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Abstract. This paper deals with two types of graph labelings
namely, super (a, d)-edge antimagic total labeling and (a, d)-vertex
antimagic total labeling. We provide super (a, d)-edge antimagic to-
tal labeling for disjoint unions of Harary graphs and disjoint unions
of cycles. We also provide (a,d)-vertex antimagic total labeling
for disjoint unions of Harary graphs, disjoint unions of cycles, sun
graphs and disjoint unions of sun graphs.
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1 Introduction

All graphs in this paper are finite, simple and undirected. The graph G
has the vertex-set V(G) and edge-set E(G). A general reference for graph-
theoretic ideas can be seen in [13]. A labeling (or valuation) of a graph is
a map that carries graph elements to numbers (usually to positive or non-
negative integers). In this paper the domain will be the set of all vertices
and edges and such a labeling is called a total labeling. Some labelings use
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the vertex-set only, or the edge-set only, and we shall call them vertez-
labelings and edge-labelings respectively. Other domains are possible. The
most complete recent survey of graph labelings can be seen in [8]. There
are many types of graph labelings, for example harmonius, cordial, grace-
ful and antimagic. In this paper, we focus on two types of labelings called
(a, d)-edge antimagic total labeling and (g, d)-vertex antimagic total label-
ing. A graph G is called (a,d)-edge antimagic total ((a,d)-EAT) if there
exist integers a > 0, d > 0 and a bijection A: VUE — {1,2,...,[V| + |E[}
such that the elements of the set W = {w(zy) : zy € E(G)} form an
arithmetic progression starting from a with common difference d, where
w(zy) = Mz)+M(y)+X(zy). W is called the set of edge-weights of the graph
G. Additionally, if A(V) = {1,2,...,|V|} then G is super (a,d)-EAT. Simi-
larly, a graph G is called (a,d)-vertez antimagic total ((a, d)-VAT) if there
exist integers a > 0, d > 0 and a bijection A : VUE — {1,2,...,[V| + |E|}
such that the elements of the set W = {w(z) : z € V(G)} form an
arithmetic progression starting from a with common difference d, where
w(z) = Mz)+ ¥ Alzy) where the sum is taken over all vertices y
zy€E(G)

which are adjacent to z. In this case, W is called the set of vertez-weights
of the graph G. In particular, an (a, d)-VAT labeling A of graph G is super
if A(V) ={1,2,...,|V]}.

Let G be a regular graph. Let A : VU E — {1,2,---,|V| + |E|} be an
(a, d)-vertex antimagic total labeling for G. Define a new labeling:

NM:VUE = {1,2,---,|V| +|El}

on G as follows:

N(z) = |V|+|E|+1- Mz);z € V(G)
N(zy) = [V| + |E| + 1 - Mzy); zy € E(G).

In [1] it is proved that X is also an (o', d)-vertex antimagic total labeling
for some a’. This new labeling ) is called the dual of the labeling A. The
same is true in the case of and (a, d)-edge antimagic total labeling. A
number of classification studies on super (a, d)-EAT labeling (resp. (a, d)-
EAT) for connected graphs has been extensively investigated. For instance,
in 3], Baca et al. showed that a wheel W), has a super (a,d)-EAT labeling
if and only if d = 1 and n = 1(mod 4). A.A.G. Ngurah and E.T. Baskoro
in [5] proved that every Petersen graph P(n,m),n 23,1 <m < 3, hasa
super (4n + 2,1)-EAT labeling.

For t > 2 and n > 4, a Harary graph C} is a graph constructed from a
cycle C,, by joining any two vertices at distance ¢ in Ch.
Super antimagic labeling of Harary graphs have been studied by Baskoro
et al. [9) . Some of their results are presented as follows:
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Theorem 1. Forn > 5, k > 2 and t > 2, G ~ kC’ admits a super
(8nk + 3, 1)-vertez-antimagic total labeling, provided p # 2t.

Theorem 2. Forn > 4, k > 2 and t > 2, G = kC! admits a super
(2nk + 2, 1)-edge-antimagic total labeling.

Super (a,d) antimagic labeling of union of isomorphic copies of cycles were
studied by Dafik et al. [6]. Some of their results are presented below.

Theorem 3. The graph mCl, has a super (2mn+2, 1)-edge antimagic total
labeling for everym > 2 and n > 3.

Theorem 4. The graph mC,, has a super (3&;”—5, 2)-edge antimagic total
labeling if and only if m and n are odd, m,n > 3.

For more results concerning antimagic total labeling, see for instance [5,
11] and a nice survey paper by Gallian [8].

Throughout the paper we will denote |V(G)| by p and |E(G)| by ¢. In
the following section we present our results concerning super (a,1)-edge
antimagic total labeling of disconnected non isomorphic copies for Harary
graphs and cycles respectively.

2 On super (a,d)-EAT labeling

In this section, we give a uniform construction for super (a,1)-edge an-
timagic total labeling for disjoint union of non isomorphic copies of Harary
graphs C! and cycles C,.

Theorem 5. Form>2,n; 25,t;22,i=1,2,...,m, GeChucCkzu

... UCE admits super (2 i ni + 2,1)-EAT labeling provided n; # 2t;.
k=1

Proof.

We denote the vertex and edge sets of G as follows.
V={v]:1<i<n;1<j<m},

E={v]v],,:1<i<n;,1<j<m}u{vivl,, : 1<i<n;,1<5<m)

Where the index n; + 1 is taken modulo n;.
Now, we define the labeling A: VU E — {1,2,...,p + q} as follows:

J
’\('U;?)=an-1+i, 1<i<n;, 1<5<m
k=1
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Fori=n;,1<j<m.

j
Mufvly,) =3p =) me-1,

k=1

and

j
Mvivi, ) =8p— ) ne1—i, 1Si<n;~1
k=1

J
Mojvly,)=2-Y m-1—i+1, 1<i<n;
k=1
We have two types of edges namely, F; = {vaf i 1<i<n;, 1<j<m}
and By = {vjv},, : 1 i< nj, 1 <j < m} Now we consider all edge-
weights. The edge-weights of all edges in E; will form consecutive integers
sequence 2p + 2,2p + 3,...,3p + 1. Note that the weight 2p + 2 is attained
by the edge v} ,;_,v}. Whereas the edge-weights of all edges in Ep will
form consecutive integers sequence 3p + 2,3p + 3, ...,4p + 1. Therefore, the
edge-weights form the consecutive integers sequence 2p+2,2p+3, ..., 4p+1.
Since all vertices receive the smallest labels hence A is a super (2p + 2,1)-
edge antimagic total labeling. o

Fig. 1. super (28,1)-EAT labeling of C2UCE.

Dafik et al. [6] proved that G & mCj, has a super (2mn+2, 1)-EAT labeling.
In the following theorem we strengthen their result by providing a different
labeling scheme with same (a,d) for G & Cp, UCn, U...UChy,,.

Theorem 6. Form >2,n; > 3,i=1,2,...,m, G = Cy,UCy,U...UC,p,,
m

admits super (2 Y ni + 2,1)-EAT total labeling.
k=1
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Proof.
We denote the verte)f,agci 351ge1 sgts %f,? ﬂséo}k??n}
SWwlsian,lsjsmy,

E={v]v},:1<i<n;1<j<m}).

where index n; + 1 is taken modulo n;.
Now, we define labeling A : VU E — {1,2,...,p + ¢} as follows:

j
Av]) = nkoy+i, 1<i<n;, 1<j<m
k=1
Fori=n;,1<j<m

J
/\("’g"g-a-l) =2p- an—l,
k=1

and

Jj
Avlviy)=2p-) mk-1-4, 1<i<n;~ 1.
k=1
The set of all edge-weights generated by the above scheme forms a consec-
utive integer sequence 2p+ 2, 2p+3,...,3p+ 1. Since all the vertices receive
smallest labels, therefore A is a super (2p + 2, 1)-edge antimagic total la-
beling. Note that the weight 2p + 2 is attained by the edge v}vd. 0

Fig. 2. super (28,1)-EAT labeling of Cs U C-.

A sun graph is constructed from a cycle by attaching a vertex to each vertex
of the cycle.

In the following sections we focus on (a, d)-vertex antimagic total labeling
for disconnected non isomorphic Harary graph with d = 1. We construct
super vertex antimagic labeling for non isomorphic copies of cycles for d =
1. We provide an (a, 1)-vertex antimagic total labeling for sun graphs and
an (a, 4)-vertex antimagic total labeling for the disjoint union of sun graphs.
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3 On (a,d)-VAT labeling

In this section we construct a super (a, d)-VAT labeling for disjoint union of
finite non isomorphic copies of Harary graphs and cycles. We also construct
an (a, 1)-VAT labeling for sun graphs and an (a, 4)-VAT labeling for disjoint
union of non isomorphic sun graphs. Before proving our main results let us
prove the following fact:

Lemma 1. Let t > 2 and p > 5. If Harary graph G = C’,‘, is super (a,d)-
vertez antimagic total then d < 9 for p # 2t and d < 6 for p = 2t.

Proof. Assume that there exists a bijection
A V(Q)UE@G) - {1,2,..,p+q}

which is super (a, d)-vertex antimagic total and
W = {A(u) + ¥ Muw) : wv € E(G)}
= {a,a+d,...,a+ (p— 1)d} is the set of vertex-weights.
If p # 2t, then the minimum possible vertex-weight in a super (a, d)-vertex
antimagic total labeling is

1+(p+1)+@+2)+(P+3)+(@+4) =4p+11

and maximum vertex-weight is no more than
p+3p+Bp-1)+(Bp-2)+(3p-3)=13p—6.

Thus, we have
a+(p—1)d<13p -6,

and 9p — 17

p—1
If p = 2t, then minimum possible vertex-weight in a super (a, d)-vertex
antimagic total labeling is

d<

<9.

1+@+1)+®@+2)+(@+3)=3p+T7.

and maximum vertex-weight is no more than

5p
P+ +(

17
] 1)+( —2)= ” -3.

Thus, we have 1
a+(p-1)d< == p ,
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and 11p - 20

2(p—1)
Theorem 7. Form 22, n; 25,t:22,i=1,2,...,m,G=C UCB U
m
..UCE~ admits super (8 3 ny + 3,1)- VAT labeling provided n; # 2t;.
k=1

d< ——= <8 a

Proof.

We denote the vertez‘(/an tf;lg sg 2 <f

ollows.
J< m}
E = {vlv],,: 1<z<n,,1<1<m}U{ 'vJ 1<i<n;l1<j<m}

where all indices are taken mod n;.
Now, we define labeling A : VUE — {1,2,...,p + g} as follows:

J
A(vf):an_l"i"t, ISZST&], 1.<_.75m
k=1

3
2p—k2nk_1, ‘i=‘nj; 1<j<m,
=1

’\(Utjv{+1)= j
2p—- > np1-14,1<i<n;—1,1<j<m.
k=1
j . .
.. 2p+1+znk—1) t = nj, 1<j<m,
)\(”';?”i’uj = k?l
2p+1+2'nk_1+i,lﬁiSnj—l,ISjSm.
We havevertlces, = {v : 1<z<n,,1<g<m} and we can see that

the vertex v}, has the welght 8 r=1 Nk + 3 and set of vertex-weights form

a consecutive sequence 8 E ng+3,8) je ke +4,.
k=1

m m
9> ni+2witha =8} ni+ 3 and d = 1. Since all vertices receive the
=1 k=1

m
smallest labels hence A is a super (8 3 nx + 3, 1)-vertex antimagic total
k=1
labeling. a
Corollary 1. Form 22,n;,>3,i=1,2,...,m,G = Cn,UCR,U. . .UC,,
m
admits super (3 Y ny + 2,1)-VAT labeling.
k=1

Proof. Using the dual of the labeling defined in Theorem 6, the result
follows, n ]
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Theorem 8. Form >2,n; >3,i=1,2,...,m, G Cp,UCp,U...UCp
m
admits a (2 Y ng + 3,2)-VAT labeling.

k=1
Proof.
We denote the verte‘;/a__r_lck gflgel sg’cg %f 7%‘ ,ais Sfo.%l??ﬁ N
E={vivi,;:1<i<n;1<j<m}

where index n; + 1 is taken modulo n;.
Now, we define labeling A: VU E — {1,2,...,p + g} as follows:

J
Mof)=2i—1+2) nk-y, 1Si<n;, 1<j<m.
k=1

Jj
Avivi, ) =p+q—(2%—2)-2) mk-1, 1Si<n;, 1<j<m.
k=1

We have vertices, V = {vZ :1< i< n;,1<j<m}and we can see that the

m
vertex v has the weight 2 3 nx +3 and set of vertices form a consecutive
k=1

m m m
sequence 2 3 i + 3,23 j nk +5,.,4 3 e+ 1witha=23 nx+3
k=1 k=1 k=1
m
and d = 2. Hence A is a (2 3 ni+3, 2)-vertex antimagic total labeling. O
k=1
Corollary 2. Form >2,n; > 3,i=1,2,---,m, G = C,,,UC,, V.. .UCy,

admits (3> ng + 2, 2)- VAT labeling.
k=1

Proof. Using the dual of the labeling defined in Theorem 8, the result
follows. o

Theorem 9. The sun graph S, on 2n vertices admits a (5n + 2,1)-VAT
labeling.

proof. Let Sy, be the sun graph on 2n vertices. Then V(S5) = {v1,v2,-*+, vl
{a1,a2, -+ ,as} and E(S,) = {viviqa|l <1 < n} U {vai|l <7 < n}. We
define a labeling A : VUE — {1,2,--- ,p+ q} as follows;
M) =1 for 1<i<n
Muivig1) = p—i+l, for 1<i<n

=P+l i=1
A@mﬂ—{p+%_i+z25ism
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N Jp+i+l, i=1
’\(“')"{p+q—i+2,25ign.

Now by direct computation we see that the vertex a; has the weight 5n+ 2
and the set of weights of vertices {6n + 2,57 + 3, ,7n + 1} forms an
arithmetic sequence with a = 5n + 2 and common difference d = 1. Hence
the labeling A is a (5n + 2,1)-VAT labeling. ]

Theorem 10. Ift; > 3 for every j = 1,2,--- ,n and n > 1 the disjoint
J
unions of sun graphs G = §;, US;,U---US,, admits a (2 ) t,+3,4)-VAT
k=1
labeling.

Proof. Let G= S, US, U---US,,. Thenfor t; >3,j=1,2,-+,n and
n21,V(G) = {v}’|l i <t;}U{ef|1 S i <t;} and E(G) = {v}ivj,|1 <
i < t;}U{vaf|1 < i < t;}. Define a labeling A : VUE — {1,2,--- ,p+q}
as follows;

-1 n
M) =2) th +4) t—2i+2 ;i=12,--tj and j=1,2,--- ,n
k=1 k=3
3
, 2) t fori=1
Mal) = "f_ll

2 tx+2i—2 fori=2,3--,t
k=1

n J
2Etk—22tk+l for i =¢;
ty ¢ — =
Awfviy) =3 *t !
2y te—23 tk—2i+1 fOl‘i=1,2,-'~,tj—1
k=1 k=1

n i
23 th+2> -1 fori=1
Mofa) =9+ By
23 te+2) tx+2i—3 fori=23,---,t
k=1 k=1

Now using direct computation, we see that the vertex ai has the weight

n n n n
2 3 te+3 and the set of weights of vertices {2 3~ t4+3,2 3 tx+7,-+,10 3 t—
k=1 k=1 k=1 k=1

n
1} form an arithematic sequence with a = 2 3 ¢x + 3 and a common dif-
k=1

ference d = 4. Hence the labeling A is & (2 3 t; + 3,4)-VAT labeling. O
k=1
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Fig. 8. (21,4)-VAT labeling of Sq U Ss.
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