a unique solution {(Zn,¥n)}re—1-

Definition 1. A point (Z,7) called an eguilibrium point of the system (2)
if -

T = f(z,7) and § = 9(%, 7).

Definition 2. Let (Z,7) be an equilibrium point of the system (2).

(a) An equilibrium point (Z,7) is said to be stable if for any e > 0
there is § > 0 such that for every initial points (x_1,y—1) and (zo,y0) for
which [|(z-1,4-1) = (@, P +(zo,%0) — (T, )|l < 4, the iterates (zn,yn)
of (z_1,y-1) and (zo,y0) satisfy |(Zn,yn) — (TPl <€ foralln > 0. An
equilibrium point (Z,7) is said to be unstable if it is not stable. (By ||.|| we
denote the Euclidean norm in R? given by ||(z,y)l| = /22 + ¢2)

(b) An equilibriumpoint (Z,7) is said to be asymptotically stable if there
ezists v > 0 such that (Zn,yn) — (Z,7) as n — oo for all (z_1,y—1) and
(301'!/0) that satisfy Il(z_1,y_1) - (5,:7])" + Il(zo,yo) - (5’7)” <r.
Definition 3. Let (Z,7) be an equilibrium point of a map F = (f, g), where
f and g are continuously differentiable functions at (%,%). The Jacobian
matriz of F at (Z,7) is the matriz

e =] BED @D |
V= uiy) ey

The linear map Jr(%,7) : R? — R? given by

© s (2)=| EEDtGEDy

Y\ v #@E e+ E @0y
is called the linearization of the map F at (%, 7).
Theorem 1. (Linearized Stability Theorem)

Let F = (f,g) be a continuously differentiable function defined on an
open set I in R?, and let (Z,5) in I be an equilibrium point of the map
F=(fg9).

(a) If all the eigenvalues of the Jacobian matriz Jp(Z,7) have modulus
less than one, then the equilibrium point (Z,5) is asymptotically stable.

(b) If at least one of the eigenvalues of the Jacobian matriz Jp(Z,7) has
modulus greater than one, then the equilibrium point (%,7) is unstable.

(c) An equilibrium point (Z,F) of the map F = (f,g) is locally asymp-
totically stable if and only if every solution of the characteristic equation

2 = trJp(Z,7)A + det JR(Z,7) =0
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lies inside the unit circle, that is, if and only if
ltrdp(Z,7)| < 1+ det Jr(Z,7) < 2.
Definition 4. Let (Z,7) be positive equilibrium point of the system (2) (see

9.

A “string” of consecutive terms {Zs,...,Zm} (resp. {Ys,..sUm})) 8 2
—-1,m < oo is said to be a positive semicycle if z; = T (resp. yi 2 F),
i€{8,...ym},Ts—1 <T (resp. Ys—1 <T), and Tm+1 <T (resp. Ym41 <F).

A “string" of consecutive terms {Zg,...,Tm} (resp. {Ys,-sUm})s 8 2
—1,m < oo is said to be a negative semicycle if z; < T (resp. y; < ),
i€ {8, ...,m} ,Ts—1 2 T (resp. Ys—1 2 F), and Tm41 2 T (T€3P. Ym+1 2 7).

A “string” of consecutive terms {(Ts,Ys)y- -+ (Tm)Ym)} is said to be o
positive (resp. negative) semicycle if {Zs,...,Tm}, {¥ss--»¥m} are positive
(resp. negative) semicycles.

Finally a “string” of consecutive terms {(Ts,¥s); -+) (Tm,Ym)} is said to
be a semicycle positive (resp. negative) with respect to z, and negative
(resp. positive) with respect to yn if {Zs,...,Tm} s a positive (resp. nega-
tive) semicycle and {ys,...,ym} is a negative (resp. positive) semicycle.

2. SOME AUXILIARY RESULTS

In this section, we give the following lemmas which show us the behav-
iour of semicycles of positive solutions of system (1). Proofs of Lemmas 1
and 2 are clear from (1). So, they will be omitted.

Lemma 1. A positive solution {(Tn,¥n)}re_, Of the system (1) is even-
tually equal to (1,1) if and only if

(z-1 — 1)(zo — 1)(y-1— (o — 1) =0.

Lemma 2. Assume that {(Zn,¥n)}ne_, 8 @ positive solution of the system
(1) which is not eventually equal to (1,1). Then the following statements
are true:
(3) (Zn+1 — Zn)(1 — Zn) > 0 and (Yn+1 — Yn)(1 —yn) >0 for alln 20,
() (Zns1=1)(@n —1)(1=Yn-1) > 0 and (Yn+1-1)(¥n —1)(1-2Z4-1) > 0
for allmn 2 0.

Lemma 3. Assume that {(Tn,Yn)}ow_, 18 @ positive solution of the system
(1) and suppose that the case, Casel: zk,yx < 1 (for k = —1,0), holds.
Then (Tn,Yn) is a negative semicycle of system (1) with an infinite number
of terms and it monotonically tends to the positive eguilibrium (Z,7) =
(1,1).

Proof. If zx,yx < 1 (for k = —1,0), then by Lemma 2 (ii), it follows that
Zn,Yn < 1 for n > —1, i.e., this negative semicycle has an infinite number
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of terms. Furthermore, according to Lemma 2 (i), we know that (Zn,¥n)
is strictly increasing for all n > 0. So, the limits

lim z, =, and lim y, =,

n—oo n=—00

exist and are finite. Taking limits on both sides of the system (1), we have
h=lk=1 a

Lemma 4. Assume that {(zn,yn)}me_, 5 a solution of system (1), and
consider the cases;

Case2: _1,%0,y-1,% > 1

Case8: z_1,y-1 > 1 and zo,y0 < 1,

Cased: z_1,y~1 <1 and zo,yo > 1.

If one of the above cases occurs, then

(i) Bvery positive semicycle consists of two terms;

(i) Every negative semicycle consists of one term;

(i) Every positive semicycle of length two is followed by a negative
semicycle of length one;

(iv) Every negative semicycle of length one is followed by a positive semi-
cycle of length two. '

Proof. If Case 2 occurs, then in view of Lemma 2(ii) we have: z;,71 < 1
and Z3n12, Yan+2 > 1; T3n+3,Y3n+3 > 1 8nd Tanp4,y3n44 < lforalln >0
which imply that every positive semicycle of system (1) of length two is
followed by a negative semicycle of length one which in turn is followed by
a positive semicycle of length two.

If Case 3 occurs, then in view of Lemma 2(ii) we have: Z3p41,%3n+1 > 1;
T3n+2,Y3n+2 > 1 and T3n43,Y3n+3 < 1 for all n > 0 which imply that every
positive semicycle of system (1) of length two is followed by a negative
semicycle of length one which in turn is followed by a positive semicycle of
length two.

Similarly, if Case 4 occurs, then in view of Lemma 2(ii) we have: z,,y; >
1; 22,92 < 1 and Z3,43,Y3n+3 > 1; T3n4+4,Y3n+a > 1 and Tanss, Yanss < 1
for all n > 0. Therefore, the proof is complete. ]

We omit the proofs of the following two results since they can easily be
obtained in a way similar to the proof of Lemma 4.

Lemma 5. Assume that {(Tn,Yn)}ne_, is a solution of system (1) and
consider the cases;

Case5: z_1,29 < 1 and y_1,70 > 1,

Caseb: zg,y_1 > 1 and z_1,5 < 1,

Case?: z_1,y-1,%0 > 1 andz9 < 1,

Case8: zg,y-1,%0 > 1 and z_; < 1,

Case9: z_1,29,y-1 < 1 and yo > 1,

Casel0: zg,Yy-1,%0 <1 and z_; > 1.
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If one of the above cases occurs, then

(i) Every positive semicycle associated with {zn} of system (1) consists
of one term;

(ii) Every negative semicycle associated with {z,} of system (1) consists
of one or three terms;

(ii) Every positive semicycle associated with {zn} of length one is fol-
lowed by a negative semicycle of one or three terms;

(iv) Every negative semicycle associated with {zn} of length one or three
terms is followed by a positive semicycle of length one;

(v) Every positive semicycle associated with {yn} of system (1) consists
of four terms;

(vi) Every negative semicycle associated with {yn} of system (1) consists
of two terms;

(vii) Every positive semicycle associated with {ya} of length four is fol-
lowed by a negative semicycle of length two;

(viii) Every negative semicycle associated with {yn} of length two is fol-
lowed by a positive semicycle of length four.

Lemma 6. Assume that {(Tn,¥n)}or_, s a solution of system (1) and
consider the cases;

Casell: z_1,y0 > 1 and zp,y-1 < 1,

Casel?: z_1,T0 > 1 and y—1,% < 1,

Casel8: z_1,20,y-1>1 and yo <1,

Caself: z_1,%0, %0 > 1 andy—1 <1,

Casel5: £-1,%0,y0 <1 and y-1 > 1,

Casel6: T_1,9-1,% <1 and zo > 1.

If one of the above cases occurs, then

(i) Every positive semicycle associated with {zn} of system (1) consists
of four terms;

(ii) Every negative semicycle associated with {zn} of system (1) consists
of two terms;

(iii) Every positive semicycle associated with {zn} of length four is fol-
lowed by a negative semicycle of length two;

(iv) Every negative semicycle associated with {2z} of length two is fol-
lowed by a positive semicycle of length four.

(v) Every positive semicycle associated with {yn} of system (1) consists
of one term;

(vi) Every negative semicycle associated with {yn} of system (1) consists
of one or three terms;

(vii) Every positive semicycle associated with {yn} of length one is fol-
lowed by a negative semicycle of one or three terms;

(viii) Every negative semicycle associated with {yn} of length one or
three terms is followed by a positive semicycle of length one.
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3. MAIN RESULT

Theorem 2. The positive equilibrium point (%,%) = (1,1) of the system
(1) is globally asymptotically stable.

Proof. We must show that the positive equilibrium point (Z,7) = (1,1) of
the system (1) is both locally asymptotically stable and (zn,¥n) — (Z,7)
as n — 00. The characteristic equation of the system (1) about the positive
equilibrium point (%,7) = (1,1) is

A -02+0=0

and so it is clear from Theorem 1 that positive equilibrium point (=7 =
(1,1) of the system (1) is locally asymptotically stable. It remains to verify
that every positive solution {(zn,yn)}ae_, of the system (1) converges to
(Z,%) = (1,1) as n — co. Namely, we want to prove
4) limz,=Z=1andlimy,=7=1.

n—00 n—oo0
If the solution {(n,yn)},=_, of system (1) is nonoscillatory about the
positive equilibrium point (Z,7) = (1,1) of the system (1), then according
to Lemmas 1 and 3, respectively, we know that the solution is either even-
tually equal to (1,1) or an eventually negative one which has an infinite
number of terms and monotonically tends the positive equilibrium point
(Z,%) = (1,1) of the system (1) and so equation (4) holds. Therefore, it
suffices to prove that equation (4) holds for strictly oscillatory solutions.
Now let {(xn,¥n)}n_, be strictly oscillatory about the positive equilib-
rium point (Z,7) = (1,1) of the system (1). By virtue of Lemmas 2 (ii)
and 4 one can see that every positive semicycle of this solution has two
terms and every negative semicycle has one term. Every positive semicycle
of length two is followed by a negative semicycle of length one. For the
convenience of statement, without loss of generality, we use the following
notation. We denote by zp,Zp41 (resp. ¥p,¥p+1) the terms of a positive
semicycle of length two, followed by Z,42 (resp. yp42) which is the term
of a negative semicycle of length one. Afterwards, there is the positive
semicycle Zp43,Zpta (resp. Yp43,¥Yp+4) in turn followed by the negative
semicycle zp.5 (resp. yp4+s5) S0 on.

Therefore, we have the following sequences consisting of positve and

negative semicycles (for n =0,1,...):

{Zp+3n: Tptant1} g i {Tp+ant)ng
and

{yp+3m Yp+3n+1 }f,°=o ) {yp+3n+2}z°=o ’
We get the following assertions:

(D) Tprsn > Tpian+r (T€SP. Ypi3n > Yptant1);
(ii) Zp4+3n+1Zp+3n+2 > 1 (T€SD. Ypiant1¥Uptant2 > 1);
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(iii) Tp4+3n+2Tp+3n+s <1 (r€SP. Yptan+2Yp+ants <1).
Combining the above inequalities, we derive

1 1
(5) < < Zp43n42 < ——
ZTp+3n  Tp+3n+l Tp+3n+3
1
< Yp+3n42 < —
Yp+3n  Yp+3n+l Yp+3n+3

From equation (5), one can see that {Zptant+2}org (TesD. {Yp+3n+2}amo)
is increasing with upper bound 1. So the limit nl-l-»néo Tpiant2 = l3 (resp.
nl_l_.ngo Yp+3n+2 = l4) exists and is finite. Accordingly, in view of equation
(5), we obtain (for m = 0,1,3)
'}Lngozp+3n+m = 2;_ (reSp-nli’ngoyp+3n+m = 'I'i‘) .

It suffices to verify that I3 = [; = 1. To this end, note that
ZTp+3n+2 + Yp+3n+l Yp+3n+2 + Tp43n+l
Tp+3n+2Yp+3ntl +1 Yp+3n+2Tpt3n+1 +1
Take the limits on both sides of the above equality and obtain

1 ls+1/l, 1 ly+1/l3

o T+l 0 T hhifla+1
which imply that {3 = l4 = 1. So, we have shown that

Tp+3n+3 = and Yp43n+3 =

nli.ngo Tpiantmy = nll.ngo Yptantm, =1 for m1€e{0,1,2,3}.

Similarly, by virtue of Lemmas 2 (ii) and 5 (resp. 6) one can see that
equation (4) holds. Therefore, the proof is complete. 0
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