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Abstract: A partial latin square P of order n is an
n X n array with entries from the set {1,2,...,n}
such that each symbol is used at most once in each
row and at most once in each column. If every cell of
the array is filled we call P a latin square. A partial
latin square P of order n is said to be avoidable if
there exists a latin square L of order n such that P
and L are disjoint. That is, corresponding cells of P
and L contain different entries. In this note we show
that, with the trivial exception of the latin square of
order 1, every partial latin square of order congruent
to 1 modulo 4 is avoidable.

1. INTRODUCTION

In what follows, N(n) = {1,2,...,n}. A partial latin square P of
order n a set of ordered triples of the form (i, j, k), where 4,5,k €
N(n) with the following properties:

o if (¢,j,k) € P and (i,5,k') € P then k= k',

o if (,7,k) € P and (3,5',k) € P then j = j/ and

o if (¢,5,k) € P and (¢/,5,k) € P then i =¢'.
We may also represent a partial latin square P as an n x n array
with entries chosen from the set N(n) such that if (i, 4,k) € P, the
entry k occurs in row ¢ and column j.

In this paper we wish to keep an informal tone to the proofs. Nev-
ertheless we make the following points clear to avoid any ambiguity.
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Firstly, the term entry never refers to a row or a column. Specifically,
an element of P is a triple (i,j,k) € P, whereas an entry in P is a
value k, k € N(n) such that (i, j, k) € P, for some i, € N(n). Also,
when we say that a row i occurs in a latin square P, we mean there
is some column j and entry k such that (¢,j,k) € P. With similar
meaning, we may also say that a column j or entry k occurs in a
partial latin square P.

Note that a partial latin square has the property that each entry
occurs at most once in each row and at most once in each column.
If all the cells of the array are filled then the partial latin square is
termed a latin square. That is, a latin square L of order nisannxn
array with entries chosen from the set N(n) in such a way that each
entry occurs precisely once in each row and precisely once in each
column of the array.

A partial latin square of order n is said to be completable if there
exists some latin square L of order n such that P C L. Not every
partial latin square is completable; the partial latin squares P2 and
P3 below are clearly incompletable.
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For a given partial latin square P the set of cells
Sp = {(3,5) | (3,4,k) € P, for some k € N(n)}

is said to determine the shape of P and |Sp| is said to be the size
of the partial latin square. That is, the size of P is the number of
non-empty cells in the array. A partial latin square P which is not a
latin square is said to be mazimal if for any partial latin square Q,
P C Q implies that P = Q. (Thus a maximal partial latin square is
incompletable.) The examples P2 and P3 above are both maximal
partial latin squares. A partial latin square P of order n is said to
be avoidable if there exists a latin square L of order n such that
LNnP=0.

Two partial latin squares P and Q are said to be isotopic if there ex-
ist three permutations ¢, 8,7 on the set N(n) such that (i,j,k) € P
if and only if (a(3), B(4),v(k)) € Q. Since an isotopism just involves
a relabelling of entries and a reshuffling of rows and columns, most
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structural properties of a partial latin square are preserved under iso-
topism. In particular, if a partial latin square P is avoidable, then
any isotopism of P is also avoidable.

There is another kind of equivalence if we transpose columns with
rows, or permute row, column and entry labels with each other. For
a given partial latin square P, the parastrophies (or conjugates) of P
are the partial latin squares given by:

{G,k,5) | (¢,5,k) € P}, {(k,4,9) | (,4,k) € P}
PT = {(j,4,k) | (3,5, k) € P},{(k,,5) | (3,5,k) € P},
{(G, k) | (3,5, k) € P}.

The parastrophy PT (labelled above) is also called the transpose of P.
Again, if a partial latin square P is avoidable, then any parastrophy
of P is also avoidable. The proofs in this paper use isotopies and
conjugacies freely and frequently.

To date, up to isotopism, there are only three partial latin squares
which are known to be unavoidable. One is trivially the latin square
of order 1. The remaining two are P2 and P3, given above. In fact,
the following is conjectured:

Conjecture 1. (Chatwynd and Rhodes [1]) If n > 3, every partial
latin square of order n is avoidable.

Although it was Chatwynd and Rhodes who first formally made
this conjecture, the problem originates in work by Haggkvist, who
showed the conjecture to be true in the following case:

Theorem 2. (Higgkvist [4]) Let n = 2* and let P be a partial latin
square with an empty last column. Then P is avoidable.

This result was broadened to the following:

Theorem 3. (Chatwynd and Rhodes [1]) Any partial latin square
of order n is avoidable, where n > 3 and either n is even or n is a

multiple of three.

The problem of avoiding partial latin squares is related to the in-
tricacy of avoiding arrays, discussed in [6]. The next lemma has a
clear proof.

Lemma 4. Let P and Q be partial latin squares such that Q is
avoidable and P C Q. Then Q is also avoidable.
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Any latin square of order at least 2 is avoidable (simply relabel the
entries). The following theorem is then immediate.

Theorem 5. (Theorem 2.1, Chatwynd and Rhodes [1]) Any partial
latin square of order n > 1 with unique completion to a latin square
is avoidable.

From the above observations, it follows that if we can avoid any
maximal partial latin square of order », we can avoid any partial
latin square of order n. With this in mind, the next result will come
in handy:

Theorem 6. (Theorem 7, Horak and Rosa [5]) Let P be a maximal
partial latin square of order n. Then 0.5n2 < |P| < n2 -2

The following lemma is also useful.

Lemma 7. Let m be some integer such that every partial latin
square of order m is avoidable. Then for each integer k¥ > 1, every
partial latin square of order mk is avoidable.

Proof: Let P be a partial latin square of order km and let L be
a latin square of order km which partitions into k2 disjoint latin
subsquares, each of ordér m. Let M be one of these subsquares
and suppose that M contains the entries from the set E C N(n),
where |E| = m. Next construct a partial latin square P’, by deleting
any occurrences of entries N(n) \ E from the corresponding cells in
P. Rearrange M so that it avoids P’. (This is possible as we are
assuming that every partial latin square of order m is avoidable.)
Repeat for each m x m subsquare. The resultant latin square avoids
P. 0O

Before commencing our proofs, we introduce some further notation.

A transversal is a partial latin square of size n and order n that
conatins each row, column and entry exactly once. A partial transver-
sal is any subset of a transversal. In this paper a quasi-transversal is
a partial latin square in which each row and column occurs at most
once. So in a quasi-transversal, entries may be repeated.

A k x | partial latin square is one in which entries may occur only
within a set of k rows and [ columns. Let P be a partial latin square
of order n and let R, C be subsets of N(n). Then the partial latin
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square P(R x C) is defined as:
P(RxC)={(i,j,k) | i€ R,j € C,(3,5,k) € P}.
Clearly P(R x C) is a |R| x |C| partial latin square.

2. AVOIDING PARTIAL LATIN SQUARES OF ORDER 5

There are, up to isotopism and under parastrophy, exactly two latin
squares of order 5 (see, for example, [2]). We label these squares L5.1
and L5.2:

112]13[4|5 1]2(314]5
2(3[(4]5]1 21114(5]3
3{4]5]1(2 3|/4]|5]1]2
4(5]1]2|3 4151231
5/1(2[3(4 513(1[2]4
L5.1 L5.2

We will mainly use isotopisms of L5.2 to avoid partial latin squares
of order 5.

Lemma 8. Let P be a maximal partial latin square of order 5. Then
there exists a row, a column, and an entry which occurs more than

once in P.
Proof: From Theorem 6, |P| > 13. The result then follows. 0O

Definition 9. We call a 2 x 3 partial latin square appropriate if
it contains at least two entries in one of its rows but at most three
distinct entries altogether.

Lemma 10. Let P be a maximal partial latin square P of order 5.
Then either P or the transpose of P contains an appropriate partial
latin square.

Proof: Note that an appropriate partial latin square has two op-
posing (but not contradictory) properties: on the one hand we need
to minimize the number of distinct entries to at most three; on the
other hand we need a row that contains at least two entries. Our
proof is a careful balancing of these properties.

Now, from Theorem 6, since P is maximal, P has at least two empty
cells. We split up our proof into cases depending on the maximum
number of empty cells in a row or column.

Case Al: P has a row with exactly one empty cell. Let this row
be 7 and let r’ be another row with at least one empty cell. Suppose

261



cells (r,c) and (r',c') are the empty cells. First consider the case
¢ = ¢. Then there must exist a cell (r/,c”) such that ¢’ # ¢/ and
either (/,¢") is empty or the entry in cell (r’,c") also occurs in
some cell (r,¢"). In either case P({r,r'} x{c,¢",c"}) is appropriate.
Otherwise we may assume that ¢ # ¢’

If the entry in (', ¢) equals the entry in (7, ¢), then for any column
' & {c,c}, P({r,v'} x {c,¢,"}) is appropriate. Otherwise suppose
1€ (r,d) and 2 € (,c). If either 1 or 2 (or an empty cell) occurs
again in rows r U r/, we can append an extra column as before.
Otherwise, exactly three distinct entries 3, 4 and 5 occur in the
columns excluding ¢ and ¢/, and each of them occurs in row r, so
P({r,"} x (N(5) \ {c,'})) is appropriste.

Case A2: P has a column with exactly one empty cell. Here we
apply the proof for Case Al to the transpose of P.

Case B: P has a row with exactly two empty cells. Let this row be
r and suppose 1 € (r,1), 2 € (,2), 3 € (,3) and (r,4) and (r,5) are
both empty. Take any other row r’. Firstly, suppose that at least
one of the entries 1, 2 or 3 occurs in cell (/,4) or cell (r/,5). Without
loss of generality assume that (r’,4) contains entry 1. Then if (', 1)
is non-empty, P({r,7'} x {1,4,5}) is appropriate. On the other hand
if (r',1) is empty, P({r,r'} x {1,2,4}) is appropriate.

Secondly, suppose that at least one of cells (r/,4) and (r',5) is
empty. Without loss of generality let (,5) be empty. Consider the
cells (', 1), (r',2) and (r,3). Since they lie in the same row, at least
one contains neither the entry 4 nor the entry 5. Suppose without
loss of generality that (r',1) is one such cell and that (r’,1) contains
the entry 2. Then P({r,7'} x {1,2,5}) is appropriate.

Thirdly and finally, the cells (r’,4) and (r’,5) contain the entries 4
and 5, in some order. In this case P({r,r'} x {1,2,3}) is appropriate.

Case B2: P has a column with exactly two empty cells. Here we
may use the transpose of P.

Case C: Every row or column has at most two filled cells. Under the
appropriate conjugacy/parastrophy, we can assume that 1 € (r, 1),
2 € (r,2) and each other cell in row r is empty. But each column has
at most two filled cells so there exists a row ' # r such that (r/,1)
and (r’, 2) are empty. Then P({r,r'}x{1,2,3}) must be appropriate.
O

Theorem 11. Every maximal partial latin square of order 5 can be
avoided.
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Proof: Let P be a maximal partial latin square of order 5. From
the previous lemma, we may assume P contains an appropriate 2 x 3
partial latin square. So, by transpose and isotopisms, we may assume
that (1,3,1),(1,4,2) € P and that P> = P({1,2} x{3,4,5}) contains
no occurrences of the entries 4 and 5. We then define P, = P({1,2} x
{1,2}), Ps = P({3,4,5} x {1,2}) and P, = P({3,4,5} x {3,4,5}).

We will construct a latin square Q of order 5 such that QN P = 0.
Incidentally to the lemma, @ will be isotopic to the latin square L5.2.

We first define Q;, Q2, Qs and Q4 on the same sets of cells as P;,
P, P; and Py, respectively, except as subsets of Q rather than P.
First consider Q;. In this subarray we will place a latin subsquare
of order 2 based on the entries 1 and 2. Since the entries 1 and 2
occur neither in cell (1,1) nor in cell (1,2) of P, this subsquare can
be made to avoid the corresponding subarray P; of P.

We next fill rows 3 to 5 of Q. Consider the subarray P;. Let

Pj C Py be the set of cells in P4 containing either entry 1 or entry
2. Since (1,3,1),(1,4,2) € P, |Pj| < 4.
Claim: We can locate a quasi-transversal R in P, of size 3 such that
(Ps+\ R)NS = @, where S is a partial latin square with the same
shape as Py \ R and S contains exactly three occurrences of 1 and
three occurrences of 2. Moreover, either:

(A) at most one cell of R contains an entry from {3, 4, 5}; or

(B) at least two rows of Py each contains each of the entries 3, 4
and 5; or

(C) at least two columns of P, each contains each of the entries
3, 4 and 5.

Suppose, in the first instance, that |Pj| > 2 and there exist two
cells in P; that share neither a common row nor a common column.
Then the following diagrams show each possible configuration of P;,
up to any row-relabelling.
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1(2 1 211 112
2 2 1 1 2 1 211
1 2 2 1
2|1 2 2 2 2
1 1 1 1
2 1 2 2 1
2 2
1 1
1 2
Let
211 *|2]1
Si=|*x[1[2| and Sp=[1]|*]|2}
112 % 211 =

Then letting S = S; for the first two examples and S = Ss for the
remainder, S always avoids P, \ R, where the cells of R are marked
with *. Moreover in all of these cases at least two cells from R contain
either 1 or 2. Thus at most one cell from R contains an entry from
{3,4,5}. In other words all of these cases satisfy Case A.

Otherwise, |Pj| < 2 and any two cells of P; lie in either a com-
mon row or a common column. In this case no matter which quasi-
transversal R we pick, an appropriate S can be constructed to avoid
Py \ R. If we can construct an R that intersects at most once with
entries 3, 4 and 5, we have Case A. Otherwise, all the cells that are
either empty or contain 1 or 2 must lie in a single row or column of
P, implying Cases B or C. Thus, our claim is proven!

Next, since we can still reorder rows 3, 4 and 5 without any loss
of generality, assume that R = {(3,3),(4,4),(5,5)}. We construct
a 3 x 3 partial latin square M as follows. For convenience, we will
break convention and label the rows of M with the set {3,4,5} and
the columns with the set {1,2,3}. In columns 1 and 2, we place the
corresponding entries from P. (So the first two columns are equal
to P3.) In column 3 of M, we place the entries from cells (3,3),
(4,4) and (5,5) from P into the cells (3,3), (4,3) and (5,3) of M,
respectively. Finally, delete from M any occurrences of the entries 1
and 2.
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First, note that M is a partial latin square. Secondly, note that for
Case A, M has two empty cells within column 3. For Case B, up to
isotopism, P4 must be the following:

3[4]5
4(5]3|

Thus M will have two empty cells within a row. Similarly, for Case
C, M will also have two empty cells within a row. It follows that
for any case, M is avoidable by a 3 x 3 latin square M’ based on
the entries 3, 4 and 5. (Recall from the Introduction that the only
unavoidable partial latin square of order 3 has at most one empty
cell in each row and column.)

We let the first two columns of M’ become Q3. The entries in cells
(3,3), (4,3) and (5,3) of M’ are next placed in cells (3,3), (4,4)
and (5,5) of Q. By construction these will avoid the corresponding
entries of P. Finally we fill in the remaining cells of Q4 with the
isotopism of S that avoids Py \ R.

Thus we have determine subarrays @1, @3 and Q4 which each avoid
Py, P3 and Py, respectively. So, up to isotopism (and possible rear-
rangements of entries 1 and 2) Q1 UQ3U Q4 looks like the following:

5(1[2
2(13(1
1124

w
COf O| ) =] DO

So in order to complete @ to a latin square, Q3 is equal to either

3[415] . [A3[3
4]513] * [374[5

But as P, contains no occurrences of 4 or 5, at least one of these will
avoid P,, O

Applying Lemma 7 to Theorem 11, we obtain the following corol-
lary.

Corollary 12. Any partial latin square of order 5k is avoidable, for
each k > 1.
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3. THE CASE n > 13

Here we prove that any partial latin square of order n is avoidable,
where n > 13 and n = 1 (mod 4). Note that the case n = 9 is done
by Theorem 3 ([1]).

First we observe a few properties of latin squares of order 4. There
are, up to isotopism and parastrohpy, two latin squares of order 4

([2)):

112134 112]3[4
2|1]4(3 2(114|3
3(4[2]1 31412
43|12 4(3(2]1
L41 L4.2

Given a latin square L of order 4, how can we quickly check whether
L is isotopic to L4.1 or L4.2? The quickest way is to count the
number of 2 x 2 latin subsquares. The latin square L4.1 has four of
these, while L4.2 has twelve.

The subsquares of L4.1 are: Ld.1a = L4.1({1,2} x {1,2}),L4.1b =
L41({1,2} x {3,4)),L41c = L4.1({3,4} x {1,2}) and Ld1d =
L4.1({3,4} x {3,4}). If we permute the entries within just one of
these subsquares, we always obtain a latin square isotopic to L4.2. To
illustrate this, swap the entries 1 and 2 within L4.1({3,4} x {3,4}).

Another important property that will exploit is that L2 partitions
into 4 disjoint transversals:

1 ) 3 )
I3 + 7]+ i
3 1 ) 3

Finally, observe that there exists a latin square that is isotopic to
L4 and avoids both L4 and Lyo:

3(4(1]2
41321
112]3(4]
2(1]4]3

Definition 13. Given a partial latin square P, let R(i) = {k |
(i,5,k) € P} and C(j) = {k | (,5,k) € P}. That is, R(i) is the set

266



of entries that occur in row ¢ in P and C(j) is the set of entries that
occur in column j of P.

Lemma 14. Let P be a maximal partial latin square of order 4.
Suppose furthermore that for each cell (7,j) that is empty in P,
R(7) N C(5) = 0. Then P, up to isotopism and parastrophy, is equal
to either:

1(2 11213
211 2131
34| or 3112
413 4
P4.1 P4.2

Proof: If P is maximal and of order 4, then for each empty cell (3, 5)
of P, R(i)UC(j) = N(4). If P satisfies the conditions of this lemma
then we also have R(z) N N(j) = 0. Thus, without loss of generality,
let the cell (1,4) be empty and either:

(1) R(s) = {1,2,3} and C(j) = {4}; or

(2) R(?) = {1,2} and C(j) = {3,4}.

Assume the first case. Without loss of generality, (1,1,1), (1,2,2),
(1,3,3), (4,4,4) € Pandcells (1,4), (2,4) and (3,4) are empty. Since
(2,4) and (3,4) are empty, we must have R(2) = R(3) = {1,2,3}.
It follows that P({1,2,3} x {1,2,3}) is a latin subsquare of order 3.
Thus P is isotopic to P4.2 above.

Otherwise, without loss of generality, (1,1,1), (1,2,2), (3,4,4),
(4,4,3) € P and cells (1,3), (1,4) and (2,4) are empty. Since (2,4)
and (1,3) are empty, R(2) = {1,2} and C(3) = {3,4}, respectively.
Since R(2) N C(3) = @, the cell (2,3) must be empty. It follows
that (2,1,2),(2,2,1),(3,3,3), (4,3,4) € P, and P is isotopic to P4.1
above. [

Lemma 15. Let P be a partial latin square of order » such that
every row (column) of P has either 0 or n empty cells. Then P is
completable to a latin square of order n.

Proof: This is a simple application of Hall’s Condition. (See [2], for
instance, for a proof.) 0O

Lemma 18. Let P be a partial latin square of order 4. Then some
isotope or parastrophy of P is either equal to P4.2 or avoids L4.2.
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Proof: Suppose first that P is completable to a latin square. Then
P is completable to an isotope of either L4.1 or L4.2. However, an
isotope of L4.2 may avoid either L4.1 or itself (from the preamble in
this section), so we are done.

Henceforth P is a maximal partial latin square. Suppose that for
each empty cell (3, 7) in P, R(i) N C(j) = @. Then, from Lemma 14,
P is isotopic to either P4.1 or P4.2. If P is isotopic to P4.2, this
satisfies the conditions of the lemma. Otherwise observe that P4.1
is avoided by:

= aof ] W
BO| | o]

W] I =N
O3 > DO =

which is isotopic to L4.2.

We may thus assume from now on that there is some empty cell
(4,7) with R() N C(j) # 0. So, without loss of generality, let
(1,2,1),(2,1,1) € P and let the cell (1,1) be empty.

Suppose in the first instance that cell (2,2) is empty in P. We
construct a latin square Q that avoids P as follows. Observe that
there are no occurrences of the entry 1 within P({1,2} x {3,4}) or
P({3,4} x {1,2}). It follows that we can fill the cells of Q({1,2} x
{3,4}))UQ({3,4} x {1,2}) with entries 1 and z, for any z € {2,3,4},
in such a way that there is no intersection so far between P and Q.
Now consider P({3,4} x {3,4}).

We wish Q({3,4} x {3,4}) to be a 2 x 2 latin subsquare based
on two entries a and b. However, if there is a partial transversal
of size 2 containing entries a and b within P({3,4} x {3,4}), then
Q({3,4} x {3,4}) cannot avoid P({3,4} x {3,4}).

There are at most two partial transversals of size two within P({3, 4} x
{3,4}). If there are exactly two, then by the definition of a partial
transversal, P({3,4} x {3,4}) must contain each of the entries 1,
2, 3 and 4 exactly once. It follows that there is at most one par-
tial transversal in P({3,4} x {3,4}) that does not contain the entry
1. Thus there are at least two possible pairs {z,y} from the set
{{2,3},{2,4},{3,4}} such that we can fill Q({3,4} x {3,4}) with
entries = and y, whilst still avoiding P({3,4} x {3,4}). For any such
pair {z,y}, we can also fill Q({1,2} x {1,2}) with entries z and y,
avoiding P({1,2} x {1,2}) in the process.
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So, letting z = N(4)\ {1, z,y}, we have a latin square Q that avoids
P. If Q is isotopic to L4.2 we are done. Otherwise, since cell (2, 2) is
empty in P, we can swap the entries z and y within Q({1, 2} x{1,2}),
creating a @ that both avoids P and is isotopic to L4.2.

Otherwise cell (2,2) is non-empty in Q. Without loss of generality

let (2,2,2) € P. Suppose firstly that there is no partial transversal

in P({3,4} x {3,4}) with entries 3 and 4. Then we can avoid P with
a latin square @ formed by putting entries 1 and 2 in the cells of
Q({1,2} x {3,4}) UQ({3,4} x {1,2}) and entries 3 and 4 in the cells
of @({1,2} x {1,2}) UQ({3,4} x {3,4}). Moreover we can make Q'
isotopic to L4.2 by swapping entries 3 and 4 within Q({1,2} x {1,2}),
if necessary.

Otherwise, without loss of generality, (3,3,3),(4,4,4) € P. Since
cell (1,1) is empty and P is maximal, the entry 2 must occur within
R(1) UC(1). So, without loss of generality, (since 3 and 4 are so
far interchangeable and P is so far symmetric) let (1,3,2) € P.
Similarly, the entry 4 must occur within R(1)UC(1), so (3,1,4) € P.
Next, if cell (2, 3) is empty, entry 4 must occur within R(2) U C(3),
which is impossible. Thus we may infer that (2,3,4) € P. By similar
reasoning (4,3,1) € P.

If entry 1 does not occur in cell (3,4) of P, the latin square

=l oo | o
| D] =] o
O] ] o] =
[ZL7 o 1 N

avoids P. Note that this square is isotopic to L4.2. Otherwise
(3,4,1) € P. If cell (1,4) is empty, the subarray P({1,3} x {2,4})
contains only one entry. So we have an isotopism of the case when
(2,2) is empty. Otherwise (1,4,3) € P. Considering all possible
attempted completions of P, we have that P is either:

1[2(3 1]2]3
1(2(4 (2[4

4 31| & [4[ [3[1¢
3] (114 23[1(4

269



These partial latin squares are avoided by

1/1213(4 413112
413|121 d 2]1113[4
3[41(2] ¢ [1[2[4[3]
211143 31421
respectively, each of which are isotopic to L4.2, as required. [

So, from the previous lemma, P4.2 is the unique partial latin square
(up to isotopism and parastrophy) that cannot be avoided by L4.2.

Lemma 17. Consider the partial latin square P4.2. Let P4.2' be
the partial latin square created by deleting the entry k from any
two cells of P4.2; for some fixed k € {1,2,3}. Then P4.2' may be
avoided by an isotope of L4.2. Moreover there is a transversal in this
isotope of L4.2 that includes the two cells from which entries have
been deleted.

Proof: First note that there are isotopisms of P4.2 which rearrange
the entries 1,2,3 in any order, while leaving 4 fixed. Thus, without
loss of generality, we may assume that P4.2’ is the partial latin square
below on the left, which is avoided by L4.2' (which is isotopic to L4.2).

1 3 3(1(2]4
3{1] 214]3|1
3|1]2 4121|838
4 1{3]14]2

P42’ L4.2

The required transversal is shown in italics. [

Lemma 18. For every integer m > 3, there exists a latin square M
of order m, such that M contains a transversal on the set of cells
{G,3) |1 <i<m}.

Proof: For m = 3, a latin square M with the required properties is
the following:

2]11]3
1132}
3[2]1

For m > 3, we can use the fact that there exists a diagonal latin
square M of order m ([3]). (A diagonal latin square is one which
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contains a transversal on both the main diagonal {(3,7) | 1 <i < n}
and the back diagonal {(¢,m —i+1)|1<1<m}.) O

Given M as in the previous lemma, a latin square L of order 4m+1
may be constructed as follows. Let M} = {4k — 2,4k — 1,4k, 4k + 1}
for each k between 1 and m. Let L({1,2,3,4,5} x {1,2,3,4,5}) be
a latin square of order 5 based on the set of entries {1} U M}, where
(1,1,k) € M. For each i and j such that i # j, let L(M; x M;)
be a latin square of order 4 based on the set of entries M}, where
(¢,5,k) € M. For each i between 2 and m, let L(M; x M;) be a
latin square isotopic to L4.2 based on the set of entries M}, where
(4,4,k) € M. Next, replace a transversal from each L(M; x M;) with
four occurrences of the entry 1. Finally, there is a unique way to
complete row 1 and column 1 of L.

It is this form of construction that is used in the following theorem,
to generate a latin square L which avoids a given partial latin square
of order 4m + 1. The theorem is followed by an example in order to
clarify the process to the reader.

Theorem 19. Let P be a partial latin square of order n = 4m + 1,
where n and m are integers and m > 0. Then P is avoidable by
some latin square L of order n.

Proof: The cases n = 5 and n = 9 are done by Theorem 11 and
Theorem 3, respectively, so we may assume that m > 3. From the
commentary in the introduction, we may assume that P is maximal.
It follows from Theorem 6 that | P| > n2/2. Thus there is some entry
(say, 1) that occurs at least n/2 > m — 1 times in P.

So choose a set @ = {(ry,¢;) | 1 <% < m — 1} of cells which each
contain the entry 1. Next select any row r & {r; | 1 < i < m —1}.
Let E = {e| (r,ci,e) € P,1 <i < m—1}. Since some cells of P may
be empty, the size of E is at most m — 1. Next, locate a column ¢
such that:

(1) cg{ci|1<i<m-—1};and
(2) the entry in (r;, c) is not equal to the entry in (v, ¢;), for each
,1<i<m-—1; and
(8) there exists at least two distinct r; such that either (r;,c) is
empty or (r;,c) contains some entry e ¢ E.
Why does such a column exist? There are 4m+1 columns altogether.
Conditions 1 and 2 each rule out at most m — 1 choices for ¢. Since
|E| £ m—1, the entries from E occur at most (m —1)? times within

271



the set of rows {r; | 1 < i < m —1}. From Condition 3 we wish to
rule out columns that contain at least m — 2 entries from E within
this set of rows, so this excludes at most a further

(m-1)? _

m+—-1——<m+1
m-2) ~

m-2)

columns. But 4m +1—-2(m—1)— (m+1) = m+3 > 1 so there
certainly exists such a column.

Next we set up a one-to-one matching between the set of cells
{(re) |1 €4 <m-—1} and {(ri,c) | 1 < i < m—1} as fol-
lows. Firstly, if (r;,¢) and (r,c¢;) contain the same entry, we match
these. From Condition 3 above, there are at least two remaining
unmatched pairs of cells. It is thus possible to match these so that
for each 4, (r;,c) is not matched to (7, c;).

Let ep be the entry in cell (r,c) of P. Partition N(n)\ {eo} into m
disjoint subsets Ej, Es, ..., En, each of size 4 such that:

1. for each matching {(r;,c), (r,¢;)}, there exists a unique sub-
set Ey, where

2. if (r;,c) contains an entry ei, e; € Ey, and

3. if (r,c;) contains an entry es, ez € E.

Note there exists just m — 1 pairs in the matching, so there is one
subset in the partition (say E;) which does not correspond to a
matching.

Next, partition the columns of N(n) \ {c} into m disjoint subsets
Ci,Cs,...,Cnm, each of size 4, such that whenever (r,c;,e;) € P, if
ej € E then ¢; € Ck. (If row 7 is full in P there is a unique such
partition of the columns; otherwise the columns which are empty
in row 7 may be placed arbitrarily.) Similarly, partition the rows of
N(n)\{r} into m disjoint subsets Ry, Ry, ..., Rm, each of size 4, such
that whenever (r;,c,e;) € P, if e; € Ej, then r; € Ry. (If column C
is full in P there is a unique such partition of the rows; otherwise
the rows which are empty in column ¢ may be placed arbitrarily.)

Without loss of generality, we may assume that 7 = ¢ = 1 and
Ry = Cy = {4k — 2,4k — 1,4k, 4k + 1} for each k between 1 and m.
Observe that, by construction, for each k, 1 < k < m, there exists
an occurrence of the entry 1 within cells (r,¢’) and (r',c), where
r € Ri, 7 € Ry, ¢ € Cy, and ¢ & Ck. This implies, in turn, that the
entry 1 appears at most three times within the partial latin square
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P(Ry x Cy), for each k, 2 < k < m. Suppose that ey # 1 and 1 € E,
for some k. We then replace Ej with (Ey \ {1}) U {eo}.

This finishes our “fiddling” with P. We are now ready to construct
a latin square L which avoids P. Let M be a latin square of order
m containing a transversal. (Such a latin square exists from the
previous lemma as m > 3.) Relabel the entries of M so that cell
(4,7) never contains the entry i.

Let L({1,2,3,4,5} x {1,2,3,4,5}) be a latin square of order 5 based
on the entries {1} U Ey, where k is the entry in cell (1,1) of M. From
Theorem 11 in the previous section, this can be made to avoid the
corresponding cells of P. For each ¢ and j such that i # 4, place a
latin square of order 4 based on the entries E} on L(R; x C;), where
k is the entry in cell (¢,5) of M. Since any partial latin square of
order 4 is avoidable, each of these latin squares may be placed in
such a way to avoid the corresponding cells of P.

Next consider P(R; x C2) and suppose that (2,2,k) € M. (Note
that k # 2 by construction.) Delete any occurrences of entries in
P(Ry x C3) which do not occur in Ry. Let P’ be the resultant latin
square of order 4. If P’ is not isotopic to P4.2, from Lemma 16
it is avoidable by a latin square S isotopic to L4.2. In this case
S partitions into 4 transversals. Moreover, since 1 occurs at most
three times in P(Ry x C3), at least one of these transversals avoids
all occurrences of 1. Remove this transversal from S and fill the
missing cells with entry 1. We place this structure on L(Rz x C3).

Otherwise P’ = Py3. As before, we will place entry 1 in four
cells of L(Ry x C3). First we place entry 1 once in the set of cells
{(9,6),(9,7),(9,8)} and once in the set of cells {(6,9),(7,9), (8,9)}
so that any occurrence of 1 in P is avoided. The remaining two
entries 1 are then placed in cells that contain the same entry in P.
(This is possible as any 2 x 2 subarray in P4.2({1,2,3} x {1,2, 3})
must contain some entry at least twice.) Thus, from Lemma 17, we
can delete a transversal from some isotope of L4.2, replace the entries
of the transversal with four occurrences of the entry 1, avoiding P.

In either case there are then unique choices for the entries in cells

(1,6),(1,7),(1,8),(1,9), (6,1),(7,1),(8,1),(9,1)

in L. Each of these cells must contain an entry from E). However,
in P the entries in these cells are a subset of E, U {1}. Since k #
2, ExNE; =0, so P will be avoided here. We repeat for each
P(Ri x Ck), 2 < k <m — 1, and our construction is complete. [
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Example 20. Consider the following maximal partial latin square
P of order 13:

41567 [8(f9f10[11]12)1 ]2 (3
56489 7]11]12]10} 2|3 |1

64597 8[12(10f11]3 |12

7189 |10[11f[12]1[2 |34 ]5(6

89 [ 7J11f12]f10] 2|3 |1}]5]|6]4

97 ]8([12]10fj11 |3 |1 }|2[]6]4}|5

10f11]12f{1 |2} 3|4]|5|6[[7]8(9
11f12{10( 2|3 |[1]|5[(6]|4(8]9]|7
12[(10(11| 3|1 2]6[4[5]]9]7]8

112|345 6]7]|8[9]10]11]12
213|1[5]6] 48|97 }11{12]10
3126|4597 ([8]12[10]11
13

Using the previous lemma, we shall construct a latin square L of
order 13 which avoids P:

1(12]11]10]9 [ 3]4[13[26[7[8(5
12110/ 911|567 |8|4]2]3]13
1110|909 | 1112[[ 6|5 |8 | 7] 2]|3]13]4
109 12|11 1|7 |8|5(6][3[13][4]2
g (111 |12|10][87]6[5]18]4[2]3
315167 180N1]2]4]1310]9]11]12
1365187012 31(4]9]10]12|11
5171815161 4133112119 ]10
4181716 513123 (11]12]10]9
714123 13f10[911J12[5 168
61213 13|aof0l12]11|1([8]5]7
513 (13| 4] 2 12(11|9(|10[[8]6[7]1
8113142213 11|12]|10]9f7[5]1]6

Indexing the rows and columns with N(13), we choose 11 =3, ¢1 =
11, 75 = 11 and ¢ = 3 so that @ = {(3,11),(11,3)}. Then we choose
r = 1, which forces E = {2,6}. Next, ¢ = 1 is an appropriate choice,
as are the matchings {(1,11),(11,1)}, {(3,1),(1,3)} and sets R; =
C: = {2,3,4,5}, Ry = C; = {6,7,8,9}, Rs = Cs = {10,11,12,18},
E, = {5,6,7,8}, Ez = {9,10,11,12} and E3 = {2,3,4,13}. We
choose M to be the latin square of order 3 from the proof of Lemma
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18. Finally, we use Theorem 11 and Lemmata 16 and 17 to construct
the latin square L above. The doubled lines in each square are a
visual aid for checking that L avoids P.

The following problem remains open; from the results in this paper
it seems feasible.

Open Problem 21. Prove that any partial latin square of order
n > 3 is avoidable, where n = 3 (mod 4) and n is not divisible by 5.
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