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Abstract

For positive integers k < n, the crown Cy, k. is the graph with vertez set
{a0,a1,---,an-1,b0,b1,- - ,bp1} and edge set {a;b; : 0<i<n—-1,j=
i+1,i4+2,---,i4+k ( mod n )}. A caterpillar is a tree of order at least three
which contains a path such that each vertez not on the path is adjacent to a
vertex on the path. Being a connected bipartite graph, a caterpillar is bal-
anced if the two parts of the bipartition of its vertices have equal size; other-
wise, it is unbalanced. In this paper we obtain the necessary and sufficient
condition for balanced-caterpillar factorization of crowns. The Criterion
for unbalanced-caterpillar factorization of crowns is open. We also obtain
the necessary and sufficient condition for directed caterpillar factorization
of symmetric croums.

1 Introduction and preliminaries

Suppose that G' and H are multigraphs. A G-factor of H is a spanning sub-
graph of H which is the union of vertex disjoint subgraphs each isomorphic
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to G. A G-factorization of H is a set of G-factors of H which partition the
edges of H. For multidigraphs G and H, a G-factor and a G-factorization
of H are similarly defined.

Let H be a graph. The symmetric digraph H* is the digraph obtained
from H by replacing each edge of H by two arcs with opposite directions.
For a positive integer A, AH is the multigraph obtained from H by replacing
each edge of H by A edges.

A star factorization of a graph H is a G-factorization of H where G
is a star. Path factorization, tree factorization, directed star factorization
and directed path factorization are similarly defined. Star factorizations
were investigated for K, [24]), Kmn [4, 6, 7, 11, 12, 14, 21] and graph
products [2]. Directed star factorizations were investigated for Ky, ,, [15},
MK}, (19), K7, (16, 17, 18], and MK}, , [20]. Path factorizations were
investigated for AK, [1], Kmpn [8), AKmn [5], AK(n,7) [23] (K(n,7) is
the complete n-partite graph with each part of cardinality ), Ki,m,n [10],
cubic graphs [3] and product graphs [9]. Directed path factorizations
were investigated for AK [22]. Tree factorizations were investigated for
K, (22, 24].

For positive integers k < n, the crown C, x is the graph with vertex set
{aO)a'll *rryGn-1, bo, b1, - - 'abn—l} and edge set {aibj :0<is<n—-1,j=
i+1,i42,---,i+k (mod n)}.

A caterpillar is a tree of order at least three which contains a path
such that each vertex not on the path is adjacent to a vertex on the
path. In this paper, we investigate the caterpillar factorization of Cy i
and the directed caterpillar factorization of C;, ;. For the convenience of
discussions, a caterpillar can be defined alternatively as follows. For a
positive integer d, let Sy denote the star with d edges. For positive in-
tegers dy,dg,*+,dy (v > 1), S(d1,da,-,d,) denotes the graph obtained
from the stars Sg,, S4,, - -+, S4, by identifying an endvertex of Sy, with the
center of Sg,,, for ¢ = 1,2,---,u — 1. As an illustration, S5(5,2,1,3) is
exhibited in Fig. 1. It is easy to see that the graph S(d;,dz,---,dy) has
1+d; +dy+-- +d, vertices. A caterpillar can be defined as the graph
S(dy,dg, - ,dy) with order > 3.

N

Fig. 1. 5(5,2,1,3)

Let us begin with some lemmas.

Lemma 1.1 Suppose that a multigraph G has n, vertices, e; edges, and a
maultigraph H has n, vertices, ez edges. We have the following.

248



(1) If H has a G-factor, then ny =0 (mod n,).

(2) If H has a G-factorization, then niez =0 (mod nge;).

Proof. Let t be the number of copies of G in a G-factor of H. Then

ng = tn;. Thus

(1) ng =0 (mod n;).

(2) A G-factor of H has te; = ?el edges. Let r be the number of G-factors
1

in the G-factorization of H. Then e; = r(;ﬂel), which implies r = :—1:—2.

1 2€1
Thus njez =0 (mod nge;).

Lemma 1.2 Let T be a tree of order t. If ACp i has a T-factorization
where A=1 or 2, then k=0 (mod t — 1).

Proof. By Lemma 1.1(2), ¢t - Ank =0 (mod 2n(t — 1)). Thus
tAk =0 (mod 2(t — 1)).
Casel. A=1.
Then tk = 0 (mod 2(¢ — 1)). Hence tk = 0 (mod ¢ — 1), which implies
k=0 (modt-1)

Case 2. A =2.
Then 2tk = 0 (mod 2(t — 1)). Hence tk = 0 (mod ¢ — 1), which implies
k=0 (modt-1). a

A connected bipartite multigraph is balanced if it has a bipartition
(C, D) with [C| = |D|. It is easy to see that S(dy,ds,--,d,) is balanced if
and only if d +d3+d5+°"+d2lv-1j+l = 1+d2+d4+-~-+dgl§J. A
connected bipartite multigraph is u;l:(_zlanced if it is not balanced.

Lemma 1.3 Suppose that G is an unbalanced connected bipartite multi-
graph of order t and H is a balanced connected bipartite multigraph of order
2n. If H has a G-factor, then n =0 (mod t).

Proof. Let (A, B) be a bipartition of G, and let a = |A|, b = |B|. Then
a+b=t a#b Let (C,D) be a bipartition of H with [C| = |D| = n.
Suppose that in a G-factor of H, there are [ copies of G with A-part in
C, and m copies of G with B-part in C. Then la + mb = |C| = n and
Ib+ma = |D| = n. Thus bn — an = m(b? — a?). Since a # b, we have
n =m(b+ a). Thus n =0 (mod ¢t). a

Lemma 1.4 Let G be a graph. Suppose that the crown C,p has o G-
factorization. If k is a positive integer with k < n and k = 0 (mod p) ,
then Cp i has a G-factorization.

Proof. Let k = pq for some positive integer ¢. It is easy to see that Ch.pq
can be decomposed into ¢ spanning subgraphs of which each is isomorphic
to Cpp. Since, by assumption, Cp, , has a G-factorization, so does Ch,pq-

a

The following is the directed version of Lemma 1.4. The proof is similar
and hence omitted.
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Lemma 1.5 Let G be a digraph. Suppose that the symmectric crown Cy
has a G-factorization. If k is a positive integer with k < n and k = 6
(mod p) , then C;, ;. has a G-factorization.

2 Caterpillar factorization of crowns

In this section we investigate the caterpillar factorization of crowns. In the
sequel of the paper, ag,a1,*,8r—3 and bo, b1, -, b,—1 are the vertices of
Chy,k 8s given in the definition, and the subscripts of a; and b; are always
taken modulo n. Each edge a;bi4p (1 < p < k) in Cy i is assigned the label
p. For example, in Css the edges agbs,agbs,azbo, azby, azbe have labels
1,2, 3,4, 5 respectively.

Lemma 2.1 Let G = S(dy,dz,--,dy) be a caterpillar of order t. Let n be
a positive integer with n > t — 1. Then there erists a subgraph Gy of the
crown Cp 1 such that
(i) G1 =G,
(ii) the vertez set of Gy = {a; :i=0,-1,-2,.--, ~dg—dy—dg—--—
dgl_%J} U {bj 15=12,-++,dy +d3+d5+"'+d2lg-’-_1_]+1},
(iii) the edges of Gy have labels 1,2,3,---,t—1.

Proof. Let G = S(dy,ds,---,dy) be a caterpillar of order ¢t =1 +d; +
dy + -+ +d,. Let G; be the subgraph of Cp 1 induced by the following

edge set
{aobi ii= 112)"'$d1}

U {a,-bdl t= —1,—2,”',—d2}
U {a_dzb,':i=d1+1,d1+2,'“,d1+d3}
U {aibd1+d3 :i=—d2_1a-d2_2s"')—d2—d4}
] {a-d,_d‘b,-:i=d1+d3+1,d1+d3+2,---,d1+d3+d5}
u ---.
‘We see that G; has the required properties. O

For a subgraph S of Cp, x and an integer v, let S+v denote the subgraph
of Cpx which is induced by {ai+vdj+v : asb; € E(S)}.

Lemma 2.2 Let G be a balanced-caterpillar of order t. Suppose that n is
a positive integer >t — 1 such that n =0 (mod ¢/2). Then Cn¢-1 has a
G-factorization.

Proof. Let G = S(dy,da,,dy). Since G is balanced and of order ¢,
d1+d3+d5+'”+d2l-”1'-’-j+l =1+dy+ds+ds+---+dyy) = t/2.
Let n' = ;‘7‘5 Let G; be the subgraph of Cy ;-1 described in Lemma 2.1.



Note that Gy has t/2 vertices in A = {ag, a1, --,a,-1} and t/2 vertices in
B = {by, b1, ,bn-1}. Let F be the subgraph of Cy, ¢—; such that

t
F=Glu(Gl+%)U(G‘1+2--2-)U---U(G1+(n’—l)%).

From Lemma 2.1(i) and (ii), we see that F is a G-factor of Cp,¢~;. From
Lemma 2.1 (iii), we see that Cps—; can be decomposed into F, F+ 1,F+
yF + (% —1). Hence Cp¢—; has a G-factorization. |
Now we have the necessary and sufficient condition for the balanced-
caterpillar factorization of crowns.

Theorem 2.3 Let G be a balanced-caterpillar of order t. Then Chx has

a G-factorization if and only if n > k are positive integers end n =
0 (mod t/2), k=0 (mod t—1).

Proof. (Necessity) Since G is balanced, ¢ is an even integer. By Lemma 1.1
(1), we obtain 2n = 0 (mod t), which implies n = 0 (mod t/2). By
Lemma 1.2 with A = 1, we obtain k =0 (mod ¢ — 1).

(Sufficiency) Since n >k >t—1, it follows from Lemma 2.2 that C, ;—,
has a G-factorization. Since n > k and k = 0 (mod ¢ - 1), it follows from
Lemma 1.4 that C, x has a G-factorization. Q

The necessary and sufficient condition for unbalanced-caterpillar factor-
ization of crowns is open.

3 Directed caterpillar factorization of sym-
metric crowns

A directed caterpillar is the digraph obtained from a caterpillar by orient-
ing each edge arbitrarily. In this section the directed caterpxlla.r factoriza-
tion of symmetuc crowns is investigated. We assign the arc a,b and the
arc b,a. in C}, & With the same label of a;b; in Cpt, ie., for 1 < t < k,
a,b.+t has label ¢, and b;.,.ta, also has label ¢.

Suppose that G is a subdigraph of C;, ;. and G has no isolated vertex.
The dual of G, denoted by Dual(G), is the subdlgraph of C;, ; induced by
the arc set { b_;a_;: a,b € E(G)} v {a_,b_. b ia; € E(G)}. Note that
Dual(G) = G. Note also that the arc a,b in G, which is from A to B,
and the corresponding arc b_ga_, in Dual(G), which is from B to A, have
the same label. Similarly, the arc bra; ja; in G, which is from B to A, and
the corresponding arc a_;b_; in Dual(G), which is from A to B, have the
same label.
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For a subdigraph S of Cj; and an integer v, let S + v denote the
subdigraph of Cj, which is induced by {@i+vbjsv : ab; € E(S)} u
—_— —
{bj.H,a,-.H, : bja.,' € E(S)}
Lemma 3.1 Let G be a caterpillar of order t, and the directed caterpillar
G be a digraph obtained from G by orienting each edge of G arbitrarily. We

have the following.
(1) If G is balanced, and n is an integer > t — 1 such that n =0 (mod t/2),

then Cy,,_, has a G-factorization.
(2) If G is unbalanced, and n is a positive integer such that n =0 (mod t),
then C, ., has a G-factorization.

Proof. Let G = S(dy,dz, -+ ,dy) be a caterpillar of order . By Lemma 2.1,
there exists a subgraph G; of the crown Cp¢—1 such that

(i) G1 =G,

(i) the vertex set of Gy = {a;: i =0,-1,-2,--+, —dp —dy —dg — -+ —
d2[§]}u{bj 1§=1,2,--+,dy +d3+d5+"’+d2|.g;_1_]+1},

(iii) the edges of Gy have labels 1,2,3,---,¢t—1.

Since G; & G, we can orient the edges of G; so that the resulting
digraph, say Go, is isomorphic to G. Hence G is a subdigraph of Cy ,_,
such that

(i) G = éa

(i) the vertex set of G2 = {a; :i=0,-1,-2,-+-, —dg —~dg —dg — - - =
d2|.§J}U {bj:j=1r2"",d1+d3+d5+"'+d2l1;_1_-|+1},

(iii) the arcs of G have labels 1,2,3,---,¢t— 1.
Let G3 = Dual(G2). Then

(i) ngé,

(i) the vertex set of G3 is {a; : i = —1,=2,-++, —dy —d3 —ds — -+ —
dgp 25141} U {bs :5=0,1,2,---,dz +da+ds+ - +dg 3]},

(iii) the arcs of G3 have labels 1,2,3,---,t—1.

Now we prove (1). Since G is balanced, we have d; + da+ds+ -+
d2|.l§"1'.|+1 = 1+d2+d4+°'-+d2w.] =t/2. Let n' = #2- and let F} and F3
be subdigraphs of C;, ,_; such that F; = GoU(G2+ HU(G2+2-5)U(Ge+
3-%)U-"U(Gz+(’n'—l)-;-) a.ndF2=G’3U(G‘3+%)U(G3+2'-;-)U(G3+
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3-2)U---U(Gs+(n' = 1)£). Then both F; and F; are G-factors of Cri1
We can see that C;,,_; can be decomposed into the following G-factors:
hA+1,F+2,--- 7 +(% —1) and Fz,F2+1,F2+2,---,F2+(% -1).
Thus C;,_; hasa G-factorization.

Next we prove (2). Let G4 =Gs+ (1 +dy +ds+ds+--- + dy) ezt 1)
Then

() G, G,

(ii) the vertex set of G4 is {a; : 4 =1,2,---, —1+dy +dg+dg + -+ +
d2|_&3.‘.]+1’d1 +d3+d5+"'+d211’-;—¥_|+1} Ufbj:j=1+d +ds+
d5+"'+d2lgi_l.1+l,2+dl+d3+d5+"'+d21&;_11+1,"')1+d1+
dy+dg+dg+-- +dy =t}

(iii) the arcs of G4 have labels 1,2,3,---,t—1.

Let n’ = 2 and let G5 be a subdigraph of C;. « such that G5 = GoUG,,.
Note the vertex set of Gs is {a; : —da —dy —dg — --- — daig) < ¢ <
dytdgtds+: - +dy vea 1 JU{D; 1 1 < G < 14+di+daptdy+da+ - +dy =t}
Let F be a subdigraph of C, i such that F = G5U(Gs+t)U(Gs +2t)U- - -U
(Gs + (n' — 1)t). Then F is a G-factor of nt—1, and Cp . is decomposed
into the following G-factors: F,F +1,F + 2, -, F4+(t-1). a

Now we have the necessary and sufficient condition for the directed
caterpillar factorization of symmetric crowns.

Theorem 3.2 Let G be a caterpillar of order t, and the directed caterpillar
Gbea digraph obtained from G by orienting each edge of G arbitrarily. We
have the following.
(1) Suppose that G is balanced. Then the following conditions are equiva-
lent.

A.Cp . hasa G-factorization.

B. 2C, . has a G-factorization.

C. n 2k are positive integers and n =0 (mod t/2), k = 0 (mod t — 1).
(2) Suppose that G is unbalanced. Then the following conditions are equiv-
alent.

A.C, hasa G-factorization.

B. 2Cy  has a G-factorization.

C. n 2 k are positive integers and n =0 (mod t), k =0 (mod t — 1).

Proof. We first prove (1).

(A = B) This is trivial.

(B = C) It is trivial that n > k. Since G is balanced, t is an even integer.
By Lemma 1.1 (1), 2n = 0 (mod t). Hence n =0 (mod t/2). By Lemma 1.2
with A = 2, we have k=0 (mod £ — 1).
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(C=A) Sincen2k2t-1,n=0 (mod t/2), it follows from Lemma 3.1(1)
that C, ,_, has a G-factorization. Sincen > kand k=0 (mod t - 1), C7 ,
has a G-factorization by Lemma 1.5.

Next we prove (2).

(A = B) This is trivial.

(B = C) Since 2Cnh is a balanced connected bipartite multigraph of

order 2n, and the caterpillar G is an unbalanced connected bipartite graph

of order ¢, by Lemma 1.3 the existence of G-factor of 2C,, x implies n =

0 (mod t). By Lemma 1.2 with A = 2, we have k = 0 (mod ¢ — 1).

(C=> A) Since G is an unbalanced caterpillar of order ¢ and n is a positive

integer with n = 0 (mod ¢t), by Lemma 3.1(2) C; ,_, has a G-factorization.

Sincek =0(mod ¢t —1)and k < n, C; ; hasa G-factorization by Lemma 1.5.
(]
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