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Abstract
This paper determines that the connectivity of the Cartesian
product G100G; of two graphs G1 and G3 is equal to min{k;v2, k2v,
61 + 82}, where v;, 5, 6; is the order, the connectivity and the mini-
mum degree of G;, respectively, for i = 1,2, and gives some necessary
and sufficient conditions for G100G> to be maximally connected and
super-connected.

1 Introduction

All graphs in this paper are finite and simple. For graph theoretical ter-
minology and notation not defined here, we refer the reader to [5]. Let
G and G be two graphs, v;, d;, &; and V; denote the number of vertices,
the minimum degree, the connectivity and the vertex-set of G;, respec-
tively, for ¢ = 1,2. The Cartesian product graph G;0G> has the vertex-set
V=V xVo = {zy| z € W3,y € V2}, and two vertices 1z, and y,y, are
adjacent if and only if either 2, = y;, 2 and y; are adjacent in Gz, or
T2 = y2, 7 and y; are adjacent in G;. A graph is said to be mazimally
connected if k = §. A connected graph is said to be super-connected if
every minimum cut-set is the neighbor-set of some vertex. It is clear that
any super-connected graph is certainly maximally connected.

The recent study on connectivity of the Cartesian product can be found
in [1, 2, 3, 4], where the lower bounds of the connectivity of G;00G2 and
some sufficient conditions for it to be maximally or super-connected are
given. In the present paper, we determine that x(G,0G:) = min{x;ve, Kav1,
01+ 082} and give some necessary and sufficient conditions for G;0G; to be
maximally connected and super-connected.
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2 Connectivity

Lemma 1 Let p,q,a,b be integers with 1 Ca<p—1landl<b<g-1
Then a(g — b) + b(p — a) > p+ g — 2 and the equality holds if and only if
one of the following conditions holds

i)g=2,b=1,
i)p=2,a=1,
#)a=10b=1,

vi)a=p-1b=q—-1.
Proof. If ¢ > 2b, then

a(g—b)+b(p—a) =(g—2ba+pd
2 (g—2b)+pb
=p+q-2+(p-2)(b-1)
Zp+g-—2

If g < 2b, then

alg—b)+b(p—a) =(g-2b)a+pd
> (g—2b)(p—1)+pb
=p+qg—-2+(p-2)(g—-b-1)
z2pt+q-—2

And it is easy to check the conditions for the equality to hold. g
Lemma 2 Let G be a graph and A C V(G). Then |JAUN(A)| 2 6(G) +1.

Proof. Arbitrarily take a vertex z in A. Its neighbors must be in AU
N(A) — {z}. Thus |JAUN(4)| = |{z}| + |AUN(4) — {z}| > 1+dg(z) >
1+46(G). O

Two vertices 122 and 3,2 in G00G; are said to be parallel with Gy
(resp. G2) if T2 = ys (resp. 3 = y1). Two vertices are said to be parallel
if they are parallel with either G; or Ga.

Theorem 1 For every two connected graphs G # K1 and G2 # K,
k(G10G2) = min{k1v2, Kav1,6 + G2}

Proof. Let G = G10Gs. Clearly, x(G) < 6(G) = 61 + d2. If G2 is not a
complete graph, let S be a minimum cut-set of Gy, then V; x Sp is a cut-set
of G, which implies £(G) < savy; if G is a complete graph, then x2 = &g,
therefore (G) < &;+02 < 62(61+1) < Kov;. By symmetry, we have x(G) <
K1vg. So it remains to prove that £(G10G3) > min{rjvz, k2v1,61 + G2}
Let S be & minimum cut-set in G.
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Case 1: There exist no pair of parallel vertices in distinct components of
G-S. Take a component C of G-8, let A = {z € Vj|zy € V(C) for some y}
C Vi and B = {y € Va|zy € V(C) for some z} C V. Obviously, |4]| > 1.
Because vertices in other components of G — S must not be parallel with
any vertex in C, we have |A| < v; — 1. Similarly, 1 < |B| < vz — 1. Thus,
(Vi — A) x B and A x (V, — B) must be in S because vertices in them
are parallel with some vertex in C and not in C. Let a = |A|,b = |B|, by
Lemma 1, we have

K(G)=18] 2 [(Vi—A)xB|+|Ax(Vz~-B)
= (‘Ul - a)b+ a(vg - b) (1)
2 v +ve-2
= 01+02.

Case 2: There exist a pair of parallel vertices in distinct components of
G- S. Without loss of generality, suppose that u and w are parallel vertices
with G2 and are in components C; and C; of G — S, respectively. Let
Vi ={z1,23, -+, 2, } and 8; = SN({z;} x Vo). Without loss of generality,
assume u,w € {z;} X Va. Note that if {z;} x V> contains vertices of distinct
components of G — S, then |S;| > k2. If for each z; € Vi, {z;} x V> contains
vertices in both C; and C,, then

v1
K(G) = 15| = 315 > virs. @
i=1
So we may suppose that there exist € V(G;) such that {z}00G, does
not contain vertices of Cy. Split the vertex-set of G; into two subsets X;
and X3, X; containing the vertices  such that zy ¢ C, for all y € V(Gs)
and X all the other vertices of G;. Since G is connected there is an edge
e with one end-vertex in X; and the other in X,. We may assume the two
end-vertices of e are x; and ;. Let H = {z,}00G,. Let D = C;NV(H) and
D' be the neighbors of D in {z;x}0G5. It is clear that both D’ and Ny (D)
must be in S. By Lemma 2, |D’| + [Ng(D)| = |D| + |Ny(D)| = &2 + 1.
Besides zj, the vertex z; has at least §; — 1 neighbors in G;. For each
T; € Ng, (1) — {zx}, Si # 0, otherwise u and w will be connected through
{z:}0G., a contraction. Therefore,

w(G)=1S| > (ID'|+INu(D)])+ > I:]
ziENg, (z1)—{zx}

2 (2+1)+(1-1) 3)

= §; + da.
In all cases, we prove x(G) > min{k;vs, Kav1,61 +J2}. The proof of the
theorem is complete. ]
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From Theorem 1, we obtain the following corollary, a necessary and
sufficient condition for the Cartesian product graph to be maximally con-
nected, immediately.

Corollary 1 Let G; and G, be two connected graphs, then G,0G is maz-
imally connected if and only if min{kyvz, Kav1} 2 61 + J2.

3 Super-connectivity

We say a connected graph G to have the property & if there is a subset
A C V(G) with |A| > 2 and |[AU N(A)| = 6(G) + 1 such that G — N(A4) is
disconnected. It follows from the definition that A is a complete subgraph
of G and that any vertex from A is adjacent to every vertex from N(A).
So |A| > 2 can be replaced by |A| = 2 in the definition without changing
the meaning.

Lemma 3 Any mazimally connected graph has no property 2.

Proof. Suppose to the contrary that there is a maximally connected graph
G with the property . Then there is a subset A C V(G) with |4]| > 2
and |[AU N(A)| = 6(G) + 1 such that G — N(A) is disconnected. Thus,
1+ 4(G) =|AUN(4)| > 2 + k(G) =2+ §(G), a contradiction. (]

e

Figure 1: A non-maximally connected graph without the property P

The graph shown in Figure 1 shows that the reverse of Lemma 3 is not
always true. The importance of the property & in the study of super-
connectivity of Cartesian graphs is indicated in the following lemma.

Lemma 4 Let G, and Go be two connected graphs, G, has the property
P and 6o = 1. Then G,0G; is not super-connected.
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Proof. Suppose to the contrary that G;00G; is super-connected. Then
G10G; is maximally connected, i.e., £(G10G2) = §; +62. Since G; has the
property &, there is a subset A C V; with |A]| > 2 and [AUN(A4)| = 6; +1
such that G; — N(A) is disconnected. Let z be a vertex of degree one in G
and y be the only neighbor of z. Then § = (N(A) x{z})U(Ax {y}) is a cut-
set of G = G100G2 and |§| = |[N(A)U A| =6, + 1 = 6, + &3 = x(G10G>),
which implies that S is a minimum cut-set. If A and N(A) both have
at least two vertices then the set S is not a neighborhood of any vertex.
|A] > 2 by definition. If |[N(A)| = 1, then S is a neighborhood of a vertex if
and only if N(N(A)) = A, that is, G; is a complete graph. Since complete
graphs do not have property 2, |N(A)| 2 2. So there is no isolated vertex
in G10G; — S, a contradiction. This completes the proof. a

Another class of graphs, which will be called the locally complete graphs,
also gives rise to non-super-connected Cartesian product graphs. A con-
nected non-complete graph with § > 2 is said to be locally complete if it
has a block isomorphic to Ks41. By the definition, a connected locally
complete graph has connectivity £ = 1 and has the property £. For a
connected graph, the relations among the property £, locally complete
and maximally connected are shown on Figure 2.

locally
complete

the property &

connected j

Figure 2: Relations among the property £, locally complete and maximally
connected

\

maximally

connected

Lemma & Let G and Gy be two connected locally complete graphs, then
G10G; is not super-connected.

Proof. Suppose to the contrary that Gi0G, is super-connected. Then
G10G3 is maximally connected, i.e., £(G10G2) = 6, + 2. By the hypothe-
sis, let {zo, Z1,---,Zs, } and {yo, %1, - -, ¥s, } be the vertex-set of a complete
block of G; and G, respectively. And assume that zg is a cut-vertex of
G and that yp is a cut-vertex of Go. Then S = {z10, Z2yo, " -, z5, 90} U
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{zoy1, Toy2,** *, Toys, } is a cut-set of G10G; and |S| = 6; + 62. But there
are no isolated vertices in G;0G2 — 8, a contradiction. O

Lemma 6 Let G be a connected graph with k =1 and § > 2, D C V(G)
with |DUN(D)| =6+ 1 and |D| 2 2. Then any element of D and at least
one element of V(G) — D — N(D) are not cut-vertices of G.

Proof. We first note that N(z) = DU N(D) — {z} for each vertex z € D
since [DU N(D) — {z}| = |DUN(D)| — 1 = 4. This fact means that each
vertex in D is adjacent to all vertices in N(D). As |D| > 2, the neighbors
of z are still connected in G — z for any £ € D, which implies any vertex
in D is not a cut-vertex of G.

It is clear that N(D) # 0 and V(G) — D — N(D) # @ since x = 1 and
5> 2. Ify e V(G) — D — N(D) is a cut-vertex of G, then at least one of
connected components of G —y contains no vertices in DU N(D) since any
two vertices of DU N(D) is connected in G — y. Choose such a cut-vertex
y € V(G) — D — N(D) such that the number of vertices of the smallest
component C of G —y which contains no vertices in D U N(D) is as small
as possible. Let ' be a neighbor of y in C. If ¥ is a cut-vertex, then G —y’
has a component C' C C as y' ¢ C’, which contradicts to our choice of y.
So ¥ is not a cut-vertex. (]

Lemma 7 Let G, and Gy be two connected graphs, kg = 1, 63 > 2. Let
S C V; x Vo, S has no vertices parallel with G2 and |S| < vi. Then
G,0G, — S is connected.

Proof. Let Vi = {z1,%2,---,2n} and S; = SN ({z;} x V;), by the hy-
pothesis, |S;] < 1. Without loss of generality, assume that |S;| = 1 for
1< i< t=|S|. We need the following simple fact:

Fact 1 If z; and x5, are adjacent, then for each vertez v in {z;}0G2 — S;
there ezist a vertex w in {z,}OG2 — Sy, such that v and w are connected
in G[!Bj,!lth]DGg - Sj - Sh.

Proof of Fact 1. Because k2 = 1 and §; > 2, vz 2 5, {z;}00G2—S5; is either
connected with at least 4 vertices, or disconnected with each component
having at least two vertices. If the neighbor v’ of v in {,}[JG2 does not
belong to S, P = vv' is the desired path and w = v’. If v’ € Sj, because
v is always in a component of at least two vertices in {z;}0G2 — Sj, let
w' be a neighbor of v in the component, and w be the neighbor of w’ in
{zx}OG2. So P = vw'w is a vw-path. O

Come back to the proof of the lemma. Because ¢t = |S| < v;, there
exist zx(k > t) such that Sy = 0, namely {z;}(0G2 — Si is connected. For
each vertex u in {z;}0G, — S; for i # k, there is a path from z; to 2y,
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following that path, u can be connected to some vertex in {z;}0G; — Sy
in G;0G; — S by Fact 1. O
It is ready to present our second major result.

Theorem 2 Let G, # K, and G2 # K be two connected graphs, then
G10G; is super-connected if and only if one of the following conditions is
satisfied:

‘i) G1DG2 8 isomorphic to KzDKz or KzDKs,

) min{vika,vaK1} > &1 + 02 but none of following three situation:
61 = 1, G2 has the property P; 6, = 1, Gy has the property P; both G,
and Go are locally complete.

Proof. Let G = G;0G2. We prove the necessity first. Assume G is super-
connected, then it is maximally connected, by Corollary 1, kyve = 6; + &2
and Kpvy 2 6 + 8. If K3v2 = ) + J2, then G; must be a complete graph.
Otherwise, let S; be a minimum cut-set of G;, then S; x V5 is a minimum
cut-set of G without isolated vertices, a contradiction. So G is a complete
graph, we have 6, + d2 = Kyv2 = §,v2 > 01(d2 + 1). From this inequality,
we have §; = 1 and v = 0, + 1, which means G; = K> and G, is also a
complete graph. If G; = K, with n > 4, let R be a set of two adjacent
vertices of {z,}0G2, where z; € V;. Then Ng(R) is a minimum cut-set
without leaving isolated vertices, a contradiction. So G2 must be K3 or K.
Thus the condition i) is satisfied. If kov, = 6; + 82, the same argument
gives that G, and G satisfy the condition i).

Now assume min{vixz,v261} > 8 + 8. If §; = 1 and G2 has the
property &£, or 62 = 1 and G; has the property &, then G;0G; is not
super-connected by Lemma 4. If both G and G; are locally complete then
G:10G; is not super-connected by Lemma 5. Thus, the condition ii) is
satisfied.

Next, we will show either of the two conditions is sufficient for G to be
super-connected. Clearly, the condition i) is sufficient since both K>,O0K,
and Kp[K3 are super-connected. If the condition ii) holds, then G is
maximally connected by Corollary 1. Let S be a minimum cut-set, then
|S| = &, + 82. We only need to prove that G — S contains isolated vertices.
Following the notations and the argument of Theorem 1, we consider two
cases.

Case 1: There exist no pair of parallel vertices in distinct components
of G—S. In this case, all the equalities in the inequality (1) in the proof of
Theorem 1 hold since | S| = 81 +8;. So |S| = |(V; — A) x B|+|Ax (V; - B)|.
And both G; and G, are complete graphs by v; + vo — 2 = §; + . But
neither of them is Ky, otherwise if, for example, G; = Ky, then vor; =
v2-1=1+ 63 = &) + J3, which contradicts the hypothesis. So v; # 2 and
vz # 2. Therefore, by (v; — a)b + a(v2 — b) = v; + v; — 2 and Lemma 1,
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eithera = b= 1 or a = v; — 1 and b = vy — 1, in both situations, there is
an isolated vertex in G — S.

Case 2: There exist some pair of parallel vertices in distinct components
of G—S. Assume that v and w in {z; } x V; are parallel with G2 and belong
to components C; and Cj, respectively. If for each z; € V, {z:} x V2
contains vertices of both C; and Cy, then |S| 2> vik2 > 81 + 2 by the
inequality (2), a contradiction.

Thus, there is some x # x; such that {z} X V2 contains no vertices of
C. Since |S| = 8; + &2, all the equalities in the inequality (3) hold. So

1S| = (1D'| + INu(D))) + > |Si].
z;€Ng, (z1)-{zx}

Furthermore, dg, (z1) = 61 and |D'| + |[Ng(D)| =62 + 1.

If §; = 1, by the hypothesis, G, does not have the property &, so
H = {z,}0G; does not have the property &. Note that |D|+ |Nu(D)| =
|D’| 4 |Ng(D)| = |S| = 62 +1, therefore | D| = 1, so D is an isolated vertex
inG-S.

Now assume d; > 2. We proceed by considering three subcases. The
outline of each subcase is as follows. We first prove |[D| = 1, then prove
that (G7 — z1)0G2 — S is connected. If so, let D = {u}, and one of its
neighbors belongs to D’ and hence to S. So each vertex of {z;}0G2—S—-D
has at least one neighbor in (G; — z;)0G2 — S and this makes G- S — D
connected. Therefore D = {u} must be the other component of G — S,
which will complete the proof.

It remains for us to show that |D| = 1 and (G; — z,)0G2 — S is con-
nected. We mention some more facts which are obvious but used often in
the rest of the proof.

Fact 2 Let G, and G be two connected graphs with min{v ko, v2K1} >
81+ 82. If Ky = 1, then vp > 8y + 02 and Gy is not a complete graph. If
Ko =1, then vy > & + 62.

Subcase A: §; = 1. So |D| = |[Ny(D)| = 1. Let K C V; such that if
z; € K, then {z;}0G, contains vertices of distinct components of G-8.
Obvious, z; € K and K C {z;} U Ng,(z1). Because 63 =1, V; — {1} —
Ng,(z1) # 0 by Fact 2. Note that each vertex in K is not adjacent with
those in V; — {z1} — Ng,(21). Thus Ng,(K) = {1} U Ng,(z1) — K is a
cut-set of G; and |K U Ng, (K)| = |{z1} U Ng, (z1)| = 1 + 1. Because G,
does not have the property £, |K| = 1, namely K = {z1}. So for each
z; # ,, the vertices of {z;}00G; — § are in the same component of G — S.
If k1 > 2, then G, — z; is connected, hence (G — z1)0G2 — S is connected.
If x; = 1, then vz > &; + 82 by Fact 2, so there exists y € V such that
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G10{y} contains no vertices in S, which implies that (G, — z;)0G; — §
connected. In either case, (G; — z1)0G2 — S is connected.

Subcase B: k3 > 2. First, we deduce |D| = 1. Suppose to the contrary
that [D| 2 2. Then |Ny(D)| < 8, and so there is no isolated vertex in
H — 8,. Because k3 > 2, but for any z; € Ng, (1) — {zx}, |Si]| = 1, we
have {z;}0G> — S is connected. Thus all distinct components of H — §
will be connected through {z;}00G2 — S, a contradiction. So |D| = 1,
[Se,| = |D'| = |D| =1, and {z4}0G2 — S is also connected. Therefore, for
any z; € V) except z1, {z;}0G; — S is connected. As in Subcase A, if
K1 2 2, then G; — z, is connected. If k1 = 1, there exists y € V3 such that
G100{y} contains no vertices in S. So (G — z;)0G2 — S is connected.

Subcase C: x; = 1 and d; > 2. As before, first prove |D| = 1.
Suppose to the contrary that |D]| > 2. Let Dy = {y € V;|z,y € D}. By
applying G2 to Lemma 6, any vertex of Dy is not a cut-vertex of G, and
V2—Do—Ng,(Ds) contains at least one non-cut-vertex. Consider each z; €
Ng, (z1)~{zx}. Because |S;| = 1, the element of S; must be a cut-vertex of
{z:}OG3, otherwise H — S would be connected through {z;}0G; — S;. So
S consists of N(D), D' and 6, —1 cut-vertices (of {z;}0G3). Let u = z34,
then G10{y,} contains exactly one vertex of S, that is zxy;. If G1 — i is
connected, because k; = 1, let z; be a vertex besides z; and its neighbors
in Vi(z; exists by Fact 2). If G, — = is not connected but z; lies in a
component that there exist a vertex besides itself and its neighbors, let z;
denote that vertex. In either case, there is an (z;,z;)-path in Gy — z;,
and {z;}00G; contains no vertices of S. Furthermore there exist & non-
cut-vertex z in V; — Do — N(Dyp), thus G10{z} contains no vertices of S.
Then u = z,y; is connected with z,z through (G, — zx)O{m }, {z;}0G;
and G0{z}, as illustrated in Figure 3, a contradiction.

o

24

Tk

S

- .

n z

Figure 3: 211 (G1=2)0{u} Tin {=;)0Gs Tjz G10{z} z12
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Now there is one condition we have not yet considered: G; — zi is not
connected and z; lies in a component that consist of only itself and its
neighbors, which means that G, is locally complete. Then by hypothesis G,
must not be locally complete, which imply |[N(D)| > 2. Let 22 € Ng,(z1)—
{zx}, z; € Ng,(zx) — {z1} — Ng,(21), 41 € Do, 2z € Vo — Do — Ng,(Do).
And choose y2 € Ng, (Do) such that zoys ¢ Sz (y2 exists because |Sz| =1
and |[N(D)| > 2). Then z,3; and z,2 is connected in G — S as follows (see
Figure 4), a contradiction.

N ¥ z

. {z;}0G,
Figure 4: z,y1 — Zoy1 — Tayz — TkYe — Tjy2 ——  TjZ — TpZ = T12

So |D| = 1, next we will show (G; ~ z1)00G2 — S is connected. If
G, — r, is connected, just apply G; — z; and G2 to Lemma 7. If G; — z;
is disconnected, k; = 1 and é; > 2, then the number of neighbors of z; in
each component F is strictly less than 4;, thus each component contains
vertices besides those neighbors of x;. By applying F and G2 to Lemma 7,
we know that FOG; — S is connected. And as x; = 1, va > &) + 02, there
exists a y € V5 such that G10{y} contains no vertices of S, and connects
each F D02 - 8S.

Thus in all cases, G — S isolates a vertex, this completes the proof. O

The following result proved in [1] will be a direct consequence of Theo-
rem 2.

Corollary 2 [1] Assume G10G; 2 K20K, for n > 4. If G; is regular
and mazimally connected for i = 1,2, then G10G; is super-connected.

Proof. Because both G; and G, are maximally connected, v1k2 = v182 2>
(51 + 1)62 > 01 +65. By the same reason, vaK; 2 01+ 0. If vikp = 61 + 0s,
because G2 is maximally connected, §; + 82 = vikg = 1182 2 (6 + 1)d2 =
8162+82. So 8z = 1 and v, = §;+1, which means that G2 = K3 (because G2
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is regular) and G, is a complete graph, hence G;0G2 must be isomorphic
to Ko0K,,. By the hypothesis, n = 2,3. Thus the condition i) of Theorem
2 is satisfied. If ok = d; + 82, the same argument shows the condition i)
of Theorem 2 is also satisfied. Now assume that min{v; k2, vaK1} > 81 + 6.
By Lemma 3, a maximally connected graph is neither locally complete nor
have the the property & (see Figure 2). Thus the condition ii) of Theorem
2 is always satisfied. This completes the proof. 0
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