ON THE MAX-TYPE EQUATION gz,,; = max {An :1:,,_1}
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Abstract
It is shown that every well-defined solution to the second-order differ-
ence equation in the title, when (An)ne , is a two-periodic sequence such
that max{Ao, A1} > 0, is eventually periodic with period two. In the case
max{Ao, A1} < 0 it is shown the existence of unbounded solutions, by
describing all solutions in terms of Ao, A1,z_; and zo.

1. INTRODUCTION

Studying max-type difference equations, attracted some attention recently,
see, e.g., [1]-[11], and the references therein. This type of difference equations
stem from certain models in automatic control theory (see [3] and [4)).

The study of max-type equations of the following form

P zr2 e
2 = max {B}P’,B,‘,”%,B,ﬂ”—?;—”—,...,B,(,")%}, neNo, (1)
n—-q n—qz n=Qk
where k € N, p;, g; are natural numbers such that p; <pz < -+ <pi, q1 < g2 <
oo K Qky 15,8 €E Ryyi=1,...,k and B,(.j), Jj=0,1,...,k, are real sequences,

was proposed by the third author of this note in several talks (see, e.g., [5]).

Definition A sequence (zn)32 _; is said to be eventually periodic with period

p if there is no € {-k,...,-1,0,1,...} such that z,4p, = z, for all n > ng. If

no = —k, then we say that the sequence (z,)32_, is periodic with period p.
One of the problems suggested by S. Stevié was the following:

Research Problem. Investigate the behavior of solutions to the difference

equation

= )zn-—m} , n€N, (2)

Tnel = Max {
n—k
in terms of the sequence (Ap)nen, and k,m € Ny.

In (1] we showed that, when k = 0, m = 2 and A, = A, n € N, every
well-defined solution to Eq. (2) is eventually periodic with period three. The
periodicity in this case is not so surprising. Namely, note that by using the
change z, = \/|A|yn, Eq. (2) in this case is reduced to the case A = +1, which
is a particular case of the following difference equation:

Tn = max{(_l)‘" wﬁl_pl’ R ] (—I)kaftk—pk}’ (3)

wherep; €N, 1<p) <--- <pi, 1 € {0,1} and §; € {—1,1},i=1,...,k.
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This equation, although looks complicating, is & particular case of a large
(folklore) class of equations whose solutions posses a simple, but interesting
property mentioned in the following proposition.

Proposition 1. Assume f:AF = A, ACR, k € N, is such that for each
vector ¥ € A"_the set {fU1(#) : j € N} is a subset of a finite set S(7) C R, where
for each j, fUl(¥) is defined. Then every solution to the difference equation

Zn = f(Tn-1,---1Zn-k), NEN,
with (Zk,...,2-1) € A¥ is eventually periodic.
Corollary 1. Every well-defined solution of Eq. (3) is eventually periodic.

Proof. Assume z_p,,...,Z_1 are initial values of a well-defined solution of
Eq. (3). Since the functions g+ (z) = £z and hx(z) = +z1~! are odd involutions
it is easy to see that the values of the sequence ()7, belong to the set

Sy = {xz_py--s tz_1,%1/z_p,,..., £1/21}.

Applying Proposition 1 the corollary follows. O
Here, among others, we show that every well-defined solution to the equation

T4l = MaX {%ﬁ,zn_l} , m€Ny, (4)

n

where A, is two-periodic with max{Ao, 41} > 0, is eventually periodic with
period two. In the other cases we describe the behavior of solutions of Eq. 4).

Remark 1. Note that if 49 = A; = 0, then Eq. (4) becomes Tn41 = Tn-1.
Hence, in the sequel we consider the case when at least one of Ap and A; is not

zero.
In the rest of the paper we frequently use the following simple lemma.

Lemma 1. Assume that (£,)%%_, s a solution of Eq. (4) and there is ko €
No U {—1} such that Tk, = Tio+2 0nd Thosl = Tio+3. Then this solution is
eventually periodic with period two.

Proof. By the method of induction we prove that
Tky = Tho+am 8Nd  Thosl = Thot2mt1, MEN. (5)

For m = 1 this is clear. Assume (5) holds for 1 < n < mo. We may assume ko
is odd (case when kg is even, is dual). Then, by the hypothesis we have

Tho42mo+2 =M8X{ A0/ Tio42mo+1 Tho+2mo } = MX{ A0/ Tko+1, Tho } = Tho+2 = Tho-
From this and the inductive hypothesis we have

Tko+2mo+3 = Max{A/ Thko+2mo+2s Tho+2mo+1} = MaX{A1/Thy+2, Tho1}
= zko-’-a = xko+l$

finishing the inductive proof of the result. O
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Lemma 2. Assume that for a solution (z,)3%_, of Eq. (4), there is k; €
No U {-1} such that
g, >0 and g4y >0. (6)

Then z, > 0 forn > k.

Proof. The lemma is also proved by induction. For n = k; it is contained
in (6). Assume we have proved that z, > 0 for k; < n < m;. Then Tmi41 =
max{Am,/Tm;,ZTmy~1} = Tm,-1 > 0, from which the lemma follows. O

Lemma 3. Assume that a solution (zn)32_; of Eq. (4) is eventually positive.
Then it is eventually periodic with period two.

Proof. Assume that k) € NoU{—1} is the smallest index such that (6) holds.
Then from Eq. (4) we have that

Tp41Tn = max{An,TnZn-1}, n>k +1. )
Using (7) twice we obtain

Tky+3Tky +2 =MEX { Ak, +2) Thy +2Tk1+1} = maX { A, 42, max {Ak, 41, , 412, }}
=max {Ao, A1, Tk, 4121, } - ®

Now we prove by induction that
ZTn4+1Tn = Max {AOr Alyzk1+l$k3} y N2k +2 (9)

For n = k; +2 this is (8). Assume the statement was proved for k; +2 < n < n,.
Then from the inductive hypothesis and (8) we have

Tny+2Tny+1 = MaX {Ana-l-l’ znz+lxnz} = max {Anz-{-la max {Angv xnaxna—l}}
= max {AO) Al’ znaxﬂ:—l} = max {AO) Ala Tk +1Tk, } ’

as claimed. From (9) it follows that (z,)32._, is an eventually periodic solution
of Eq. (4) with period two, finishing the proof of the lemma. O

Lemma 4. Assume that a solution (2,)2._; of Eq. (4) is eventually negative.
Then it is eventually periodic with period two.

Proof. Assume k; € No U {—1} is the smallest index such that z, < 0, for
n 2 k. Then by the change x, = —yn, Eq. (4) is transformed into the equation

Yn+1 = min{An/Yn, ¥n-1},
where y, > 0 for n > kp. From this we have

Thy+3Tkp+2 = min { Ay, 42, Tky+2Tky+1} = Min {Ak;+2, min {Ak2+h Tha+1Tky }}
= min {Ag, A1, Thy+1%Tx, } -

This along with the induction implies Tp41%, = min {Ao, A1, Zky 412k, ), 1 >
k3 + 2, from which the result easily follows. O
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2. MAIN RESULTS

In this section we prove our main results in this paper.

Theorem 1. Assume that one of the numbers Ag or A, is equal to zero. Then
every well-defined solution of Eq. (4) is eventually periodic with period two.

Proof. First assume Ag = 0. Then we have
Tons1 = max{Ao/Tzn,Tan—1} =Z2n-1, NEN

Further we have 2o = max{A;/z;,zo}. If o > %}, then z3 = zp. From this,
since z; = z_, and by using Lemma 1 the result follows in this case.

If 2o < —‘:%, then z = -‘}l. Since z3 = z; we have =, = max{A;/z3,z2} =
max{A;/z1,z2} = z2. By Lemma 1 the result follows in this case.

The case A; = 0 can be treated similarly, hence we omit its proof. O

Theorem 2. Assume Ap # 0 # A, and, Ao > 0 or Ay > 0. Then every
well-defined solution of Eq. (4) is eventually periodic with period two.

Proof. Since there are four independent parameters Ao, A, z—; and 2o,
there are twelve cases to be considered, with respect to their signs.

Cases (i)-(iii) Assume z_, > 0 and zo > 0. Then by Lemma 2 we have
z, > 0 for n > —1, so by Lemma 3 such solutions are periodic with period two.

Case (iv) Assume Ag > 0, A; >0, z_; < 0 and 2o < 0. Then by induction
we see that z,, < 0, n > —1. Thus the result in this case follows from Lemma 4.

Case (v) Assume Ap > 0, A; > 0, z_; < 0 and zo > 0. We have z; =
max{Ao/Zo, -1} = Ao/zo > 0. Hence this case is reduced to a case in (i)-(iii).

Case (vi) Assume that Ap > 0, A4, > 0,2_; >0 and 9 < 0. We have
z) = max{Ao/z¢,z-1} = -1 > 0. Hence the case is reduced to Case (v).

Case (vii) Assume that A9 > 0, 4; < 0, z_; > 0 and zp < 0. We have
)= ma.x{Ao/a:o,a:_l} =z_; > 0. Further we have z2 = max{A1/z1,zo} <0.

If 2o > %ll, then T, = 7o, and from Lemma 1 the result follows.

If 2o < g‘-ll, then z; = 4}}. Hence z3 = max{A¢/z2,z1} = 7, and x4 =
max{A; /T3, z2} = max{A1/z;,z3} = z2, from which again by Lemma 1 the
result follows in the case.

Case (viii) Assume Ag > 0, A} < 0, 2_; < 0 and 7o > 0. Then z; =
max{Ao/zo, -1} = Ao/zo > 0, so this case is reduced to one in cases (i)-(iii).

Case (iz) Assume that Ap > 0, A; <0, z-; <0 and 2o < 0. Then z; =
max{Ag/To,2-1} < 0 and z2 = max{A;/z1,20} = A;/z; > 0. By using the
change y, = Tp42 this case is reduced to Case (viii).

Case (z) Assume that A9 < 0, 4; > 0,7z, <0 and zg > 0. Then z; =
max{Ao/zg,z-1} < 0.

Now if %,’,1 < z_y, then z; = z_;. From this and since z; = max{A4;/z1,zo0} =
Zo, by Lemma 1 the result follows in this case.

If fg > z_y, then ) = %3. Of course, zo = Zo, and consequently z3
max{Ao/z2, 21} = max{Ao/zo, 21} = 1, from which the result follows.

Case (zi) Assume Ap < 0, A; > 0, z_; > 0 and 2o < 0. Then z;
max{Ao/Zo,z-1} > 0. The change z, = Z+1 reduces the case to Case (viii).

il
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Case (rii) Assume that Ag < 0, A; >0, z_; <0 and z¢ < 0. Then
71 = max{Ao/%o,z_1} = Ao/zo > 0 and z3 = max{A,/z1,70} = A1/, >0,

so that this case is reduced to one of the cases in (i)-(iii). O
From Remark 1 and Theorems 1 and 2 we obtain the following result:

Theorem 3. Assume that (Ap)neN, 18 @ two-periodic sequence such that Ag
and A, are not both negative. Then every well-defined solution of Eq. (4) is
eventually periodic with period two.

Case Ay < 0 and A; < 0. Now we describe the behavior of solutions of Eq.
(4) when Ag < 0 and A; < 0, in terms of Ao, 4;, z_; and 9. In many cases
we also obtain that solutions of Eq. (4) are eventually periodic with period two,
however there are some cases in which solutions are not periodic.

Case (a) Assume Ag < 0, A; <0, z_; > 0 and zp > 0. Then by Lemma
2, we have that z, > 0 for n > —1, so by Lemma 3 such solutions are periodic

with period two.

Case (b) Assume that Ap < 0, A; < 0, z_; < 0 and 25 > 0. Then z; =
max{Ao/zo,z-1} < 0. There are two cases to be considered.

If £2 <z, then z, = z_;. We have z3 = max{A;/x;, 7o} > 0.

Now, there are two subcases. If o > %:-, then z2 = ¢ and by Lemma 1 it
follows that these solutions are periodic with period two.

If zp < :4, then 7, = -;3;'-. Further we have z3 = meax{A¢/z2,7:} =

max{Ao/AlzI:xl}.
If 3 = x;, which is equivalent with Ap < 4; < 0, then

T4 = max{A:/z3,z2} = max{A;/z1, 72} = z,

so that these solutions are also eventually periodic with period two.
Ifzz = %g-, which is equivalent to A; < Ap < 0, we obtain

Ty = max{Al/:cg,:z:g} = ma.x{(Al:zzg)/Ao, xz} = (Almg)/Ao = A?/(Aoz..l)
and
x5 = max{Ao/z4,z3} = max{(Aozs)/A1,z3} = (Aoz3)/ A1 = (A3z_,)/Al.

By induction we obtain that

A\" 4 Ao\"
Top = (A—(l)) :t__c; and Ton4l = (A_(:) T_1,n€ No. (10)

If %‘)‘ > z_y, then z; = %ﬂ. If z; = zo then z3 = max{Ap/z2, 71} =
max{Ag/zo, 2} = 1. So this solution is eventually periodic with period two.
If 2y = %‘-, then z3 = max{Ao/z2,7:} = max{Ao/A1z1,2,}.

If z3 = z,, which is equivalent with 49 < 4; <0, then

z4 = max{A,/z3, 22} = max{A;/z1,z2} = 75,
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from which two periodicity follows.
Ifz3= -’fzﬁ, which is equivalent with 4; < Ap < 0, then

Ty = max{Al/:ca,:cg} = ma.x{(Alxg)/Ao, xz} = (Alzz)/Ao

and
z5 = max{Ao/z4, 23} = max{(Aoz3)/A1,23} = (Aoz3)/ A1

By induction we obtain
Ton = (A1/Ao0)"z0 and  ZTony1 = (Ao/A1)"Ao/zo,n € No. (11)

Case (c) Assume Ag < 0, A; < 0andzo < 0. Thenz; = max{Ao/z0,z-1} >
0. Hence, no matter which sign has z_;, this case is reduced to Case (b), more
precisely, if we use the change zn, = Zn41 all the results in Case (b) hold for z,.

Remark 2. Note that in the cases when all the solutions of Eq. (4) are not
periodic (see Case (b)), we have explicit formulae (10) and (11) from which the
behavior of these solutions easily follows. For example, if Ag # A; from (10)
and (11) the existence of unbounded solutions follows.
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