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Abstract

Let G be a 2-tough graph on at least five vertices and let e;, ea
be a pair of arbitrarily given edges of G. Then
(a) There exists a 2-factor in G containing e, ez.
(b) There exists a 2-factor in G avoiding e, e2.
(c) There exists a 2-factor in G containing e; and avoiding e;.

All graphs considered are assumed to be simple and finite. We refer the
reader to [1] for standard graph theoretic terms not defined in this paper.

Let G be a graph. The degree degg(u) of a vertex « in G is the number
of edges of G incident with . The minimum degree of vertices in G is
denoted by 6(G). If X and Y are disjoint subsets of V(G), we will write
Eg(X,Y) and eg(X,Y) for the set and the number respectively of the edges
of G joining X to Y. The number of connected components of G is denoted
by w(G). An edge e of G is said to be subdivided when it is deleted and
replaced by a path of length two connecting its ends, the internal vertex of
this path being a new vertex.

For any set X of vertices in G, we define the neighbor set of X in G to
be the set of all vertices adjacent to vertices in X; this set is denoted by
Ng(X).
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Let X be a nonempty subset of V(G). The subgraph of G whose vertex
set is X and whose edge set is the set of those edges of G that have both
ends in X is called the subgraph of G induced by X and is denoted by
G[X]; we say that G[X] is an induced subgraph of G.

A vertex cut of G is a subset X of V(G) such that G— X is disconnected.
A k-vertex cut is a vertex cut of k elements. If G % Ky, the connectivity
#(G) of G is the minimum k for which G has a k-vertex cut; otherwise, we
define (G) to be n—1. Thus x(G) = 0 if G is either trivial or disconnected.
G is said to be k-connected if &(G) > k.

An edge cut of G is a subset Y of E(G) of the form eg(X, V(G) — X),
where X is a nonempty proper subset of V(G). A k-edge cut is an edge
cut of k elements. If G is nontrivial and Y is an edge cut of G, then G-Y
is disconnected; we then define the edge connectivity &'(G) of G to be the
minimum k for which G has a k-edge cut. If G is trivial, £'(G) is defined
to be zero. Thus '(G) = 0 if G is either trivial or disconnected. G is said
to be k-edge-connected if ¥'(G) > k.

The following theorem is a well-known result.

Theorem 1 ([7]). For every graph G, x(G) < «'(G) < 6(G).

The toughness of G is defined by ¢(G) = min J—'——

X |w(G-X)

minimum is taken over all vertex cuts X of G. If G & K,,, then we define
t(G) =n — 1. G is said to be t-tough if ¢(G) > ¢t.

The following proposition relates the invariants of toughness, connec-
tivity and minimum degree; we mention it because we will use it later in
this paper.

, Where the

Proposition 1. For every non-complete graph G,

K(G) _ K(G) _ §(G)
2 = 2 = 2

¢(G) <

Proof. Let X be a vertex cut of G such that |X| = &(G). Then clearly

|X| &(G) .
< - .
H(G) < SC-X) Sz since w(G — X) > 2. Therefore by Theorem 1,
we obtain Proposition 1. O

Let G be a graph. Given a function f : V(G) — Z%, we say that
G has an f-factor if there exists a spanning subgraph H of G such that
degy(z) = f(z) for every vertex z € V(G). If f is a constant function
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taking the value k, then an f-factor is said to be a k-factor. Thus a k-
factor of G is a k-regular spanning subgraph and a Hamilton cycle of G is
clearly a special case of a 2-factor.

The following theorem is a necessary and sufficient condition for a graph
to have a k-factor and it was obtained by Tutte [6].

Theorem 2 (Tutte’s k-factor Theorem). A graph G has a k-factor if and
only if
96(8,T; k) + ) (k- degg_s(z)) — kIS| <0
z€T
for all pairs of disjoint subsets S and T of V(G), where g¢(S, T; k) denotes
the number of components C of G—(SUT') such that k|V(C)|+eg(V(C), T)
is odd. (Hereafter, we refer to these components as odd components.)

In addition, Tutte proved that for any graph G and any positive integer
k,

qc(S,T;k) + Z (k- degg_s(z)) — k|S| = k|V(G)| (mod 2) (1)
z€T

The concept of toughness was first introduced by Chvétal [3]. He mainly
studied relations between toughness and the existence of Hamilton cycles
or k-factors, and stated several conjectures. One of the conjectures was the
following: Let G be a graph and k a positive integer such that k|V(G)| is
even and G is k-tough. Then G has a k-factor.

In [4], it was proved that Chvital’s conjecture is true. Furthermore
it was shown that the above result is sharp in the following sense: For
any positive integer k and for any positive real number &, there exists a
(k — £)-tough graph G with k|V(G)| even which has no k-factor.

The sharpness of the truth of Chvétal’s conjecture was also proved in-
dependently by Tsikopoulos [5).

Chen [2] obtained the following two theorems, which strengthen the
truth of Chvétal’s conjecture.

Theorem 3. Let G be a graph and k a positive integer, where k > 2, such
that k|V(G)| is even and G is k-tough. Then for every edge e € E(G), G
has a k-factor containing e.

Theorem 4. Let G be a graph and & a positive integer, such that k|V(G)|
is even, |V(G)| 2 k +2 and G is k-tough. Then for every e € E(G), the
graph G — {e} has a k-factor.
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The main purpose of this paper is to present the following three theo-
rems which fit into the above-mentioned literature.

Theorem 5. Let G be a 2-tough graph. Then for every pair of edges e;,
ez of G, there exists a 2-factor in G containing them.

Theorem 8. Let G be a 2-tough graph with |V(G)| = 5. Then for every
pair of edges e;, ez of G, the graph G — {e1, ez} has a 2-factor.

Theorem 7. Let G be a 2-tough graph with |V(G)| > 5. Then for every
pair of edges e;, ez of G, the graph G — {e;} has a 2-factor containing e;.

Theorems 5 and 6 are stronger than Theorems 3 and 4 respectively, for
the special case when k = 2. Furthermore Theorem 7 is an improvement of
both Theorems 3 and 4, again when k= 2.

For the proof of Theorem 5, we shall need the following lemmas.

Lemma 1. Let G be a graph. Suppose that there exists a pair of disjoint
subsets S and T of V(G), such that

(S, T;2) + Y (2 - degg_s(2)) — 2IS| > 2 (2
z€T

furthermore, S is minimal with respect to (2). Then for any vertex v € S,
degG('v) > 4.

Proof. Since S is minimal with respect to (2), for any vertex v € S,

a6(S - {0}, T;2)+ Y (2 —degg_(s-wp(@) —2AS - {v}f 0. (3)
z€T

Combining (2) and (3), we have
96(S,T;2) - gc(8 — {v}, T3 2) +ec({v},T) -2 2 2.
Note that gc(S — {v},T;2) 2 ¢c(S,T;2) — degg-s-1(v), thus

degg(v) > degg_s_r(v) + ec({v} T)
> ¢6(5,T;2) — ge(S — {v}, T3 2) + ec({v}, T) 2 4. o

Lemma 2. Let G be a 2-tough graph with |V(G)| > 5 and let S,T be a
pair of disjoint subsets of V(G). If |S| > 2, then

ae(S5,T;2) + Y (2 - degg_s(z)) — 2I5| < —4.
zeT
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Proof. Suppose that there exists a pair of disjoint subsets S, T of V(G)
with |S| > 2, such that

36(S,T;2) + Y (2 - degg_s(z)) — 2|S| > —4.

z€T
But from (1),
(S, T;2) + Y, (2 - degg_s(2)) - 2IS| > —2. (4)
z€T
Claim: |T| > 2.

If T = 0, then g5 (S, 0;2) > 2|S| -2 > 2 by (4), and hence S is a vertex
cut of G. Since G is 2-tough, |S| > 2w(G — S) > 2¢¢(S,0;2) > 4|S| - 4,
|S| < 4/3, & contradiction. If |T| = 1, say T = {u}, then by (4),

96(5,{u};2) 2 || + (1S] + degg_s(u)) — 4 2 |S| + degg(u) — 4 > S|,

since by the definition of toughness and Proposition 1, §(G) > 4; hence
SU{u} is a vertex cut of G. Therefore, |S|+ 1= |SU{u}| > 2w(G - (SU
{u})) 2 29¢(S, {u};2) > 2|5], a contradiction. Thus we have proved the
claim.

We may assume further that T is minimal with respect to (4). By the
minimality of T, for an arbitrary vertex u € T, we have

96(ST—{u}i2)+ Y  (2-degg_s(z))-2S|<-4 (5
2€T—{u}

Combining (4) and (5), 46 (S, T; 2)~ga(S, T—{u}; 2)+ (2—dege_s(u)) > 2,
that is,

degg_s(u) < ¢6(5,T32) — 96(S, T - {u};2) (6)

< degg_s-r(u). (7)

Therefore, degg_g(u) = degg_g_7(u), that is, |Ng(u) N T| = 0, and thus

T is an independent set of G. Moreover, the inequalities (6) and (7) become
equalities. So we have that

if eg(V(C),{u}) # 0, then C is an odd component of
(G—5) —T andeg(V(C),{u}) = 1. Hence, if Cisan  (#)
even component, then eq(V(C),T) = 0.
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Assume that Cy,Cs,...,C; are the components of G — (SUT). Let
H=G-(SUT). Let i ={we V(H):|INe(v)NT|=1}and Vo ={v €
V(H) : |[Ne(v)NT| > 2}. Let Cy,Cy, ..., Ci be the components containing
at least one element of V;. Choose arbitrary u; € V(C;)NV; fori=1,...,1L
Define X = {u;,us,...,w} and Y = (Ng(T)NV(H)) - X.

By the definition of V; and V2, we have
[Vi| + 2|Vz| € (T, V(H)). (8)
Thus [Vi| + |Va| < ec(T, V(H)) — |V, and |[Y| = |[Na(T) NV (H)| - | X| =
Vil + V2| = |X| < ec(T, V(H)) — |Va| — |X].

Obviously,
Vol +1X| 2 7, (9)
where r is the number of components of G — (S UT) which is joined to T
So |Y| < eq(T,V(H)) —r and |S]| + Y| < |S| + ec(T,V(H)) —r.

By the choice of Y, w(G — (SUY)) > |T|+w(G - (SUT)) —r > 2 and
so SUY is a vertex cut of G. As G is 2-tough, we have
151+ Y1 2 20(G - (SUY)) (10)
> 2|T| +2w(G - (SUT)) —2r. (11)
Thus |S| +ec (T, V(H)) —r 2 |S|+|Y| = 2{T| +2w(G - (SUT)) — 2r and

® AT| - e(T,V(H)) < 15| + 7 — 2(C - (SUT)).

Then we have

96(5,T;2) + ), (2~ degg_s5(z)) — 2|S|
z€T

=g6(8,T;2) + 2/T| - ec(V(H),T) — 2IS|

<9e(S,T;2) - S| + 7~ 20(G - (SUT))

<-15] (12)

<-2. (13)
By (4), |S| = 2, and all the labeled inequalities become equalities.

Since | S| = 2, for any vertex z € T, degg_g(z) = degy(z) 2 degg(z) -
|S] > 2 as degg(z) > 4. But equality holds in (12), so it yields

96(5,T;2) =w(G — (SUT)) =r. (14)
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Hence (G — S) — T has no even component. Moreover for every component
C; the equality in (9) yields

[VanV(C;)| =0, when1<i<{ (xx)
and [VoNV(C;)|=1, whenl+1<i<t.
The equalities in (10) and (11) together with (14) imply that
IS| + Y| = 2w(G = (SUY)) =2[T). (15)

Now if C; contains a vertex in V2, then |V(C;)| = 1 since w(G - (SU
Y)) = I7| and by (**).

The equality in (8) also implies that |Ng(z) NT| = 2, for every z € V5.

Therefore, if z € V3, then V(C;) = {z} with |[Ng(z)NT| = 2 and so C;
is an even component. Thus we have V, = @ by using (*).

Assume that there exists a vertex u € T having two neighbors u; €
V(H) and uz € V(H), such that [Ne(u;) N T| = 1. By (*), u; and ug
are in distinct odd components. We may assume that u;,us € X. Then
w(G—-(SUYU{u})) > w(G—(SUY))+1 = |T|+1 > 3, and thus SUY U{u}
is a vertex cut of G. As G is 2-tough, then 2|T| +1 = |[SUY U {u}| >
2w(G — (SUY U {u})) > 2|T| + 2, a contradiction.

Hence for any vertex u € T, u has at most one neighbor in H, and thus
degc(u) < |S|+ 1 = 3, a contradiction, since 6 > 4.

Therefore, (4) is false and this completes the proof of the lemma. O

Lemma 3. Let G be a graph, and e = ab be an edge of G. Let G’ be the
graph obtained from G by inserting a new vertex u into the edge e. Then
for any pair of disjoint subsets S/, T of V(G'),

gc(S', T;2)+ E (2-deggi_g/(z)) = gc(S, T; 2)+z (2—dege_s(z))+2,
z€T’ z€T
(16)

where § =8’ — {u}, T=T' - {u} and ¢ = 0, 1.
Proof. From the parity equality in (1), (16) holds so we only need to prove
that € =0, 1.

By the construction of G’, G’ is obtained from G by deleting one edge
ab and adding two adjacent edges ua, ub. Thus we have

~1<eq (8, T') - ec(S,T) < 2.
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We consider the following four cases:

Case 1: eq/(9',T') = ec(S,T) + 2.

Then {ua,ub} C Eg/(S',T'), and thus go'(S',T";2) = ¢c(S,T;2).
Clearly, e = 1.

Case 2: eq/(S',T') = eg(S,T) + 1.

Then exactly one of {ua,ub} is in Eg:(S’,T’). Hence one vertex of
{a, b}, say b, is in a component of (G’ — 8') — T", and then g/ (S’ ,IT';2) =
qc(S,T;2) — 1 or g/ (S',T";2) = qc(S,T;2) + 1. Hence € =0, 1.

Case 3: e/ (9", T') = ec(S,T).
Then e =0,1, as 0 < g (5, T";2) — gc(S,T52) < 2.
Case 4: eq/(S',T") = ec(S,T) - 1.

Then edge ab € E¢(S,T) and vertex u € 8’ UT". Since u has only two
neighbors @ and b, {u} is a component of (G’ — S’) — T". Moreover, {u} is
an odd component of (G’ — §') = T". Then ge/(5",T';2) = gc(S, T3 2) + 1,
and hence € = 0. O

Proof of Theorem 5. We may assume that |V(G)| > 5 since for all 2-
tough graphs having less than five vertices the theorem clearly holds.

Let G; be the graph obtained from G after the subdivision of e; (insert
a new vertex u; on e;), and let G2 be the graph obtained from G, after
the subdivision of ez(insert a new vertex uz on ez). Then G has a 2-factor
containing e; and ez if and only if G2 contains a 2-factor.

Suppose that the graph G2 contains no 2-factors. Then by Tutte’s -
factor theorem, there exists a pair of disjoint subsets Sz, T3 of V(G2), such

that
46,(52, T2;2) + Y, (2 - degg,_s,(2)) — 2I52| = 2. (17)
z€Ty

We may assume that S, is minimal with respect to (17). Then by
Lemma 1, S2 N {u1,u2} =0 Let S=8=8,T1 =T - {‘!.'.2} and
T =T — {u1}. By Lemma 3,

46,(52,T2;2) + D, (2 — degg,—s,(2))
z€Ty

<46, (51, T1;2) + Y, (2 — degg,_s,(2)) +2, (18)
z€Ty
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and

46, (51, T1; 2)+ ) (2—degg, -5, (2)) < 46(S,T; 2)+)  (2-degg_g(z))+2.
z€T) z€T
(19)

Combining (18) and (19), we have

962(52, T 2)+ ) (2—degg,_s,(2)) < 9o(S,T;2)+ Y (2—degg_s(z))+4.
€T z€T

Thus (17) yields

9c(5,T;2) + ) (2 - degg_s(z)) — 28| 2 -2
z€T

and so by Lemma 2, |S] < 1.
Case 1: S=Sl=82=@.

Kz eT; - {w,u}, degg,(z) = degg(r) >4 and if z € T2 N {w1,u2},
degg, (z) = 2. Thus (17) implies

96,(0,T2;2) 2 ) _ (degg, () —2)+2 > 2T~ {u1, up}|+2 = 2|T|+2. (20)
€T,

Since w(G —T) 2 w(Gz — T2) - 2, w(G - T) > ¢, (0, T2; 2) — 2 > 2/T).

If T # 0, then T is a vertex cut of G, and |T| > 2w(G - T) > 4|T},
a contradiction. So we assume that T = §. But if this is the case then
(20) implies that g¢,(0,7%;2) > 2 and so T is a vertex cut of G2. Since
T =T, - {u1,u2} =0, T2 C {u1,uz}. Therefore, the edge set {e;, ez} is a
2-edge cut of G, a contradiction to the fact that G is 4-connected.

Case 2: |S]| = 1.
Let m be the number of elements u; of TN {u;, u2} such that |Neg, (ui)N

S|=1. Clearly 0 < m < 2.

For every z € T' we have |Sz|+degg, g, (z) = |S|+degg_s(z) > degg(z) >
4 and so

D degg,_s, (x) > 3|T] since |Sz| = |S| = 1.
z€T

169



Moreover Z degg,_s, (%) = 2|ToN{u1, uz}|—m. Thus (17) yields

z€TaN{u1,u2}

96,(52,T2; 2)
>2|Sz| + D (degg,—s,(2) —2) +2

z€T2
=2+ z: (deng_sg (=) - 2) + Z (deng—Sg (z) - 2) +2
z€T z€TaN{u1,uz}
>4+ |T| = m.
But we have

w(G = (SUT)) 2 46,(52, T2 2) - (2~ m)
>4+ |T|-m—(2—-m)
=|T|+2.

Thus SUT is a vertex cut of G and so |T|+1 = |SUT| > 2w(G — (SU
T)) > 2|T| + 4, which is a contradiction. m]
For the proof of Theorems 6 and 7, we will also use the following lemma.

Lemma 4. Let G be a graph, e = ab be an edge of G and let G' = G- {e}.
Then for any pair of disjoint subsets S, T of V(G),

4 (S, T;2)+ Y (2—deggr_s(2)) = 46(S, T;2)+  (2—degg_s(z)) +2¢
€T zeT
(21)

where e =0, 1.
Proof. Since G’ = G — {e}, so degg:(a) = degg(a) — 1 and dege:(b) =
degg(b) —1.

From (1), clearly (21) holds, so we only need to prove that ¢ = 0, 1.
According to the location of a,b, there are three cases to consider:

Case 1: a,beT.
Then g6 (S,T;2) = 9¢(S,T;2) and %:Tdegc'-s(l‘) = %dega_s(m) -
T k4
2. Therefore, € = 1.
Case 2: Assume that exactly one of {a, b}, say a, belongs to T'.
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If » € S, then E degg _g(z) = E degg_g(z) and ¢¢(S,T;2) =
9¢/(S,T;2); and if b ¢ SUT, then 2 degG,_s(z) 2 degg_g(z) — 1
and go/(S,T;2) — ge(S,T;2) =1 or —1 Therefore £ = 0 1

Case 3: {a,b}NT = 9.

Then Z degg_g(z) = E degg_g(z) and ¢/ (S,T;2) — g6 (S, T;2) =
0or 2. Therefore, e=0,1. a

Proof of Theorem 6. Let G; be the graph obtained from G by deleting
the edge e;, and let G be the graph obtained from G; by deleting the
edge e2. Then the graph G has a 2-factor excluding {e;, ez} if and only if
G contains a 2-factor.

Suppose that the graph G, contains no 2-factors. Then by Tutte’s k-
factor theorem, there exists a pair of disjoint subsets S and T of V(Gz),
such that

96,(S,T;2) + Y (2 - degg,_s(z)) - 2/5] > 2. (22)
zeT

Let H = G — (SUT), and let m; be the number of elements of {e;, ez}
having both ends in T’; let m; be the number of elements of {e,, ez} having
one end in T and the other in V/(H); let m3 be the number of elements of
{e1, ez} having both ends in H. Clearly,

my+ma+m3 <2 (23)
and
Z degg,_s(z) = Z degg_s(z) — 2my — ma. (24)
zeT zeT
By Lemms 4,
(e (S» T; 2)""2 (2—degGg—S(z)) < 9G, (S’ T; 2)+Z (2_deng—S(z)) +2
z€T z€T
and
96,(5,T;2)+ ) (2—degq,_s(x)) < 96(S,T;2)+ Y (2—dega_s(x)) +2.
z€T zeT
Then
96,(S, T;2)+ Z (2—degg,_s(z)) < 9(S,T;2)+ Z (2—degg_g(z)) +4.
z€T z€T
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Thus (22) yields

ac(S,T;2) + Y (2 — degg_s(2)) > 2|S| - 2
z€T

and so Lemma 2 implies that |S| < 1.

We also have
w(G—-(SUT))
ZQGa (Ss T; 2) —m3
> (degg,-s(z) —2) +2IS| +2-ms by (22)
zeT
=Y (dego_s(x) —2) — 2m1 —ma + 28| +2 —mg by (24)
zeT
>3 (degg_s(z) — 2) —m1 +2|$] by (23)
zeT
> (4-181-2) - mi+2|8| since 6(G) > 4
zeT
=|T|(2 - |S]) — m1 + 2|S]. (25)
Case 1: |S| =1.

Then by (25)
w(G—-(SUT)) 2T -m1+222,

since |T| > m;. Hence SUT is a vertex cut of G. Since G is 2-tough,
IT|+1=|SUT| > 2w(G—(SUT)) 2 2|T|-2m1 +4. So |T|-2m; +3<0
and since |T'| > m;, we obtain m; > 3 contradicting (23).

Case 2: |S|=0.

Then T' # . Otherwise, by (22) ¢c,(9,0;2) > 2, which yields that
{e1,e2} is a 2-edge cut of G, a contradiction to the fact that G is 4-
connected. By the definition of my, if m; = 1, then |T| > 2; if my = 2,
then |T'| > 3. Hence |T| > m; + 1. Thus by (25)

wG@-T)22T|-m 2 |T|+122,

and hence T is a vertex cut of G. Since G is 2-tough, |T| 2 2w(G -T) 2
4|T) — 2m; > 2|T| + 2, a contradiction. (]
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Proof of Theorem 7. Let G; be the graph obtained from G by deleting
the edge e;. Let G be the graph obtained from G, after the subdivision
of the edge ez = wjup (insert a new vertex u on ez). Then the graph G
contains a 2-factor containing e; and avoiding e; if and only if G5 contains
a 2-factor.

Suppose that G2 contains no 2-factor. Then by Tutte’s k-factor theo-
rem, there exists a pair of disjoint subsets S, and T of V(G3), such that

46,(52,T5;2) + ) (2 — degg, s, (z)) — 2|S2| > 2. (26)
z€Ty

Without loss of generality, we assume that S, is minimal with respect
to (26). By Lemma 1, u € S. Let S =8 = S5, 1 = T — {u} and
T = T;. Let m; be the number of ends of e; belonging to T; and mg =
[{u1u, ugu} N Eg,(S2, T3)|-

By Lemma 3,
9G, (SZ) T2; 2) + z: (2 - deng—Sz(z))
z€Ty
<96, (51, Ti;2) + ) (2 - degg, s, (z)) +2
z€T)

and by Lemma 4,

96, (51, T1; 2)+ ) _ (2—degg, _s,(2)) < 96(S,T; 2)+)  (2-degg_s(z))+2.

ze€T z€T
Thus
96,(S2, T2; 2)+ ), (2—degg,_s,(2)) < 9c(S,T; 2+ (2—degg_s(z))+4.
z€T zeT

Hence (26) yields

96(5,T;2) + ) (2 - degg_g(z)) > 2/8] -2
zeT

and so by Lemma 2, |S| < 1.

173



We also have,
Y (2 - degg,-s,(2)) = Y (2 - degg, (%)) + €61 (52, T2)

z€Ty z€T,

= Z: (2 - dega‘ (a:)) + eq, (S‘Z) T2)
zeT

= Z (2 - degg(x)) +m1 + €6,(52, T2)
zeT

< Z (2 — degg(z)) +m1 +ec(S,T) +ma
z€T

= z (2 - degc_s(:c)) + my + ma. (27)
z€T

At this point we must mention that ma < 1, since |S| <1 and u ¢ S.

Case 1: m;=0orl.

Then w(G - (SUT)) pd w(G2 - (Sz UT2)) - (1 —-my) — (1 - mg).
Therefore,

w(G-(SuT))
>46,(S2,T%;2) — (1 —my) — (1 — mg)

22So| +2 - D (2 - degg,_s,(z)) — (1 =m1) = (1 —my)

z€Ty
22|Sz| - ) . (2 — degg-s(2)) by (27)
z€T
>2)S| +[T|(4 - 18] - 2)
=2|S| + |T|(2 - |S))- (28)

If || = 1, then by (28), w(G - (SUT)) = 2+ |T|. Hence SUT is
a vertex cut of G, 1+ |T| = [SUT| = 2w(G - (SUT)) 22(2+1T|), 2
contradiction to the fact that G is 2-tough.

Thus we may assume that |S| = 0. Then by (28), w(G -T) 2 2|T|. If
|T| > 1, then T is a vertex cut of G, and |T| > 2w(G -T) 2 4|T, a contra-
diction. Hence we assume that T = @. By (26), w(G2) 2 ¢c,(9,9;2) > 2
and so by the construction of Gz, the edge e; is a cut edge of G, contra-
dicting the fact that G is 4-connected.

Case 2: m; = 2.
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By the definition of m;, |T'| > 2. We also have,

w(G—(SUT)) > qc,(S2, T2;2) — (1 —mg)
22|85 +2- E (2 - degg,—s,(2)) — (1 - my)

z€Ty
> 2|Sy| - ) (2 - degg_s(z)) - 1
zeT
> 2|S| +|T|(4- 8] -2) -1
=2|8|+|T|(2-8)) - L. (29)

Thus SUT is a vertex cut of G. But G is 2-tough, so [SUT| > 2w(G - (SU
T)) > 4|S| +2|T|(2 - S]) — 2 by (29); and hence 3|T| — 2 < (2|T| - 3)|9].
As|T| >2and |S| =0 or 1, 3]T| -2 < 2|T| - 3, a contradiction to |T| > 2.

This completes the proof of Theorem 7. |

We will next show that Theorems 5, 6 and 7 are in some sense best
possible.

We will first prove that the number of edges in Theorem 5 cannot be
increased. For this purpose we will describe a family of graphs G, which
are 2-tough, having edges e;, €3, ez such that there is not a 2-factor in G
containing all of them. We construct such a family of graphs as follows:
We start from a complete graph K, where n is a positive integer (n > 4)
and a copy of K;. Let {v;,vz,u3} C V(K,) and V(K;) = {v}. Choose
a vertex w € V(K,) — {v1,v2,u3}. Join v to vy, vs,vs,w. The resulting
graph G is clearly 2-tough. Let e; = vy1v2, e = vou3 and es = vgv;. We
claim that G does not possess a 2-factor containing e;, ez, 3. For the proof
of the above statement we work as follows. If there exists a 2-factor of G
containing e;, ez, e3, then G — {v;,v3,v3} has a 2-factor. But this does not
hold since the degree of v in G — {v1,v2,v3} is 1.

We will next show that the number of deleted edges in Theorem 6 cannot
be increased. For this purpose we will describe a family of graphs G, which
are 2-tough, having edges e;, ez, e3 such that G — {e;, ez, e3} does not
have a 2-factor. We construct such a family of graphs as follows: We
start from a complete graph Hp having n vertices, where n > 4; and three
copies of K>'’s, say Hy, Hp, H3. Let V(H2) = {v1,v2}, V(Hz) = {vs,v4},
E(Hz) = {e2}, E(Hs3) = {es} and let {u1,u2,u3,us} C V(Hp). We join
v1 to ¥y, v2 to uy, vs to uz and vy to us. Finally we join every vertex
of H; to all the vertices of Ho, Ha, Hs. The resulting graph G is clearly
2-tough. Furthermore, if we let €; to be the edge joining v, to u;, the
graph G = G — {ey, ez, e3} does not have a 2-factor. Let S = V(H;) and
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T = {v1,v2,v3,v4}. Then

46,(5,T;2) + Y _ (2 — degg, _s(2)) > 2|3
z€T

since gg, (5, T;2) =1, Z(Z —degg, -s(z)) =5 and |S| = 2.
z€T

Finally we will show by constructing again a family of graphs G, that
the number of involved edges in Theorem 7 cannot be increased. We con-
struct such a family of graphs G as follows: We start from two copies
of Ky's, say Hy, Ha; and a copy of K,, say H3, where n > 2. Let
V(H:) = {w,uz}, E(H) = {e1}, V(H2) = {v1,v2}, E(Hz) = {ez} and
let {wy, w2} C V(Hs). We join w; to v1, wa to vz and every vertex of H;
to all the vertices of H, and H3. The resulting graph G is clearly 2-tough
and furthermore if we let eg to be the edge joining wa to va, the graph
G — {e2,e3} will not have a 2-factor containing e;. For the proof of our
last statement, we work as follows: We subdivide the edge e; of the graph
G — {ez,e3}. Let G* be the resulting graph. Then G — {e2,e3} has a 2-
factor containing e; if and only if G* has a 2-factor. But we will prove
G* does not possess a 2-factor. Let S = V(H;), T = {v1,v2,v} where
V(G*) — V(G) = {v}. Then

46-(5,T;2) + D _ (2 — degg._s(z)) > 2|5
zeT

since gg-(S,T;2) =1, 2(2 — degg._g(z)) =5 and |S| = 2.
z€T
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