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Abstract

We give an optimal degree condition for a tripartite graph to have
a spanning subgraph consisting of complete graphs of order 3. This
result is used to give an upper bound of 2A for the strong chromatic

number of n vertex graphs with A > n/6.

1 Introduction

The basic graph theoretical terms and notation not defined here can be
found in [Die97]. A balanced r-partite graph is a an r-partite graph with
vertex set V' partitioned into Vo U...UV,_; such that |V;| = n. We may
think of such a graph as a subgraph of K, (n), the blow-up of K,, where
the blow-up G(n) of a general graph G is obtained by replacing each vertex
v; in G with an independent set V; of size n and each edge v;v; with a
complete bipartite graph K(V;,V;).

We say that a graph G has a K..-factor if it contains n vertex disjoint
r-cliques — copies of the complete graph on r vertices. Hence a K,-factor
is a spanning subgraph with components which are complete graphs on r
vertices. In this paper we prove the following theorem.

Theorem 1. If G C K3(n) with §(G) > 3n then G has a K3-factor.

This theorem is optimal for a minimum degree condition. To see that,
join the vertices in Vj to all vertices of V3 U V; and then join the vertices
of ¥} to V; such that the bipartite graph between V; and V; contains no
perfect matching but has minimum degree at least in — 1.

For general K,-factors, we obtain the following result.
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Theorem 2. Letl, := Y ;_, 1/k. Any subgraph G of K (n) with minimum
degree

§(G)>(r—1-1/(1+l-2))n+ (r—1l—2/(1 +1r-2),

has a K,.-factor.

This is based on a minimum degree condition, (2) below, by G. Jin
for finding an r-clique. However, this is far from optimal for large r as is
demonstrated by Alon’s and Haxell’s result in [Alo92] and [Hax04] discussed
below.

The problem finding minimum degree conditions for finding K,-factors
in balanced r-partite graphs can also been formulated as the problem find-
ing a maximum degree condition for the strong chromatic number of graphs.
If G = (V,E) is a graph then the strong chromatic number of G, denoted
3x(G), is the minimum 7 such that the following hold: Any graph being
the union of G and a set of vertex-disjoint n-cliques is n-colourable. Here
we take the union of edges, adding vertices to G if necessary. Taking the
complementary graph, we see that this is exactly asking for a K, -factor in
a balanced r-partite graph, each part having n vertices. Note that, for the
complete bipartite graph K, », we get 3y (Knn) = 2A(Kn,n)-

In [Al092] N. Alon proves that s,(G) < KA(G) for a quite large con-
stant K. The value obtained is K = 220990, In [MRO2] it is pointed out
that a careful calculation would reduce it to K = 10 the constant is by
several authors believed to be smaller.

Conjecture 1. For all graphs G,
3x(G) < 2A(G)

The best bound published so far is s, (G) < 3A(G) — 1, given by Haxell
in [Hax04]. From Theorem 1, we conclude that the strong chromatic num-
ber can be bounded by 2A(G) if [V(G)| £ 6A(G). This result should not
be compared with the more complete results of Alon and Haxell. But, the
authors think that the tripartite case covered above has its own interest,
apart from verifying the conjectured bound for this case.

Actually, the problem of finding degree conditions that guarantees an
r-clique in vertex balanced r-partite graphs seems to be far from settled.
Following notation in [Bol78), we take d,(n) as the largest minimum degree
of a K,-free subgraph of K,(n). In [Jin92], G. Jin proves that 64(G) =
[(2 + 3)n] and it is proved to be a sharp minimum degree condition. In
fact it is proved that

i (r = 8. (w)/m) 2 5. o
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In particular, this means that the proof of Theorem 1 cannot be generalised
immediately to the r-partite case. For general » > 3, Jin obtains the upper

bound
5:(n) < (r — 1= 1/lr_o)n, @

where [, := Y . _, 1/k and this is essentially tight for r = 3,4. For r = 3,
the bound d3(n) < n is a result by Graver (see [Bol78]) which is used in
the proof of Theorem 1.

In [Bol78] it is conjectured that the inequality in (1) is actually an equal-
ity. Note that the result by Alon on the strong chromatic number — or
equivalently a K.-factor — gives a nontrivial upper bound for sup,, 6.(n)/n.
Such a bound is posed as an open problem in this, admittedly dated, ref-
erence book.

Another way of developing this question would be to view Theorem 1 as
a condition implying that a subgraph of the graph C3(n) has a Ca-factor.
Here, C;(n) denotes the blow-up of the r-cycle C, = {v;vi41 :4=0,...,r}
with indices reduced modulo r. A natural question would be to determine
minimum degree conditions for a cyclic C,-factor in a subgraph G of a
Cr(n), where a “cyclic C,-factor” means that each of the n components
in the factor is an r-cycle containing exactly one vertex from each of the
blown up vertices V;, ¢ =0,...,r — 1. Thus, a C,-factor need not be cyclic
for even .

A result similar to that of Theorem 1 for cycle factors is the following
for which we supply a sketch of proof.

Theorem 3. If G C C,(n) with §(G) > %n + 2 then G has a cyclic C,-
factor.

A more refined, and longer, version of our proof will bring the degree
condtion down to §n+ 1. A construction similar to that following Theorem
1 shows that 3n/2 is a lower bound on the degrees to ensure that C,-factor
exists in C,.(n). We conjecture that this is in fact the correct bound.

Conjecture 2. If G C Cy(n) with §(G) > 3n then G has a cyclic C,-
factor.

2 Proofs and remarks

Let G be a balanced tripartite graph satisfying the conditions of Theorem 1.
Induced subgraphs are denoted by G[S], where S C V(G). For § C V(G),
we use the notation d(z, S) for the number of edges in G joining the vertex
z with vertices in the set S C V/(G). For a subgraph H, let d(z, H) means
d(z,V(H)). When we take the cardinality of a graph, as in |F|, we mean
the number of edges in F'. Let the three parts of G be denoted Vp, V4, V, and
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when refering to one of these parts, say V;, the index ¢, should implicitly
be reduced modulo three so that the two other parts can be referred to as
Vis1 and Vi, say.

2.1 Proof of Theorem 1

We assume to arrive at a contradiction that
G admits no full K3-factor. (3)

We assume moreover that G is an edge maximal counterexample, so that we
get a Ks-factor by adding any edge to G. Thus G has plenty of configura-
tions, by which we mean an incomplete K3-factor F = FjU- - -UFy,_; of n—1
vertex disjoint copies of K3 in G. Denote by X = X(F) = V(G) \ V(F),
the three vertices not contained in F, where z; denotes the element of X
in part V;, for i = 0,1,2. For a vertex u in V'\ X, let F,, denote the unique
triangle in F' that covers u.

A vertex u € V;\ {z:} is ezchangeable relative the current configuration
if z; makes up a triangle T\, = G[{z;} U V(F,) \ {u}] together with the
other vertices of the clique F, in F containing u, i.e. if d(z;, Fy) = 2. Let
Y = Y(F) denote the set of exchangeable vertices and let ¥; = Y NV,.
Since d(v) > 3n/2, we have at least

¥i| 2 d(z:, VA X) = (n - 1) 2 n/2+1 - d(z;, X) (4)

exchangeable vertices in the part V;.

If u € V; is exchangeable, we may ezchange or interchange u with z; in
the obvious manner: We obtain the new configuration F/ = (F\ F,,) UT,,.
Note that, after this exchange, z; will be an exhangeable vertex in F'. After
this operation, the set of exchangeable vertices, Y’ = Y (F"), relative F' will
coincide with the set of exchangeable vertices Y = Y (F) relative F' except,
possibly, in the part V; and on the vertices of V(F,), i.e. Y(F) AY(F') C
ViUV (F,). It follows that a subset S C XUY of at most three exchangeable

vertices, such that
ISnVil<1

and such that for all components F; of F
IsSnF<1

is free in the following sense: We can exchange the vertices in S \ X one
by one to obtain a configuration F’ such that S C X’ = V(G)\ V(F").
From (3) we deduce that

H contains no free triangle T, (5)
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L.e. a subgraph T' ¢ K such that V(T') is a free set, since exchanging V(T
for X would give a full K3-factor.

Let H = H(F) = G[XUY] denote the subgraph of G induced on the set
of exchangeable vertices and X. We will consider the following properties
of the configuration F

G[X] contains zero edges (X0)
G[X] contains one edge, (X1)
G[X] contains two edges. (X2)
H = G[X UY] contains a triangle, (T)

We can clearly exclude the case that G[X] has three edges, since that would
mean that F'U G(X] is a full Ks-factor.

Let (A) ~ (B) mean the following: Given a configuration F satisfying
the property (A), we can either reach a contradiction to our assumption
(3) that G contains no Kj-factor or, by a series of legal exchanges, reach
a configuration F” that satisfies the property (B). We say that property
(A) can be reduced to property (B). The theorem is proved as soon as we
prove the following two lemmas. The first lemma allow us to reduce to the

case (X0).
Lemma 4. We have the following reductions.
1. (T) ~ (X0).
2. (X1) ~ (T).
3. (X2) ~ (X0) v (X1) vV (T).
The following lemma takes care of the remaining case.

Lemma 5. The property (X0) implies that G contains a full Ks-factor and
thus leads to a contradiction with (3).

2.2 Proof of Lemma 4

Proof of (T) ~» (X0). Let T be a triangle of H. As pointed out above, we
can exlude the case that T is free and hence T must share at least one edge
with F.

We reduce first to the case when T is contained in F: Assume without
loss of generality that, T = uow, uz, say, where u; € Y; and where uqujug =
F,, is triangle in F. If w; # u,, we obtain the case with one of the triangles
of H is entirely contained in F by, if z; # w,, interchanging z, with w,.
(If z1 = w;, we need to do nothing.) In this new configuration F’, the
vertex u; is exchangeable, together with ug and us and thus Fy, = wouyuy
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is a triangle in F' N H'. The situation is depicted in the right hand side of
Figure 1.

Thus we have reduced to the case when T C HNF. As is demonstrated
in figure 1, this implies that G[X] = 0: If, say, the edge zox; was present,
then zou;x2 is a free triangle; the edges zou; and u; T2 are due to the fact
that both ug and u, are exchangeable vertices. a

U

Figure 1: Left: The case when one edge of the triangle T' belongs to F'.
Right: The case when T C F'N H. Fat edges are edges in F' and square
vertices are vertices of X UY.

Proof that (X1) ~» (T). If G|X] contains exactly one edge. Then d(z;, X) <
1, for i = 0,1,2 and we obtain, on account of (4), that

|Y;| 2 n/2, fori=0,1,2. (6)
We show that
(6) = (T). (M

By (6) we have (X UY)NV;| > n/2+ 1 and we can take a balanced
induced subgraph H' of H = G[Y U X] with n’ = [n/2] +1 vertices in each
part. For u € H', we have degree

d(u, H') = d(u) — d(u, V \ V(H')) 2 3n/2 - 2n + 20’ > n.

By Gravers bound, i.e. the bound (2) for r = 3, d(u, H') > 83(n’) = n'
and hence H' contains a triangle, which means that we have reduced to
the case (T). O

Proof that (X2) ~ (X0) V (X1) V (T). Assume without loss of generality
that G[X] = {zoz1, T122}. By (4), |Yi| 2 n/2fori=0,2and 11| =2 n/2-1.
We may assume that |Y;| = n/2—1 since we would otherwise have (6) which
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by (7) implies (T). That (4) holds with equality for |Y;| implies that for
all triangles F; in the partial factor F', we have

d(mla F.‘1) Z 1: (8)

since otherwise the counting in (4) gives a higher number.
Ifi=01let i =2and if i = 2 let i = 0 (i will not be taken to be 1 here).

We have at least
d(z;) — d(z;, X) — d(z;, V\ (YU X)) 2 3n/2 — 1 - 2(n — 1) + |Y;| + |¥]

edges between z; and Y U X. Since |Y;| 2> n/2, we get d(z;, H) > |Y1| +1
which implies that d(z;, Y;) > 1. It follows there is a pair (2, 22) € Yo x Y2
such that z; is adjacent to 2;, for 2 = 0,2. Note that, neither z nor 2, can
be adjacent to z;, since each edge would give rise to a free triangle zgzpz;
(or z220z1). By (8) this means that zp and z; cannot belong to the same
triangle F; of F" and therefore {2y, 22} is a free set. By exchanging {zo, 2}
with {29, 22} we obtain a configuration such that G[X'] C {202} and thus
reduce to the case (X0) or (X1). O

2.3 Proof of lemma 5
By (4), we have |Y;| > n/2 + 1 and thus

(XuY)nVi|>n'=[n/2]+2.

Let H' be a balanced induced subgraph of G[XUY’] on exactly 3n’ vertices.
Then,
d(z,H') > [3n/2] - (2n - 2n') > [n/2] +4=n'+2. (9)

We orient the edges of H’ so that the edge uv is oriented u? if u € V; and
v € Viq1. For z € V(H'), let d*(z) and d~(z) denote the out-degrees and
in-degrees in this orientation of H', respectively.

Assume that @0 € H' is a free edge, i.e. F, # F,. Since H' is balanced
we know that

IN(u, H')NN(v,H')| 2 d~(u) + d* (v) — n'. (10)

If it holds that
d~(u) 2 d™(v) (11)

then, since d~(u) + d*(v) = d~(u) + d(v, H') — d~(v), we get from (10)
and (9) that

IN(u, H') N N(v, H')| 2 d(v, H') = ' > 2. (12)
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Thus, (11) implies that the edge uv is contained in at least two triangles
T = yvw and T¥ = uvw' contained in H’, with w # w'. Since we assumed
that uv is a free edge, both triangles must contain exactly one edge from
F, ie., say, F, = F,, and F, = F,, since otherwise we have obtained an
free triangle. We cannot have the case that F;, = F), since we assumed that
uv was free and it also follows that vw is a free edge. Note also that this
means the following: For any free edge wb € H' satisfying (11), there is a

continuing free edge 1 such that uw € F. (13)

The situation is illustrated in figure 2.3.

Figure 2: Condition (11) yields two triangles containing uv. Each must
share an edge with a triangle in F', and thus a free edge v% that continues
4D, such that vw € F.

w o w

Moreover, if the inequality (11) is strict then |N(u) N N(v)| > 3 and
we obtain a third, then a necessarily free triangle. It follows that d~(u) <
d- (v) for all free edges &b € H'. In other words d~ is nondecreasing in the
forward direction along free edges.

Let S be the set

- 1N . d= () = -

S={ueV(H'):d (u) vg&(ﬁe}qu (v)} (14)
of vertices of maximum in-degree d~. This is therefore an absorbing set for
the oriented graph H'. Here, (11) is satisfied with equality along all edges
@b, ww € H'[S). Since

d*(u) = d(u,H') - d™(u) 2 2,

each vertex u € S has at least one forward free edge ud, where the endpoint
v necessarily belongs to S.

Moreover, by (13), given a free forward edge @b in H'[S], we there
is a continuation 1')7.:7, such that vw is free and vw € F. We must have
w € S, since in-degree d~ is non-decreasing and hence we can repeat this
construction. Hence there is a directed cycle C of free edges where every
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Figure 3: The oriented 6-cycle C with inscribed triangles from F. We must
have two free triangles containing x;, since u; and v; are both exchangeable.

Up

vy vy

u.

T

three consecutive vertices uvw along C span an edge uw belonging to F.
Taking every second vertex of this cycle yields a cycle in F, i.e. a triangle.
Hence C must be a 6-cycle, C = ugv;uavou,voug with two inscribed tri-
angles from F', having the structure depicted in figure 2.3. All the vertices
along this cycle are all in Y and two belongs to, say, Y;. It follows from
exchangeability that z; must be adjacent to at least four distinct vertices
along the cycle C' but this means r, is adjacent to two consecutive vertices,
say ugvg. But then T = z1usvp is a free triangle, since upvy is a free edge,
which contradict (5). g

2.4 Proof of Theorem 2 (sketch)

The argument uses the bound (2) to find a free r-clique. We let F be n—1
vertex-disjoint r-cliques and define X and Y and the notion of exchangeable
vertices and free sets in the analogous manner as above. Note that the
degree condition in Theorem 2 implies that the complementary r-partite
graph K,(n) \ G, has maximum degree at most A = n/(1 + l,_3) — (r —
Dir—2/(1 + l—2). It follows that the sets ¥;, i = 0,1,...,, have at least
n/ =n— A elements and we consider an induced balanced subgraph H’ on
7 - n/ vertices. The minimum degree of H' is at least (r — 1)n’ — A, which
simplifies to (r —1—1/l,_2)n’+r—1. Thus, if we let H” = H’\ F then H"
satisfies the bound in (2) so we find a K, in H” which then is necessarily
free. O
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2.5 Proof of Theorem 3 (sketch)

Let the parts of G be denoted Vp, V4,.. ., V;_1, where indices are reduced
modulo . We let F C G be n — 1 vertex-disjoint admissible r-cycles and
define X = V'\ V(F). We denote the element in X NV; by z; . A vertex
u € V; is exchangeable if d(z;, F,,) = 2, where F,, is the cycle in F' containing
u. Let Y be the set of exchangeable vertices. Then Y; =Y NV, has at least
n/2 + 1 elements. A set S C Y is free if [SNV;| < 1 and F[S] does not
contain any edges. It is easily checked that such a set can be exchanged
with the corresponding subset of X.

Let H' be a balanced induced subgraph of G[X UY] with n' =n/2 +2
vertices in each part. We have

d(v,H') > (3n/2) +2—-2(n-n') 2n/2+4=1n+4.

We orient H' in the direction of increasing indices modulo 7, and let d~(v)
and d*+(v) denote the in-degree and out-degree of v in V/(H'), respectively.
The degree condition implies that d*(v) > 4 and hence we find a directed
cycle C = vgv; ... Vsr, ¥; € Y;, in H' where each edge v;vi is a free edge.
This cycle is schematically displayed in Figure 2.5.

Ve Yiogey

Co—oxf—0—0

Figure 4: Finding a free cycle in H for C,(n).

We claim that we can find such a cycle C with s = 1, i.e. making just
one round-trip. In this case it follows that V(C) is a free set and we are
done. Assume for contradiction that C is the smallest cycle and that s > 2.
If along C there is some pair 4 = v;, ¥ = Vi—r42, such that

dt(u)+d (v) 2n'+3, (15)
then there is a vertex w € V(H') N V4, which is adjacent to both v and
v and such that both uw and wv are free edges in H. As is illustrated in

Figure 2.5, we obtain the shorter cycle C' = WVi—r42Vi—prqs . - . V;w of free
edges. Inequality 15 must hold for some pair u = v;, v = vj—r42 since

rg—1
3" dt(v) +d (Viersa) = ) d(vi, H') 2 rs(n’ +4).
=0 i
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2.6 Remarks

Another way of generalising to the case of cycles is to prescribe a local
minimum degree condition: Let 6 be the minimal number of neighbours
that a vertex « € V; has in one of the sets V;_; and V;;;. (The “global
minimum degree” is the smallest number of nelghbours that a vertexz € V;
hes in V;_; UV,,1.) It is proved in [Joh00] thet 6" > 2n + /n is sufficient
to force a graph G C Cs(n) to have a Cs-factor. It is also conjectured that
the condition for a C,-factor should be §' > —'f—n + 1 in this case. Hence
this local minimum degree should depend on r contrary to the fact that
the global minimum degree does not.
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