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Abstract Let d(n, k) denote the number of disarrangements (permutations
without fixed points) with k cycles of the set [n] = {1,2,---,n}. In this
paper, a new explicit expression for d(n,k) is presented by graph theo-
retic method, and a concise regular binary tree representation for d(n, k)
is provided.
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1 Introduction

The Stirling number of the first kind plays an important role in combinatorial
analysis, probability, permutation group, etc.. The unsigned Stirling number of
the first kind is defined as follows.

Definition 1.1([6]). The unsigned Stirling numbers of the first kind s(n, k)
are defined by

Z:s(n,k)mk =z(z+1)(z+2) - (z+n-1).

k=1

There is an equivalent definition.

Definition 1.2 ([2]). The unsigned Stirling number of the first kind s(n, k)
is defined as the number of permutations of the set [n] = {1,2,---,n} with k
cycles.

According to the definition 1.2, the r-associated Stirling number of the first kind
is defined naturally as follows.

Definition 1.3([2]). The r — associated Stirling number of the first kind
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d-(n, k) is defined as the number of permutations of the set [n] = {1,2,---,n}
with k cycles of length > r.

It is clear that di(n,k) = s(n, k) is the unsigned Stirling number of the first
kind. We denote dz(n, k) by d(n, k) and d(n, k) is the number of disarrangements
with k cycles of the set [r] = {1,2,-- -, n}([2]).

From the vertical generating function of d(n, k)([2])
"1 Nt
Zd(",k);;! = E(Z ol
n>k n22

it follows that

nl 1

dnB=g D e S
iy +ig+-+ixg=n
‘122' J=1,2,+,k

In this paper, we find a new explicit expression for d(n,k) by making use
of graph theoretic approach (which is proved by induction method), and give a
concise regular binary tree representation for d(n, k).

2 A New Explicit Expression for d(n,k)

For d(n,n) = 0, we may suppose thatn >2and 1<k <nin the following.

Theorem 2.1. For the numbers of disarrangements with k cycles of the
set [n] = {1,2,---,n} , there is an explicit expression

d(n, k) = E 112+ In—k. (2)
1=i) Cig <+ Kip_p=n—~1
fj41-1%5 <2, j=1,2,-,n—k-1

For example,

d(7,3)

E 11421384

1=i; <}'2<‘i3 <ig=6
i41-15<2,5=1,2,3

= 1.2.4.6+1.3-4-6+1-3-5-6
= 210.

The proof of Theorem 2.1 is based on the triangular recurrence relation for d(n, k).

Lemma 2.2([2]). The numbers of disarrangements with k cycles of the set
[n] = {1,2,- - -, n} satisfy the triangular recurrence relation

d(n + 1,k) = nd(n, k) + nd(n — 1,k — 1).
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The Proof of Theorem 2.1. We use induction on n — k.
When n—k = 1, d(n, k) = d(n,n —1). From the definition of d(n, k) we know
that
1, n=2
d("’"‘l)'{ 0, n>2.

Z i = { 1, n=2
0, n>2.
1=|‘1 =n-1
Thus Theorem 2.1 holds for n — k = 1.
Suppose that Theorem 2.1 holds for n — k =r. We now consider d(n + 1, k),
where (n + 1) — k =7+ 1. From Lemma 2.2 and induction hypothesis, we have

On the other hand,

dn+1,k) = nd(nk)+ndin-1,k—-1)

= n-( Z irig - - - i)

1=i) i< <Lip=n—1
411582, j=1,2,-:,7~1
+n-( Y iz - i)
1=i) <ig < <Lip=n—2
l'j.',l—ijsﬁ, Jj=1,2,:,r=1
= [r+(n-n)]( Y iriz -+ - in)

1=i) <ig < <Lip=r+(n-r-1)
ij41~152,5=1,2,---,r—1

+lr+m-r)-( > irig - -ir)
1=i) <ig < Lipmrd(n=r=2)
ij41—i5<2, §=1,2,,r—1

= E 192 -+ drlr41
1=i1 <ig<-+-<ip<ipg1=r+(n—r)
4113552, j=1,2,0c007

= E 1182 * + * f(ng1)—ke

1=i; <i2<"'<i(n+1)_k"—"(ﬂ+l)—l
ij41-i5£2, §=1,2,,(n+1)—k=-1

Hence Theorem 2.1 holds forn —k =7+ 1.
This completes the proof. [w]

Lemma 2.3. The number of terms in the sum formula

z iy6n - iy
1=4) ig < o Lipmrt
ij41—1552, j=1,2, 71

is (";l) (t=0,1,2,o..; r=1,2’...)_



Proof Forl=4<ig < <ipr=r+tand ijp1 -1 <2, j =12, ;7 =1,
let
Ty =142 — i1,T2 =13 — 12, * ©, Tr—1 = &r — -1,

then
Ti+zatot ey = r4t-1, 1< 2; <2(F =1,2,-,7-1). 3)

The generating function of the indefinite equation (3) is

r— r— -1 -1 r4t— - -
ity () (s ()

The coefficient (";*) of y"**~! is the number of integer solutions of the indefinite
equation (3). Thus the proposition holds. o

Remark 2.4. The explicit expression (2) and (1) have the same number
of terms.

In fact, from Lemma. 2.3 we know that the number of terms in (2) is ""“‘ )
In addition, the number of terms in (1) is the number of integer solutions of the

indefinite equation
f1+ig+-tik=mn, i; 22({=12,,k). (4)
The equation (4) is equivalent to the indefinite equation

T4zt -tz =n—2k, z; 20(j=1,2,---,k). (5)
The number of the non-negative integer solution of (5) is (*~2%3F-1) = ("7 %!

Remark 2.5. Although the explicit expression (2) and (1) have the same
number of terms, there is an essential distinction between them.

For example, from the explicit expression (2) we have

E 114283148

1=1 <tz<t3<i4 <ig=7
'J+l-'j <2, j=1 2 3 4

= 1.2.3.5.7+1-2-4.5-7+1-2.4.6-7+1.3-4.5.7
+1.3-4-6.7+1-3-5.6-7 '
210 + 280 + 336 + 420 + 504 + 630
2380.

d(8,3)

From the explicit expression (1) we have

8! 1
8,3 = 3 Z 111213

i1 +ig+iz=8
ij 22, j=1,2,3
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8, 1 1 1 1 1 1
= sGoatraztiestesstsastis D
= 420+420+420+1132°+1132°+ 1120
= 2380,

From Theorem 2.1 we may obtain several boundary values.

Corollary 2.6.
(1) d(2k,k)=1-3---(2k-1)=(2k— 1)1}

(2) d(2k+1,k) = GEF - oy

(3) d(2k+2,k) = GELIR . AkEE

Corollary 2.7.

(1) d(n,1)=(n—1)

(2) dn,2)=(n-1D)E+3+ -+ 25 >4);

@) dm3)=(-DF+5+  +xg) +(Fs + 35+ + 55g)
+- =gzl (n 2 6).

3 The Regular Binary Tree Representation for d(n,k)

We construct a regular binary tree T as follows.

Layer 1: The root is 1;

Layer 2: The left son of 1 is 1 -2, with right son 1- 3;

Layer 3: The left son of 1-2 is 1-2- 3, with right son 1-2-4; the left son of
1.3is1-3-4, with right son1-3-5;

Usually, we construct the layer (k+ 1) from the layer k as follows: any branch
node 4 -42---4x (i1 < 42 < -+ < ix) of the layer k has left son 4y -d2+ -5 - (ix +1)
and right son % - i3 « + - ix - (x + 2).

The binary tree T has the following properties.

Lemma 3.1. Suppose that T is the regular binary tree constructed as above,
then the branch nodes in the layer k of T have the following forms:

iy g - ik,
where 1=4; <iz <. < <2k-1land ij41 -4, <2(j=1,2,---,k—1).
Proof. It follows from the construction of T. (w]

Definition 8.2. For the regular binery tree T constructed as above, the
mazimum value iy of the set {i1,i2,- - -,ix} is called the last number of
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branch nodes
f1edgdp (l=d1 <i2<--- <ixr <2k —1).
For example, the last number of branch node 1-3-5-6-8 is 8.

Lemma 8.8. For the regular binary tree T constructed as above, we denote
the set of branch nodes with last number t in the layer k by A(k,t), then

A(k,t) = {iriz-- i | l=d1 <2 < - <k =1, 1411 <2(7 =1,2,---,k-1)},
and | A(k,t) |= (572).

Proof. We use induction on k.

It is clear that the proposition holds for k£ = 1.

Assume that the proposition holds for k. We study A(k + 1,t) , the set of
branch nodes with last number ¢ in the layer k + 1. From the construction of T,
we know that there are two kinds of the branch nodes in A(k + 1,¢).

One kind is the right son of all the branch nodes with last number ¢ — 2 in

the layer k of T, that is
Ak,t=2)-t:=
{iydg-vig-t|1=1 Cig< o <ig=t—2, tj41—1;22(F=1,2,---,k-1)}.

It follows from inductive assumption that | A(k,t—2)-t |=| A(k,t—2) |= (,%32,)-

The other kind is the left son of all the branch nodes with last number ¢ — 1
in the layer k of T', that is
Akt =1) t:=
{t1 42- ik t]l=f1 <2< < =i-1, iin—4<20G=12---,k-1)}

It follows from inductive assumption that
| Atk t=1)-t|=| Atk t—1) = (, ¥ 71
’ - ’ T\t-1-k)°

Thus
Alk+1,t) = A(k,t —2) - tU A(k,t - 1)1

= {i1-ieipder | 1 =6 <d2 < <idp <fppr =1, ii+1—i; < 2(j = 1,2, k)}.
Since A(k,t —2)-tN A(k,t = 1) -t =0, we have
| Ak + 1,2) |=| Ak,t = 2) - ¢ | + | A(k,t 1) - ¢ ]

_( k-1 )+< k-1 )_( k )_((k+1)—1)
T\t-2-k t-1-k) \t-1-k) \t—-(k+1)/)
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Then the proposition holds for k+1. This completes the proof. ]

From Theorem 2.1 and Lemma 3.3, we give the regular binary tree represen-
tations for d(n, k).

Theorem 3.4. The numbers of disarrangements with k cycles of the set

[n] ={1,2,- . -,n} has a regular binary tree representation:
d(n, k) = the sum of branch nodes with last number n—1 in layer n—k of T.

Proof. From Theorem 2.1 and Lemma 3.3 it follows that

d(n, k). = > i1 dp e inek

1= <3< <l p=n—1
ti41 -1 <2, j=1,2, ., n—k=1

= E 21 12 inek

i1-i2+ i €A(n—k,n—-1)
= the sum of branch nodes with last number n—1 in layer n—kof T. O

For example,

d(9,4) = the sum of branch nodes with last number 8 in layer 5 of T
1-2-4-6-8+1-3-4.6-8+1:3-5.6.84+1-3.5.7-8
2520.
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