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Abstract

This paper devotes to the investigation of 3-designs admitting the spe-
cial projective linear group PSL(2,q) as an automorphism group. When
g = 3 (mod 4), we determine all the possible values of ) in the simple
3-(g+1,7, ) designs admitting PSL(2,q) as an automorphism group.

1 Introduction

For positive integers k,v and A with 3 < ¥ < v and A > 0, we define a t-(v, k, A)
design to be a finite incidence structure D = (X, B, I), where X denotes a set of
v points, and B a set of k-subsets of X called blocks, such that any t-subset of X
is incident with exactly A blocks. We use b to denote the number of the elements
of B. Such a design D is said to be simple if B has no repeated blocks. In this
paper, we only consider simple 3-designs. We consider automorphisms of D as
pairs of permutations on X and B which preserve incidence. An automorphism
group of D is a group whose elements are automorphisms of D and call it ¢-
homogeneous if it acts t-homogeneously on the points of D.

Among classical simple groups, the structure of the subgroups and the
permutation character of the elements of the projective special linear group
PSL(2, q) are best well-known (see [2]). And it is well known that PSL(2,q) is
3-homogeneous if and only if ¢ = 3 (mod 4). Therefore, a 3-(g + 1,k, A) design
admits PSL(2,q) as an automorphism group if and only if its block set is the
union of orbits of PSL(2, g) on the set of k-subsets. Thus it is easy to see that
if k > 3 each orbit of k-subsets of X is the block set of a simple 3-(g + 1,k, A)
design for some A. This simple observation has led different authors to use this
group for constructing 3-designs (see [1, 3-9]). In (1], all 3-designs with block
size 4 or 5 and admitting PSL(2,q),q = 3 (mod 4) as an automorphism group
are completely determined. When ¢ = 1 (mod 4), quadruple systems from
PSL(2,q) are determined in [8]. For all 3-designs with block size 6 admitting
PSL(2,q), where ¢ =3 (mod 4) and ¢ =1 (mod 4), are reported in [9] and [7)
respectively. In this paper, using a similar method as in [9], we investigate the
existence of 3-designs with block size 7 from PSL(2,q) and determine all the
possible values of A in the simple 3-(g + 1,7, A) designs admitting PSL(2,q) as
an automorphisin group. Throughout this paper, we let ¢ = 3 (mod 4), and
G = PSL(2,q).
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Main Theorem: There exists a 3-(q + 1,7, A) design with automorphism

groupGand1 <A K ( q 4 2 if and only if one of the following cases holds:

(i) If g = 71,251 (mod 420), then A =0, 1,15,21 (mod 35).

(ii) If ¢ = 211,391 (mod 420), then A =0,15,21,36 (mod 105).

(iii) If ¢ = 3, 19, 67, 87, 103, 123, 139, 163, 187, 199, 207, 243, 247, 283, 303, 319,
367,387,403 (mod 420), then 35|A.

(iv) If g = 31,151, 271,331 (mod 420), then A =0,21 (mod 35).

(v) If ¢ = 11,131,191,311 (mod 420), then A = 0,21 (mod 105).

(vi) If ¢ = 27,43,127,139, 183,223, 267, 307, 363,379 (mod 420), then A =
0,15 (mod 35).

(vii) If ¢ = 83,239, 323,379,419 (mod 420), then A =0,15 (mod 105).

(viii) If ¢ = 23,47, 59, 79, 143, 179, 203, 227, 299, 347, 359, 383 (mod 420), then
105|A.

2 Notation and Preliminaries

In this section, we give some notation and preliminaries which will be used
throughout this paper.

For B C X, let G(B) = {9(B) : g € G} denote the orbit of B under G
and Gg = {g € G : g(B) = B} denote the stabilizer of B under G. It is well
known that |G| = |G(B)||Gs|. It follows that G is an automorphism group of a
3-design (X, B, I) if and only if B is a union of orbits of k-subsets of X under G
(see [3]). If G(B) is the set of blocks of a 3 — (v, k, A) design, then we call G(B)
forms a 3 — (v, k, A) design or G(B) is a 3-(¢ + 1,7, ) design.

Let ¢ = pf, where p is a prime and f a positive integer, and let X =
GF(q) U oco. We define b/0 = 00,b/00 = 0,b— 00 = 00 — b = 00,00/00 = 1.
For any a,b,¢,d € GF(g), ifad - bcisa ngr})zero square , then the set of all
mappings flx)= ar

cz+d

on X is a group under composition of mappings, called projective special linear
group and denoted as PSL(2, g). From {2] we gather some important results on
PSL(2,q) which are used below.

Lemma 2.1 The group G = PSL(2,q) acts 2-transitively on the point set of
X, and each non-identity element of G has at most two fired points on X.

Lemma 2.2 Let P be a p-Sylow subgroup of PSL(2,q), then P is isomorphic
to the additive group of GF(q), and the elements of P have a common fired
point and each non-identity element of P only has this fired point.

Lemma 2.3 The subgroup U of G = PSL(2,q) which fizes the number 0 and

00 is a cycle-group of order u = %f—l, where d = (p/ — 1,2).
Lemma 2.4 The group G = PSL(2,q) has a cycle-group S of order u = %"'—1,
whered = (p/ —1,2). Andife # s € S, then s has no fized points on GF(q)Uoo.

Lemma 2.5 The structure of the elements of PSL(2,9),q = pf,¢ = 3 (mod 4)
is given in the following table, where p(d) denotes the Euler function.
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Order Order of the centralizer =~ Number of Type
conjugacy classes

i T ] T
2 g+1 1 o(g+1)/2

P q 2 11 pq/d
|t 2t % 12 dle-1)/d
d| ’j"—l', d#2 L;:l v2d dle-1)/d

where a® denotes the cycle decomposition of & a-cycles.
Lemma 2.8 (seef3]) Let D = (X,B,I) be a t-(v, k,\) design. Then the follow-
ing equations hold:

(a) bk = vr.

o (i)-s(t)
3 Orbits of 7-subsets

In this section we will determine the possible sizes of orbits of 7-subsets of X
under G and its number. Let B be a 7-subset of X. Now we discuss the order
of G B.

Lemma 3.1 Let B be a 7-subset of X. Then |Gpg| # 21, 35,105, 15.

Proof. First suppose |G| = 15. By Sylow theorem, nz = ns = 1, where
ng and ns denote the number of Sylow 3-subgroups and Sylow 5-subgroups,
respectively. Therefore there is a unique group of order 15 which is cyclic, Gg
has an element of order 15, but such an element cannot fix B, a contradiction.

When |G| = 21, then 3|g(g — 1)(g + 1). Note that ¢ = 3 (mod 4), and so
3|g or 3{(q — 1). First suppose that 3|(g — 1). Since there is a normal subgroup
H of order 7 and 7 subgroups K;(i = 1,2,:--,7) of order 3 in G, for any
h € H and k; € K;(for some i) there exists some k; € K;(for some 5) such that
hky = ky. By Lemma 2.3, ky and k; fix exactly two elements z,,z, of B. Since
hki(z;) = ka(z;) = z:i(¢ = 1,2), we have A(z;) = z; which conflicts with the
fact that h has no fixed points in B or |k| = 7. For 3|g, similar arguments hold.
So |Gp| # 21.

When |Gg| = 35, by Sylow theorem, n7 = ng = 1, where ny and ng denote
the number of Sylow 7-subgroups and Sylow 5-subgroups , respectively. There-
fore there is & unique group of order 35 which is cyclic, Gp has an element of
order 35. but such an element cannot fix B.

Finally suppose |Gg| = 105, and we let n3,ns and n7; denote the number
of Sylow 3-subgroups, Sylow 5-subgroups and Sylow 7-subgroups, respectively.
Then at least one of ng, ns and ny equals one. If ng = 1 or ng = 1, then there is a
normal subgroup of order 5 or 3 in Gp, and so there is a cyclic subgroup of order
15 in Gp, which is impossible. If n; = 1, then there is a normal subgroup of
order 7 in Gg. Thus there is a subgroup of order 35 in G, which is impossible.

It is well known that the necessary conditions for the existence of a t-(v, k, A)

design is _
(et o
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for 0 < i < t. This fact together with Lemma 2.6 can deduce the following
Lemma.

Lemma 3.2 Every orbit of 7-subsets under G is the set of blocks of a 3-
(g+1,7,X) design with A € {15,21,35,105}.

Proof. Since G(B) is a 3-(g + 1,7, A) design, we have by Lemma 2.6

cmes(43')1(1)

Therefore, by |G| = |G(B)||G |, we see A\|Gp| = 105. By condition (1), 5|A\(¢—1)
and so if ¢ # 11 (mod 20), then 5|\. It follows that A = 5,15,35,105. If g = 11
(mod 20), then A = 1,3,5,7,15,21,35,105. By Lemma 3.1, A # 1,3,5,7, so
X € {15,21, 35,105}.

From now on, we let N denote the number of the orbits each of which forms
a3-(g+1,7,)) design. Let B be a 7-subset of X, and G(B) is the set of blocks
of a 3— (g +1,7,)) design. Then G acts block-transitively on this design.

Remark 1. If both G(B) and G(B') are all the 3 — (¢ + 1,7, A) designs,
then either G(B) N G(B') = @ or G(B) = G(B’). Therefore, for fixed A, the
number of B satisfying G(B) is a 3 — (g + 1,7, A) design is equal to

+1 7
(5 (3):
In the following, we will determine the N for A € {15,21, 35,105}.

Lemma 3.3 If ¢ = 11 (mod 20), then Nz = 1. Otherwise, ¢ = 3,7,19
(mod 20) and N21 =0.

Proof. Let G(B) form a 3-(g + 1,7,21) design. Since A\|Gp| = 105 and
A = 21, we have |Gp| = 5. Thus every element of order 5 of G fixes at least
two points of B. By Lemmas 2.2-2.4, we have 5 divides (¢ — 1). Since g =3
(mod 4), we have g = 11 (mod 20): By Remark 1, the number of such B'sis

21 ( q; 1 Na/ ; ) . On the other hand, by Lemma 2.5 each element of

order 5 of G fixes exactly (g—1)/5 7-subsets of X each of which is fixed exactly
by 4 elements of order 5, and there are exactly 2q(q + 1) elements of order 5 in
G. Therefore, the elements of order 5 of G fix exactly g(g+1)(g—1)/10 distinct

7-subsets of X. So we have 21 ( 7 ; 1 ) Nay/ ( ; ) = g(g+1)(¢g—1)/10, and
hence N3; = 1.

Lemma 3.4 Ifq = 15,27 (mod 28), then Ny5 = 1. Otherwise, ¢ =3,7,11,19,23
(mod 28) and N5 = 0.

Proof. Let G(B) form a 3-(g + 1,7,15) design. Then |Gp| = 7. Thus 7
divides q(g — 1)(g+1). If 7|(g +1), then ¢ = 27 (mod 28). By Lemma 2.5 each
element of order 5 of G fixes exactly (g + 1)/7 7-subsets of X each of which is
fixed exactly by 6 elements of order 7 and there are exactly 3¢(q— 1) elements of
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order 7 in G. Therefore, the elements of order 7 of G fix exactly g(g+1)(g-1)/14
distinct 7-subsets of X. By Remark 1, we have 15 ( q-:;— 1 ) Nys/ Z =

(g + 1)(g — 1)/14. and hence Nys = 1. If 7|(g — 1), then g = 15 (mod 28).
Similarly, we can get Ny5 = 1. If 7|q, then ¢ = 7/ with f odd (note that here
g =3 (mod 4)). By Lemma 2.5 each element of order 7 of G fixes exactly q/7
7-subsets of X each of which is fixed exactly by 6 elements of order 7 and there
are exactly (¢ — 1)(g + 1) elements of order 7 in G. Therefore, the elements of
order 7 of G fix exactly g(g+ 1)(g — 1)/42 distinct 7-subsets of X. By Remark
1,wehave15( 7 ; 1 ) Nys/ ( ; ) = g(q+1)(g—1)/42, and hence N5 = 1/3,
which is impossible.

Lemma 3.5 The value of Nas is given by
22 ifg=3 (mod 12)
Nz =

&4 ifg=7 (mod 12)
0 ifg=11 (mod 12)

Proof. Let G(B) form a 3-(q + 1,7,35) design. Then |Gp| = 3. Thus the
elements of order 3 fix at least one point of B. By Lemmas 2.2-2.4, we have
3|q or 3|(g — 1). If 3|(g + 1), then N3s = 0 and ¢ = 11 (mod 12). If 3|q, then,

g
by Lemma 2.5, each element of order 3 of G fixes exactly ( g ) = 3191-;—3)- 7-

subsets of X each of which is fixed exactly by 2 elements of order 3 and there
are exactly (¢ — 1)(q + 1) elements of order 3 in G. Therefore, the elements of

order 3 of G fix exactly g(g + 1)(g — 1)(g — 3)/36 distinct 7-subsets of X. By
Remark 1, we have 35 ( q-:;- 1 ) Nis/ ( ; = gq(g+1)(g — 1)(g ~ 3/36, and

hence Ny5 = 2=,
If 3|(g — 1), by Lemma 2.5 each element of order 3 of G fixes exactly
-1

=1
2 3 = 11"—1)5(3-'-51 7-subsets of X each of which is fixed exactly by 2

elements of order 3 and there are exactly g(g + 1) elements of order 3 in G.
Therefore, the elements of order 3 of G fix exactly g(g+1)(g—1)(g —4) /18 dis-

tinet 7-subsets of X. By Remark 1 again, we have 35 q-;— 1 Ngs/ ; =
a(g+ 1)(g - 1)(¢ — 4)/18, and hence N3s = %5,

Lemma 3.6 The value of Nygs is in the following:
(1) If g = 27,267, 183,363 (mod 420), then

N = 04— 146 +71¢% — 2049 + 180
106 = 2520 '

(2)If g = 3,123, 243,303, 87,207,387 (mod 420), then

Nios = g* - 14¢° + 71¢* — 2949 + 540
105 = 2520 :

(3) If ¢ = 211,391 (mod 420), then

Niex = g = 14¢° + 71¢* — 4349 + 376 _
105 = 2520 ;
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equation

(4) If g = 31,151,271,331 (mod 420), then

Nioe = q* — 14¢° + 71¢% — 434 + 736 _
108 = 2520 '

(5) If q = 139,379,223, 43,307,127 (mod 420), then

Nice = g% - 14¢ + 71q> — 4349 + 880
108 = 2520 ’

(6) If ¢ = 7,343 (mod 420), then

gt — 14¢° + T1q? — 434g + 1000
2520 '

(7) If g = 283,403, 103, 163, 67, 187, 247, 367, 19, 139,199, 319 (mod 420), then

Nice = g% — 14¢% + 71¢% — 434 + 1240
106 = 2520 )

(8) If ¢ = 71,251 (mod 420), then

Nios = gt — 14¢% + 71¢% — 154q — 744
105 = 2520 r

Nigs =

(9) If g = 311,11,131,191 (mod 420), then

Noe = €= 148° +71q% — 154 — 384
105 = 2520 ’

(10) If ¢ = 323,83,379,139, 239,419 (mod 420), then

Nios = g* — 14¢° + 71¢% — 154g — 240
105 = 2520 :

(11) If g = 23,143, 203, 383, 47, 227, 347, 59, 79,179, 299, 359 (mod 420), then

Nioe = g4 — 14¢® + T1¢% — 154¢ + 120
106 = 2520 '

Proof. By counting the 7-subsets of X containing 0,1,00, we have the

"15N1s + 21N + 35N35 + 105N105 = ( q ; 2 ) . 2)

According to Lemmas 3.3-3.5, Ny5, No; and Nas are known. Therefore, we solve

easily the value of Nygs from equation (3.2).
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4 The proof of the main theorem

Proof. (i) Let D be a a simple 3-(¢ + 1,7, A) design admitting G as an auto-
morphism group. It is well known that a simple 3-(g + 1,7, A) design admits G
as an automorphism group if and only if its block set is the union of orbits of G
on the set of 7-subsets. By Lemma 3.2, we know that in each orbit of G on the
set of 7-subsets the possible numbers of blocks incident with {0, 1,00} are 15,
21, 35, 105. If ¢ = 71,251 (mod 420), then Np; = 1 = Nj5 by Lemmas 3.3 and

3.4. Therefore, A = 0,1,15,21 (mod 35),1 < A < ( 9 z 2 ), so the necessity
follows.
Conversely, for each A = 0,1,15,21 (mod 35),1 < A < 9 Z 2 ), there

exist non-negative integers z < Nas, ¥ < Nigs, 2 <1 and u < 1 such that
A = 35z + 105y + 152 + 21u.

We take z orbits of length |G|/3, y orbits of length |G|, z orbits of length
|G|/7 and u orbits of length |G|/5, then this gives a simple 3-(¢+ 1,7, \) design
admitting G as an automorphism group. This proves the sufficiency.

Similar to the proof of (i), we can show the cases (ii)-(viii).
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