Algebraic Properties and Panconnectivity of Folded Hypercubes*

Meijie Ma^{a†} Jun-Ming Xu^b

^aDepartment of Mathematics, Zhejiang Normal University

Jinhua, 321004, China

^bDepartment of Mathematics, University of Science and Technology of China

Hefei, 230026, China

Abstract This paper considers the folded hypercube FQ_n , as an enhancement on the hypercube, and obtains some algebraic properties of FQ_n . Using these properties the authors show that for any two vertices x and y in FQ_n with distance d and any integers $h \in \{d, n+1-d\}$ and l with $h \le l \le 2^n - 1$, FQ_n contains an xy-path of length l and no xy-path of other length provided that l and h have the same parity.

Keywords: Path, Folded hypercube, Transitivity, Panconnectivity

MR Subject Classification: 05C38 90B10

1 Introduction

It is well-known that a topological structure for an interconnection network can be modelled by a connected graph G = (V, E) [14]. As a topology for an interconnection network of a multiprocessor system, the hypercube structure is a widely used and well-known interconnection model since it possesses many attractive properties [8, 14]. The n-dimensional hypercube Q_n is a graph with 2^n vertices, each vertex with a distinct binary string $x_1x_2\cdots x_n$ of length n on the set $\{0,1\}$, and two vertices being linked by an edge if and only if their strings differ in exactly one bit.

As a variant of the hypercube, the n-dimensional folded hypercube FQ_n , proposed first by El-Amawy and Latifi [3], is a graph obtained from

^{*}The work was supported by NNSF of China (No.10271114).

[†] Corresponding author: mameij@zjnu.cn

the hypercube Q_n by adding an edge between any two complementary vertices $x = (x_1 x_2 \cdots x_n)$ and $\bar{x} = (\bar{x}_1, \bar{x}_2, \cdots, \bar{x}_n)$, where $\bar{x}_i = 1 - x_i$. We call these added edges complementary edges, to distinguish them from the edges, called regular edges, in Q_n .

From definitions, Q_n is a proper spanning subgraph of FQ_n , and so FQ_n has 2^n vertices. It has been shown that FQ_n is (n+1)-regular (n+1)-connected, and has diameter $\lceil \frac{n}{2} \rceil$, about half the diameter of Q_n [3]. Thus, the folded hypercube FQ_n is an enhancement on the hypercube Q_n and has recently attracted many researchers' attention [2, 4, 5, 7, 10, 12]. In this paper, we further investigate other topological properties of FQ_n , transitivity and panconnectivity.

A graph G is called to be vertex-transitive if for any $x, y \in V(G)$ there is some $\sigma \in \operatorname{Aut}(G)$, the automorphism group of G, such that $\sigma(x) = y$; and edge-transitive if for any $xy, uv \in E(G)$ there is some $\phi \in \operatorname{Aut}(G)$ such that $\{\phi(x), \phi(y)\} = \{u, v\}$. It has been known that Q_n is both vertex-transitive and edge-transitive [1]. However, the transitivity of FQ_n has not been proved straightforwardly in the literature. In this paper, we will study some algebraic properties of FQ_n . Using these properties, we give another proof of a known result that FQ_n is vertex and edge-transitive.

The proofs of our results are in Section 2 and Section3, respectively.

2 Algebraic Properties

In this section, we study some algebraic properties of FQ_n , and as applications, show that FQ_n is vertex and edge-transitive.

The following notations will be used in the proofs of our main results. The symbol H(x,y) denotes the Hamming distance between two vertices x and y in Q_n , that is, the number of different bits in the corresponding strings of both vertices. Clearly, $H(x,y) = d_{Q_n}(x,y)$. It is also clear that

 $d_{FQ_n}(x,y) = i$ if and only if H(x,y) = i or n+1-i. Let x = 0u and y = 1v be two vertices in FQ_n . It is easy to count that

$$H(0u, 1\bar{v}) = H(0u, 1u) + H(1u, 1\bar{v})$$

$$= 1 + [(n-1) - H(1u, 1v)]$$

$$= n + 1 - H(0u, 1v).$$
(1)

Let Γ be a non-trivial finite group, S be a non-empty subset of Γ without the identity of Γ and with $S^{-1} = S$. The Cayley graph $C_{\Gamma}(S)$ of Γ with respect to S is defined as follows.

$$V=\Gamma;\quad (x,y)\in E\Leftrightarrow x^{-1}y\in S, \text{ for any } x,y\in \Gamma.$$

It has been proved that any Cayley graph is vertex-transitive (see, for example, Theorem 2.2.15 in [14]).

As we have known that the hypercube Q_n is the Cayley graph $C_{Z_2^n}(S)$, where Z_2 denotes the additive group of residue classes modulo 2 on the set $\{0,1\}$, $Z_2^n = Z_2 \times Z_2 \times \cdots \times Z_2$, and $S = \{(10 \cdots 0), (010 \cdots 0), \cdots, (0 \cdots 010 \cdots 0), \cdots, (0 \cdots 01)\}$ (see, for example, Example 2 in p89 in [14]). The following theorem shows that FQ_n is also a Cayley graph.

Theorem 2.1 The folded hypercube $FQ_n \cong C_{Z_n}(S \cup \{(11 \cdots 1)\})$.

Proof Clearly, $V(FQ_n) = \mathbb{Z}_2^n$. Define a natural mapping

$$\varphi: V(FQ_n) \to Z_2^n$$

$$x \mapsto \varphi(x) = x.$$

Let x and y be any two vertices in FQ_n . Since $(x,y) \in E(FQ_n)$ if and only if H(x,y)=1 or n. Note that $x^{-1}=x$ for any $x \in Z_2^n$. It follows that H(x,y)=1 if and only if $x^{-1}y \in S$; and H(x,y)=n if and only if $x^{-1}y=(11\cdots 1)$, whereby $(x,y) \in E(C_{Z_2^n}(S \cup \{(11\cdots 1)\}))$. Thus, φ preserves the adjacency of vertices, which implies that φ is an isomorphism between FQ_n and $C_{Z_2^n}(S \cup \{(11\cdots 1)\})$, and so $FQ_n \cong C_{Z_2^n}(S \cup \{(11\cdots 1)\})$.

Corollary 2.2 The folded hypercube FQ_n is vertex-transitive.

For convenience, we express FQ_n as $FQ_n = L \otimes R$, where L and R are the two (n-1)-dimensional subcubes of Q_n induced by the vertices with the leftmost bit is 0 and 1, respectively. A vertex in L will be denoted by 0u and a vertex in R denoted by 1v, where u and v are any two vertices in Q_{n-1} . Between L and R, apart from the regular edges, there exists a complementary edge joining 0u and $1\bar{u} \in R$ for any $0u \in L$.

Theorem 2.3 Let σ be a mapping from $V(FQ_n)$ to itself defined by

$$\begin{cases} \sigma(0u) = 0u \\ \sigma(1u) = 1\bar{u} \end{cases} \text{ for any } u \in V(Q_{n-1}).$$
 (2)

Then $\sigma \in \operatorname{Aut}(FQ_n)$. Moreover, for an edge (x,y) between L and R in FQ_n , $(\sigma(x), \sigma(y))$ is complementary if and only if (x,y) is regular.

Proof Clearly, σ is a permutation on $V(FQ_n)$. To show $\sigma \in \text{Aut}(FQ_n)$, it is sufficient to show that σ preserves adjacency of vertices in FQ_n , that is, to show that any pair of vertices x and y in FQ_n satisfies the following condition.

$$(x,y) \in E(FQ_n) \Leftrightarrow (\sigma(x),\sigma(y)) \in E(FQ_n).$$
 (3)

Let $FQ_n = L \otimes R$, u and v be any two distinct vertices in Q_{n-1} . Because of vertex-transitivity of FQ_n by Theorem 2.1, without loss of generality, suppose $x = 0u \in L$. We consider two cases according to the location of y.

Case 1 $y \in L$. In this case, let y = 0v. Since σ is the identical permutation on $L \cong Q_{n-1}$, it is clear that

$$(0u,0v) \in E(FQ_n) \Leftrightarrow (\sigma(0u),\sigma(0v)) = (0u,0v) \in E(FQ_n).$$

Case 2 $y \in R$. In this case, let y = 1v. By the definition of FQ_n , $(0u, 1v) \in E(FQ_n) \Leftrightarrow v = u$ or \bar{u} . Since $(0u, 1u), (0u, 1\bar{u}) \in E(FQ_n)$ by the definition of FQ_n , it follows that

$$\begin{array}{ll} (0u,1u)\in E(FQ_n)\Leftrightarrow (\sigma(0u),\sigma(1u))=(0u,1\bar{u})\in E(FQ_n) & \text{if } v=u\\ (0u,1\bar{u})\in E(FQ_n)\Leftrightarrow (\sigma(0u),\sigma(1\bar{u}))=(0u,1u)\in E(FQ_n) & \text{if } v=\bar{u}. \end{array}$$

From the above arguments, we have shown $\sigma \in \operatorname{Aut}(FQ_n)$.

We now show the remaining part of the theorem. Without loss of generality, we may suppose x = 0u since FQ_n is vertex-transitive. By (2), we have $\sigma(x) = \sigma(0u) = 0u$.

Suppose that (x, y) is a regular edge between L and R in FQ_n . Then y = 1u and $\sigma(y) = \sigma(1u) = 1\bar{u}$ by (2). By (3) $(0u, 1\bar{u}) \in E(FQ_n)$, which is a complementary edge.

Conversely, suppose that (x, y) is a complementary edge in FQ_n . Then $y = 1\bar{u}$ and $\sigma(1\bar{u}) = 1u$ by (2), and $(0u, 1u) \in E(FQ_n)$ by (3), which is a regular edge.

The lemma follows.

Theorem 2.4 Aut (Q_n) is a proper subgroup of Aut (FQ_n) . Moreover, for any $\sigma \in \text{Aut}(Q_n)$, (x, y) is a complementary edge if and only if $(\sigma(x), \sigma(y))$ is also a complementary edge in FQ_n .

Proof For any element $\sigma \in \operatorname{Aut}(Q_n)$, we will prove $\sigma \in \operatorname{Aut}(FQ_n)$. It is clear that σ is a permutation on $V(FQ_n)$ since Q_n is a spanning subgraph of FQ_n . We only need to show that σ preserves adjacency of vertices in FQ_n , that is, to check that (3) holds for any pair of vertices x and y in FQ_n . In fact, since

$$H(x,y)=d_{Q_n}(x,y)=d_{Q_n}(\sigma(x),\sigma(y))=H(\sigma(x),\sigma(y))$$

and

$$(x,y) \in E(FQ_n) \Leftrightarrow H(x,y) = 1 \text{ or } n,$$

we have

$$(x,y) \in E(FQ_n) \Leftrightarrow H(x,y) = 1 \text{ or } n$$

 $\Leftrightarrow H(\sigma(x),\sigma(y)) = 1 \text{ or } n$
 $\Leftrightarrow (\sigma(x),\sigma(y)) \in E(FQ_n).$

Thus, $\operatorname{Aut}(Q_n) \subseteq \operatorname{Aut}(FQ_n)$. It is clear that the automorphism σ defined by (2) is not in $\operatorname{Aut}(Q_n)$ by Theorem 2.3. Therefore, $\operatorname{Aut}(Q_n)$ is a proper subgraph of $\operatorname{Aut}(FQ_n)$.

By the definition of FQ_n , for any $\sigma \in \operatorname{Aut}(Q_n)$, it is clear that (x,y) is a complementary edge in FQ_n if and only if $n = H(x,y) = H(\sigma(x),\sigma(y))$, if and only if $\sigma(x,y) = (\sigma(x),\sigma(y))$ is a complementary edge in FQ_n .

The theorem follows.

Corollary 2.5 The folded hypercube FQ_n is edge-transitive.

Proof For any two edges (x,y) and (x',y') in FQ_n , we will show there is an element $\sigma \in \operatorname{Aut}(FQ_n)$ such that $\{\sigma(x), \sigma(y)\} = \{x', y'\}$. Since FQ_n is vertex-transitive, we may assume x = x'. We only need to find $\sigma \in \operatorname{Aut}(FQ_n)$ that takes y to y' and fixes x. Since for any two vertices z and t in FQ_n , $(z,t) \in E(FQ_n)$ if and only if H(z,t) = 1 or n. Without loss of generality, we may suppose that H(x,y) = 1, that is, (x,y) is a regular edge in FQ_n .

If H(x, y') = 1, then (x, y') is a regular edge. Since Q_n is edge-transitive, there is an element $\sigma \in \operatorname{Aut}(Q_n)$ such that $\{\sigma(x), \sigma(y)\} = \{x, y'\}$. By Theorem 2.4, $\sigma \in \operatorname{Aut}(FQ_n)$, which satisfies our requirement.

If H(x,y')=n, then $y'=\bar{x}$ and (x,y') is a complementary edge in FQ_n . Without loss of generality, we may suppose that x=0u. Then $y'=1\bar{u}$. Let z=1u. Then the automorphism σ defined in (2) can take z to y' and fixes x. If y=z, then the σ satisfies our requirement. If $y\neq z$, then there is $\phi\in {\rm Aut}\,(Q_n)\subset {\rm Aut}\,(FQ_n)$ such that ϕ takes y to z and fixes x. Thus, $\sigma\phi(y)=\sigma(\phi(y))=\sigma(z)=y'$ and $\sigma\phi(x)=\sigma(\phi(x))=\sigma(x)=x$, and so $\sigma\phi$ satisfies our requirement.

ı

The corollary follows.

3 Panconnectivity

In this section, we investigate the panconnectivity of FQ_n . The proof of the main theorem in this section is strongly dependent on the following lemmas.

Lemma 3.1 [6] If $n \geq 2$, then Q_n is bipanconnected, that is, for any two vertices x and y in Q_n there exists an xy-path of length l with $H(x,y) \leq l \leq 2^n - 1$ such that l and H(x,y) have the same parity.

Lemma 3.2 [13] FQ_n is a bipartite graph if and only if n is odd. Moreover, if n is even, then the length of the shortest odd cycle in FQ_n is n+1.

Theorem 3.3 For any two distinct vertices x and y in FQ_n with distance d, FQ_n contains an xy-path of length l with $h \le l \le 2^n - 1$ such that l and h have the same parity, where $h \in \{d, n+1-d\}$.

Proof If n=1, the theorem is true clearly since $FQ_1=K_2$. Assume $n\geq 2$ below. Without loss of generality, we may assume x=0u,y=1v since $d\geq 1$ and FQ_n is vertex-transitive by Corollary 2.2. We first deduce two conclusions from Lemma 3.2 and Theorem 2.3.

- (a) By Lemma 3.1, Q_n contains an xy-path P of length l with $H(x,y) \le l \le 2^n 1$ such that l and H(x,y) have the same parity. Since Q_n is a spanning subgraph of FQ_n , P is an xy-path of length l in FQ_n .
- (b) Consider the vertex $z=1\bar{v}$. By Lemma 3.1, Q_n contains an xz-path R of length l' with $H(x,z) \leq l' \leq 2^n-1$ such that l' and H(x,z) have the same parity. Since H(x,z)=n+1-H(x,y) by (1), l' and n+1-H(x,y) have the same parity. Let $\sigma \in \operatorname{Aut}(FQ_n)$ defined in (2). Then $P'=\sigma(R)$ is an xy-path of length l' with $n+1-H(x,y) \leq l' \leq 2^n-1$ such that l' and n+1-H(x,y) have the same parity.

To prove the theorem, it is sufficient to check that H(x,y)=d or n+1-d. In fact, it is clear that if $H(x,y)\leq \left\lceil\frac{n}{2}\right\rceil$ then d=H(x,y); if $H(x,y)>\left\lceil\frac{n}{2}\right\rceil$ then H(x,y)=n-d+1. The theorem is proved.

Corollary 3.4 If n is odd, then FQ_n is bipanconnected.

Proof If n is odd, then FQ_n is a bipartite graph by Lemma 3.2. Let x and y be any two vertices in FQ_n with distance d. Since n is odd, the condition that l and n+1-d have the same parity implies that l and d have the same parity. Note that $d \le n+1-d$ since $d \le \left\lceil \frac{n}{2} \right\rceil$. By Theorem 3.3, FQ_n contains an xy-path of length l with $d \le l \le 2^n - 1$ such that l and d have the same parity, and so FQ_n is bipanconnected.

Corollary 3.5 If n is even then for any two different vertices x and y with $d_{FQ_n}(x,y)=d$ in FQ_n , there is an xy-path of length l for each l satisfying $n-d+1 \le l \le 2^n-1$ and there is also an xy-path of length l' for each l' satisfying $d \le l' \le n-d$ such that l' and d have the same parity; there is no xy-path of other length.

Proof If n is even, then d and n-d+1 have different parity. Thus, for any integer l, either l and d have the same parity, or l and n-d+1

have the same parity. Since $d \leq \frac{n}{2}$, d < n - d + 1. By Theorem 3.3, there is an xy-path of length l with $n - d + 1 \leq l \leq 2^n - 1$ in FQ_n .

Since the length of the shortest odd cycle in FQ_n is n+1 by Lemma 3.2, FQ_n contains no xy-path of length l with $d < l \le n-d$ if l and d have different parity. In other words, the length l of the second shortest path between x and y with distance d is certainly n-d+1 if l and d have different parity. It follows from Theorem 3.3 that there is an xy-path of length l' with $d \le l' \le n-d$ provided l' and d have the same parity.

The corollary is proved.

A graph is called to be hamiltonian connected if there is a hamiltonian path between any two vertices. It is easy to see that any bipartite graph with at least three vertices is not hamiltonian connected. For this reason, Simmons [9] introduces the concept of hamiltonian laceable for hamiltonian bipartite graphs. A hamiltonian bipartite graph is hamiltonian laceable if there is a hamiltonian path between any two vertices in different bipartite sets. It is clear that if a bipartite graph is bipanconnected then it is certainly hamiltonian laceable. It follows from Corollary 3.4 and Corollary 3.5 that the following result is true clearly.

Corollary 3.6 FQ_n is hamiltonian laceable if n is odd, and hamiltonian connected if n is even.

References

- [1] A.E. Brower, A.M. Cohen and A. Neumaier, Distance Regular Graphs, Springer, Berlin, 1989.
- [2] D. R. Duh, G. H. Chen and J. F. Fang, Algorithms and properties of a new two-level network with folded hypercubes as basic modules, *IEEE Trans. Parallel and Distributed Systems*, 6(7) (1995), 714-723.
- [3] A. El-Amawy and S. Latifi, Properties and performance of folded hypercubes, *IEEE Trans. Parallel and Distrib. Syst.*, 2 (1991), 31-42.
- [4] X. Hou, M. Xu and J.-M. Xu, Forwarding indices of folded n-cubes, Discrete Applied Mathematics, 145 (2005), 490-492.
- [5] C. N. Lai, G. H. Chen and D. R. Duh, Constructing one-to-many disjoint paths in folded hypercubes, *IEEE Trans. Comput.*, 51 (1) (2002), 33-45.
- [6] L. K. Li, C. H. Tsai, J. M. Tan and L. H. Hsu, Bipanconnectivity and edge-fault-tolerant bipancyclicity of hypercubes, *Information Process*ing Letters, 87 (2003), 107-110.

- [7] S. C. Liaw and G. J. Chang, Generalized diameters and Rabin numbers of networks, *Journal of Combinatorial Optimization*, 2 (1998), 371-384.
- [8] Y. Saad and M. H. Schultz, Topological properties of hypercubes, *IEEE Trans. Comput.*, **37**(7) (1988), 867-872.
- [9] G. Simmons, Almost all n-dimensional rectangular lattices are hamilton laceable. Congr. Numer., 21 (1978), 103-108.
- [10] E. Simó and J. L. A. Yebra, The vulnerability of the diameter of folded n-cubes, Discrete Math., 174 (1997), 317-322.
- [11] Z. M. Song and Y. S. Qin, A new sufficient condition for panconnected graphs, Ars Combin., 34 (1992), 161-166.
- [12] D. Wang, Embedding hamiltonian cycles into folded hypercubes with faulty links, J. Parallel and Distrib. Comput., 61 (2001), 545-564.
- [13] J. M. Xu and M. Ma, Cycles in folded hypercubes, Applied Mathematics Letters, 19 (2006), 140-145.
- [14] Junming Xu, Topological Structure and Analysis of Interconnection Networks, Kluwer Academic Publishers, Dordrecht/Boston/London, 2001.