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Abstract: A semi-double graph is such a connected multi-graph that
each multi-edge consists of two edges. If there is at most one loop at each
vertex of a semi-double graph then this graph is called a single-petal graph.
In this paper we obtained that if G is a connected (resp. 2-edge-connected,
3-edge-connected) simple graph of order n, then G is upper embeddable if
dg(u) + dg(v) 2 [2%52] (resp. dg(u) + da(v) 2 [2%72], dg(u) + da(v) >
[225231) for any two adjacent vertices u and v of G. In addition, by means
of semi-double graph and single-petal graph, the upper embeddability of
multi-graph and pseudograph are also discussed in this paper.
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1. Introduction

The idea of the maximum genus yp(G) of a connected graph G was in-
troduced by Nordhaus, Stewart and White [12] in 1971, and Ringeisen, who
has studied the maximum genus extensively [13][14][15], gave the definition
of upper embeddable graphs. From then on, many researchers have studied
the upper embeddability of graphs, such as Kundu [8], Jaeger, Payan and
Xuong [6], Jungerment [7], Skoviera [16], Huang and Liu [3] etc. In 1998,
via the degree-sum of non-adjacent vertices of a graph, Huang and Liu [4]
obtained the following result related to simple graph:
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Theorem 1.1 Let G be a 2-edge-connected (resp. 3-edge-connected)
simple graph of order n. If dg(u) + dg(v) > 3(5'3:21 (resp. dg(u) + dg(v)
> l}‘l) for any two non-adjacent vertices u and v of G, then G is upper
embeddable. Furthermore, the bound is best possible.

Then naturally a question is raised that whether the upper embeddabil-
ity of a graph can be shown by the degree-sum of adjacent vertices of the
graph. The present paper offers an affirmative answer to the question . In
addition, by means of semi-double graph and single-petal graph, the upper
embeddability of multi-graph and pseudograph are also discussed in this
paper.

A graph is denoted by G = (V(G), E(G)), and V(G), E(G) denotes its
vertex set and edge set respectively. Between two distinct vertices, if there
is only one edge joining them, this edge is called a link, and if there are
more than one edge joining them, these edges are called multi-edge of the
graph. A simple graph is a graph having neither loops nor multi-edges. A
multi-graph is a graph which may have multi-edges but doesn't have a loop
and a pseudograph is a graph allows loops and multi-edges. A connected
multi-graph is called a semi-double graph if each multi-edge of this graph
consists of two edges. If there is at most one loop at each vertex of a semi-
double graph then this graph is called a single-petal graph. For example,
in Figure 1, the graph G} is a semi-double graph, G is a multi-graph but
not a semi-double graph, G3 is a single-petal graph, G4 is a pseudograph
but not a single-petal graph. The order of a graph G is the number of
vertices in G. The degree of a vertex v in a graph G is the number of edges
incident with v and is denoted by dg(v), or simply by d(v) if the graph
G is clear from the context. The minimum degree of G is the minimum
degree among the vertices of G and is denoted by §(G). For any set X, we
use | X| to denote the cardinality of X. For any real number z, |z] denotes
the floor of z, i.e., the greatest integer which is less than or equal to z, and
[z] denotes the ceiling of , i.e., the smallest integer which is greater than
or equal to . Graphs considered here are permitted to have multi-edges
and loops, and are all undirected, finite and connected unless the context
requires otherwise. Terminologies and notations not explained here can
be seen in [1] for general graph theory. It is assumed that the reader is
somewhat familiar with topological graph theory. For general background,
see Liu [9], Gross and Tucker [2] or White [17].
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Recall that the maximum genus 7p(G) of a connected graph G is the
maximum integer k¥ such that there exists an embedding of G into the
orientable surface of genus k. Since any embedding must have at least one
face, the Euler characteristic for one face leads to an upper bound on the
maximum genus

where the number |E(G)| — |V(G)| + 1 is known as the Betti number (or
cycle rank) of the connected graph G and is denoted by 8(G). A graph G
is said to be upper embeddable if yps(G) = [E(Z,Q-J.

For a subset A C E(G), ¢(G\A) denotes the number of all connected
components of G\ A, and b(G\A) denotes the number of connected com-
ponents of G\A with odd Betti number, where G\ A means the subgraph
obtained from G by deleting all the edges of A from G. Let T be a spanning
tree of a connected graph G. Define the deficiency £(G,T) of a spanning
tree T in a graph G to be the number of components of G\ E(T') which have
an odd number of edges. The deficiency £(G) of the graph G is defined to
be the minimum value of £(G, T') over all spanning tree T of G. Note that
€(G) = B(G) (mod 2). Let Fy, F;, --- Fy be k (k > 2) distinct subgraphs
of a graph G, then denotes by Eg(Fi, F2, -+ , Fi) the edges of E(G) whose
one end vertex is in V(F;) and the other in V(F;) (1 <4, j <k, i # j), and
denote by E(F;,G) the edges of E(G) whose one end vertex is in V(F;) and
the other not in V(F}) (1 <i < k). For a vertex v € V(F;) (1< i < k), we
call v a non-contacting-vertex of V(F;) if v is not incident with any edge
of E(F;, G), and call v a contacting-vertex of V(F;) if v is incident with at
least one edge of E(F;,G), and v is called a m-contacting-vertex of V(F;)
if v is incident with m (m>1) edge(s) of E(F;,G).

2. Some lemmas

The following two lemmas, which are due to Liu [9][10], Xuong [18] and
Nebesky[11] independently, give two combinatorial characterizations of the

maximum genus of graphs.

Lemma 2.1 (Liu [9][10], Xuong [18]) Let G be a connected graph,

then
1) G is upper embeddable if and only if £(G) < 1;
2) ym(G) = HELEE),

Lemma 2.2 (Nebesky [11]) Let G be a connected graph, then

1) G is upper embeddable if and only if ¢(G\A4) + b(G\4) — 2 < |4|
for any subset A C E(G);
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2)4(6) = max {c(CG\4) + b(G\A) — |4] - 1}.

The following result, which is proved by Huang [5], provides a structural
characterization for a non-upper embeddable graph.

Lemma 2.3 (Huang [5]) Let G be a graph. If {(G) 2 2, namely G
is not upper embeddable, then there exists a subset A C E(G) such that
the following properties are satisfied:

(1) e(G\A) = b(G\4) 2 2;

(ii) F is a vertex-induced subgraph of G for each component F of G\ 4;

(iii) for any k distinct components Fy, Fy, - -+ , Fi, of G\A, |Eg(F1, Fa, - -+
Fi)| € 2k — 3. Especially |[Eq(F, H)| < 1 for any two distinct components
F and H of G\ 4;

(iv) £(G) = 2¢(G\4) — |A] - 1.

In the above lemma, for each component F of G\A we notice the fol-
lowing facts:

Fact 1  Property (i) implies that 8(F) = 1 (mod 2). Therefore, there
exists at least one cycle in F. Furthermore, it can be deduced that if G is a
simple graph then |V (F)| > 3; if G is a multi-graph then [V(F)| > 2; and
if G is a pseudograph then |V(F)| > 1.

Fact 2 If G is a 2-edge-connected graph then for each F' € G\A we
have |E(F,G)| > 2 and ¢(G\A4) = b(G\4) > 3.

If G is a 3-edge-connected graph then for each F € G\A we have
|E(F,G)| > 3 and ¢(G\4) = b(G\4) > 4.

Fact3 |A|=1 XF: |E(F, G)|, where F is taken over all the components

of G\A.

3. Main results related to simple graph

Since every 4-edge-connected graph is upper embeddable(8], we only
need to discuss the graph with edge-connectivity less than 4.

Theorem 3.1 Let G be a connected simple graph of order n. If dg(u)
+ dg(v) > [2852] for any two adjacent vertices u and v of G, then G is

upper embeddable.

Proof Assume to the contrary that G is not upper embeddable. By
Lemma 2.3, there exists a subset A of E(G) such that the properties (i)-(iv)
of Lemma 2.3 are satisfied. Let R = {F1, Fa,- -+ , F{}(I = ¢(G\A) = b(G\4)
> 2) be all the connected components of G\ A, and x, y, and z be the number
of such F; € R that |E(F;, G)| = 1, 2, and 3 respectively. By means of Fact
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3, it is obvious that |A] = 1 il |E(Fy,G)| 2§ +y+3z+2(l—-z—y-2).
i=
From Lemma 2.3(iv), we have
2 < ¢6)=2-|A4-1
< 21-(§+y+gz+2(z-x-y-z))-1.

It can be easily deduced that
z+y+z2>2.

From Fact 1 we have |V(F)| > 3 for each F € R. Noticing that for each F
€ R, if v is a non-contacting-vertex of V(F) then dg(v) < |V (F)|-1; if v is
a 1-contacting-vertex of V/(F) then dg(v) < |V(F)); if v is a 2-contacting-
vertex of V(F) then dg(v) < |V(F)|+1; and if v is a 3-contacting-vertex of
V(F) then dg(v) < |V(F)|+2. we will consider two cases in the following.

Case1:1=2.

Let F and F; be the two components of G\ A. We first give the following
claim.

Claim 3.1.1 In each F;, there must exist two adjacent vertices v;;
and v;z such that dg(vi1) + de(vi2) < 2IV(F)| -2 (1 =1,2).

From Fact 1 we can get that |V(F;)| > 3(: = 1,2). From Lemma 2.3
(iif) we can get that |[Eg(Fy, F2)| = 1. So the vertices in F;(i=1,2) are all
non-contacting-vertex except one 1-contacting-vertex. It is not a hard work
to find out that there must exist two adjacent vertices v;; and v;; in F; such
that both of them are non-contacting-vertex. So we have dg(vi1) + dg(viz)
S |V(F)| -1+ |V(F)| -1 =2|V(F.)| - 2. Claim 3.1.1 is obtained.

From Claim 3.1.1 we have

dg(v11) + dg(vi2) + da(va1) + dg(va2)
V()| —2+2IV(F)| -2
V(R)| +|V(FR))-4<2n-4.

A

On the other hand, from the condition required in Theorem 3.1 that dg (u)

+ dg(v) > [2273] for any two adjacent vertices u and v of G, we have
)

dg(v11) + dg(vi2) + de(va1) + dg(vaz)

2n—3 2n—-3
> —
3 IEd] 3 12>2n-3.

Thus 2n—3 <dg(v11)+de(vi2) +dg(ve1) +da(vez)<2n—4, a contradiction.
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Case 2:12>3.

Because z + ¥ + z > 2, without loss of generality, let F; and F, be any
two such components of G\A that 1 < |E(F;,G)| < 3(i = 1,2). We have
the following claim.

Claim 38.1.2 In each F;, there must exist two adjacent vertices v;;
and v;o such that dg(va1) + de(vi2) < 2|V(F)| (i=1,2).

Because 1 < |E(F;,G)| < 3, there are at most three contacting-vertex
in F}, and each vertex in F; is a non-contacting-vertex, or a 1-contacting-
vertex, or a 2-contacting-vertex, or a 3-contacting-vertex of V(F;). Because
there is at most one 3-contacting-vertex or at most one 2-contacting-vertex
in F}, and the 3-contacting-vertex and the 2-contacting-vertex can not ap-
pear in F; at the same time, the vertices in F; must belong to one of
the following cases: (a) There is a 3-contacting-vertex in F;. Then all
the other vertices in F; are all non-contacting-vertex of V(F;); (8) There
is a 2-contacting-vertex in Fi;. Then all the other vertices in F; are all
non-contacting-vertex except at most one 1-contacting-vertex of V(F;); (7)
Each vertex in F; is either a non-contacting-vertex or a 1-contacting-vertex
of V(F:). So there must exist two adjacent vertices vy and v;2 in F; such
that both of them are non-contacting-vertex of V(F;), or both of them
are 1-contacting-vertex of V(F;), or one is a non-contacting-vertex and the
other is a 1-contacting-vertex of V(F;). Anyway we have dg(vi1) + dg(vi2)
< 2|V(F;)|. Thus Claim 3.1.2 is obtained.

From Claim 3.1.2, [ > 3, and |[V(F)| > 3 for each F' € R, we have that

de(v1) + dg(vi2) + da(var) + da(vze)
< IV(F)+IV(F2)) £2(rn—3)=2n-6.

On the other hand, according to the condition required in Theorem 3.1
that dg(u) + de(v) > [2872] for any two adjacent vertices u and v of G,

we have

dg(v11) + dg(vi2) + de(va1) + dg(vez)

-3, -3
> f"2 1+r"2 122n-3.

So 2n — 3 <dg(v11) +da(vi2) + dg(va1) + de(v22)<2n — 6, a contradiction.

From Case 1 and Case 2 we can achieve Theorem 3.1. Furthermore,
the graph Gs(Fig.2.) shows that the lower bound can not be reduced to
[22=31_1. So the lower bound is best possible. (Although d(u)+d(v) > 4=
[28-3] — 1 for any two adjacent vertices u and v of the graph G5 depicted
by Fig. 2, the graph is not upper embeddable.) a
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Fig.2. the graph Gs Fig.3. the graph Gg
From Theorem 3.1 we can easily get the following corollary.

Corollary 3.1 Let G be a connected simple graph of order n. If the
minimum degree §(G) > [#%-2] then G is upper embeddable.

Similarly, the following theorems related to 2-edge-connected and 3-
edge-connected simple graphs can be easily obtained.

Theorem 3.2 Let G be a 2-edge-connected simple graph of order n.

If dg(u)+de(v) >[2572] for any two adjacent vertices u and v of G, then

G is upper embeddable.

Theorem 3.3 Let G be a 3-edge-connected simple graph of order n.
If dg(u)+dg(v) >[2%522] for any two adjacent vertices u and v of G, then

G is upper embeddable.

Furthermore, the graph Gg which depicted by Fig.3. shows that the
lower bound in Theorem 3.2 can not be reduced to [2%2] — 1. So the
lower bound is best possible (Although d(u) + d(v) > 5= [2872] — 1 for
any two adjacent vertices u and v of the graph Gs, the graph is not upper
embeddable). The graph G, depicted by Fig.4. shows that the lower
bound in Theorem 3.3 can not be reduced to [28523] — 1. So the lower
bound is best possible too (Although d(u) + d(v) > 6= [22523] — 1 for
any two adjacent vertices u and v of the graph Gy, the graph is not upper
embeddable).

Fig.4. the graph G,
According to Theorem 3.2, Theorem 3.3, and the fact that §(G) >
k'(G), where k'(G) is the edge-connectivity of G, the following corollaries
can be easily obtained.
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Corollary 8.2 Let G be a 2-edge-connected simple graph of order
n. If the minimum degree §(G) > [231] then G is upper embeddable. In
addition, any 2-edge-connected simple graph with order n < 7 is upper
embeddable.

Corollary 3.3 Let G be a 3-edge-connected simple graph of order
n. If the minimum degree 6(G) >[22722] then G is upper embeddable. In
addition, any 3-edge-connected simple graph with order n < 17 is upper
embeddable.

4. Main results related to non-simple graph

In section 3, the upper embeddability of simple graphs have been in-
vestigated. However, it looks more complicated to determine the upper
embeddability of non-simple graphs than that of simple graphs. Even-
deletion is such an edge deleting operation on a graph G that the follow-
ing requirements are satisfied: (i) the edges deleted from G may be links,
multi-edges, and loops; (ii) the remainder of the graph is connected; (iii)
the number of edges deleted from G should be an even number, and the
subgraph induced by the deleted edges should be connected. An even-
ancestry of a non-simple graph G is such a simple graph, or a semi-double
graph, or a single-petal graph that is obtained from G by a sequence of
even-deletions. For convenience, these definitions are illustrated by Fig.10,
where both Gy4 and Gi5 are even-ancestries of Gyg. It is obvious that a
non-simple graph may have more than one even-ancestry. Furthermore,
according to Theorem 4.0, whose proof will be given in Section 5, we can
study the upper embeddability of non-simple graphs through that of simple
graphs, or semi-double graphs, or single-petal graphs.

Theorem 4.0 A non-simple graph G is upper embeddable if and only
if one of its even-ancestries G is upper embeddable.

In this section we will focus on such field as the upper embeddability of
semi-double graphs and single-petal graphs.

Theorem 4.1 Let G be a connected semi-double graph of order n. If
dg(u) + dg(v) > [4278] for any two adjacent vertices u and v of G, then

G is upper embeddable.

Proof Assume to the contrary that G is not upper embeddable. By
Lemma 2.3, there exists a subset A of E(G) such that the properties (i)-(iv)
of Lemma 2.3 are satisfied. Let R = {F1, Fa, - - , Fi}{l = ¢(G\A) = b(G\4)
> 2) be all the connected components of G\ 4, and x, y, and z be the number
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of such F; € R that |E(F;,G)| = 1, 2, and 3 respectively. By means of Fact
3, it is obvious that |A| = 4 é |E(Fi,G)| 25 +y+3z+2(l-z—y-2).
From Lemma 2.3(iv), we ha,\i':l

2 < &) =2-14-1
< 2l—(;+y+gz+2(l—z—y—z))—1.

It can be easily deduced that
z+y+z22.

From Fact 1 we have |V(F)| > 2 for each F € R. Noticing that for
each F € R, if v is a non-contacting-vertex of F' then dg(v) < 2|V(F)|
— 2; if v is a 1-contacting-vertex of V(F) then dg(v) < 2|V(F)| - 1; if
v is a 2-contacting-vertex of V(F) then dg(v) < 2|V(F)|; and if v is a
3-contacting-vertex of V(F') then dg(v) < 2|V(F)| + 1. we will consider
two cases in the following.

Casel:[=2.

Let Fy, F be the two components of G\ A. We have the following claim.

Claim 4.1.1 In each F;, there must exist two adjacent vertices v;;
and v;2 such that dg(vi1) + dg(vi2) < 4|V(F,)| -3@E=1, 2).

It can be get from Fact 1 that |V(F})| > 2(: = 1,2). From Lemma
2.3 (iii) we have |Eg(F1,F2)| = 1. So the vertices in Fj(i=1,2) are all
non-contacting-vertex except one 1-contacting-vertex. It is not difficult to
find out that there must exist two adjacent vertices v;; and v;2 in F} such
that either both of them are non-contacting-vertex or one of them is a non-
contacting-vertex and the other is a 1-contacting-vertex. Anyway we have
dg (vi1) +dg(vi2) < 2|V (F)|—2+2|V(F)| - 1= 4|V(F;)| - 3. Thus Claim
4.1.1 is obtained.

From Claim 4.1.1 we have

dg(v11) + de(vi2) + de(va1) + da(ve2)
YV(F)| -3+ 4|V (F)| -3
A|V(R)| +|V(F2)]) -6 <4n—6.

A

On the other hand, according to the condition required in Theorem 4.1
that dg(u) + dg(v) > [%872] for any two adjacent vertices u and v of G,
we have

de(v11) + de(vi2) + de(va1) + dg(va2)

- -5
An 5]+r4"2 1>4n-5.

> [
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So we have 4n—5 Sdc(‘vu) + da(vlz) + dc,'('Uzl) + dG(‘Uzg)S4’n —6.Itisa
contradiction.

Case 2:102>3.

Because z + ¥ + z > 2, without loss of generality, let F; and F> be any
two such components of G\A that 1 < |E(F;,G)| < 3(i = 1,2). We have
the following claim.

Claim 4.1.2 In each F;, there must exist two adjacent vertices v;;
and v; such that dg(vi1) + dc(‘vgz) < 4|V(F,)| -1 ('i = 1,2).

As 1 < |E(F;,G)| < 3, there are at most three contacting-vertex in F;,
and each vertex in F; is a non-contacting-vertex, or a 1-contacting-vertex,
or a 2-contacting-vertex, or a 3-contacting-vertex of V(F;). Because there
is at most one 3-contacting-vertex or at most one 2-contacting-vertex in Fj,
and the 3-contacting-vertex and the 2-contacting-vertex can not appear in
F, at the same time, the vertices in F; must belong to one of the following
cases: () There is a 3-contacting-vertex in F;. Then all the other vertices
in F; are all non-contacting-vertex of V(F;); (8) There is a 2-contacting-
vertex in F;. Then all the other vertices in F; are all non-contacting-vertex
except at most one 1l-contacting-vertex of V(F;); (v) Each vertex in F;
is either a non-contacting-vertex or a l-contacting-vertex of V(F;). So
there must exist two adjacent vertices v;; and v;2 in F; such that both of
them are non-contacting-vertex of V(F;), or both of them are 1-contacting-
vertex of V(F;), or one of them is a non-contacting-vertex and the other is
a 1-contacting-vertex of V(F;), or one of them is a non-contacting-vertex
and the other is a 2-contacting-vertex of V(F;), or one of them is a non-
contacting-vertex and the other is a 3-contacting-vertex of V(F;). Anyway
we have dg(vi1) + de(vie) < 2|V(F)| — 2+ 2[V(F)| +1 = 4|V(F)| - 1.
Thus Claim 4.1.2 is obtained.

From Claim 4.1.2, [ > 3, and |[V(F)| > 2 for each F € R, we have that

dg(v11) + da(vi2) + dg(va1) + da(va2)
< 4(V(F)|+V(E)]) -2 < 4(n—2) — 2 = dn — 10,

On the other hand, from the condition required in Theorem 4.1 that dg(u)
+ dg(v) > [4272] for any two adjacent vertices u and v of G, we have

3
dg(v11) + dg(vi2) + de(va1) + dg(va2)
Z |.4n2— 5.| + |.4'n2— 5.| 2 4n — 5.

So 4n -5 <dg(v11) + dG(‘Ulz) +dg(va1)+ dg(v22)<4n —10. It is a contra-~
diction.

From Case 1 and Case 2 we can achieve Theorem 4.1. Furthermore,
the graph Gg(Fig.5.) shows that the lower bound can not be reduced to
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[42-81—1. So the lower bound is best possible. (Although d(u)+d(v) > 5=
[4",‘,—"5] — 1 for any two adjacent vertices u and v of the graph Gg depicted
by Fig.5, the graph is not upper embeddable.) O

>

Fig.5. the graph Gg Fig.6. the graph Gy
From Theorem 4.1 we can easily get the following corollary.

Corollary 4.1 Let G be a connected semi-double graph of order n.
If the minimum degree §(G) > [4272] then G is upper embeddable.

Similarly, the following theorems related to 2-edge-connected and 3-
edge-connected semi-double graphs can be easily obtained.

Theorem 4.2 Let G be a 2-edge-connected semi-double graph of order
n. If dg(u)+de(v) >[422] for any two adjacent vertices u and v of G,
then G is upper embeddable.

Theorem 4.3 Let G be a 3-edge-connected semi-double graph of order
n. If dg(u)+de(v) >[4253] for any two adjacent vertices u and v of G,
then G is upper embeddable.

Furthermore, the graph Gg which depicted by Fig.6. shows that the
lower bound in Theorem 4.2 can not be reduced to [4278] — 1. So the
lower bound is best possible (Although d(u) + d(v) > 6= [4278] — 1 for
any two adjacent vertices u and v of the graph Gy, the graph is not upper
embeddable). The graph G0 depicted by Fig.7. shows that the lower
bound in Theorem 4.3 can not ba reduced to [42733] — 1. So the lower
bound is best possible too (Although d(u) + d(v) > 7= [42333] — ] for
any two adjacent vertices u and v of the graph Gy, the graph is not upper
embeddable).

Fig.7. the graph Gyp Fig.8. Gj;: connected
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, According to Theorem 4.2, Theorem 4.3, and the fact that 6(G) >
k'(G), where k'(G) is the edge-connectivity of G, the following corollaries
can be easily obtained.

Corollary 4.2 Let G be a 2-edge-connected semi-double graph of order
n. If the minimum degree §(G) > [42-2] then G is upper embeddable. In
addition, any 2-edge-connected semi-double graph with order n < 4 is
upper embeddable.

Corollary 4.3 Let G be a 3-edge-connected semi-double graph of or-
der n. If the minimum degree §(G) > [4&;—35’-] then G is upper embeddable.
In addition, any 3-edge-connected semi-double graph with order n < 11 is
upper embeddable.

As for single-petal graph we have the following results.

Theorem 4.4 Let G be a connected single-petal graph of order n. If
dg(u) + dg(v) = 2n + 3 for any two adjacent vertices u and v of G, then
G is upper embeddable.

Theorem 4.5 Let G be a 2-edge-connected single-petal graph of order
n. If dg(u) + dg(v) > [42413] for any two adjacent vertices u and v of G,

then G is upper embeddable.

Theorem 4.6 Let G be a 3-edge-connected single-petal graph of order
n. If dg(u) + dg(v) > [42ET] for any two adjacent vertices u and v of G,

then G is upper embeddable.

Proof (of Theorem 4.4, 4.5, 4.6) From a deduction similar to that of
Theorem 4.1, the theorems can be obtained noticing the fact that |V (£;)| >
1 for each F; € R, and that if v is a non-contacting-vertex of F;(€ R) then
de(v) < 2|V(F)l; if v is a 1-contacting-vertex then dg(v) < 2|V(F)| +
1; if v is a 2-contacting-vertex then dg(v) < 2|V(Fi)| +2; and if v is &
3-contacting-vertex then dg(v) < 2|V(Fi)| + 3. Furthermore, the graph
G11(Fig.8), G12(Fig.9), and G13(Fig.9) shows that the lower bound 2n +
3,[42413], and [42£1] can not be reduced to 2n + 2,[4:413] — 1, and
[%‘i] — 1 respectively. O

Gh2: 2-edge-connected G13: 3-edge-connected
Fig.9.
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The following corollary can be obtained easily.

Corollary 4.4 Let G be a connected(resp. 2-edge-connected, 3-edge-
connected) single-petal graph of order n. If the minimum degree §(G) >
[28£3](resp. [42412], [4847]) then G is upper embeddable.

5. Conclusions

Let G be a simple graph, or a semi-double graph, or a single-petal graph.
Even-addition on G is such an edge-adding operation on G which meets the
following requirements: (i) the edges added to G may be links, multi-edges
and loops; (ii) the number of edges added to G should be an even number;
(iii) the subgraph induced by the edges added to G should be connected.
The graph G* obtained from G by a sequence of even-additions is called
an even-posterity of G. For convenience, these definitions are illustrated
by Fig.10, where the graph Gy, is a single-petal graph, both G5 and G
are even-posterities of G14.

even-addition even~addition
—eee ————

-— — e — r—eeee—
even-deletion even-deletion

the graph G4 the graph G5 the graph Gi¢
Fig.10.

Theorem 5.1 Let G be a simple graph, or a semi-double graph,
or a single-petal graph, and G* be an even-posterity of G. If G is upper
embeddable then G* is upper embeddable.

Proof  According to the definition of the even-posterity of G, the
edges added to G each time are an even number of edges, and the subgraph
induced by the edges added to G each time is a connected subgraph of G*,
so the deficiency of G* is no more than that of G. By Lemma 2.1 we can
get that if G is upper embeddable then G* is upper embeddable. a

(The proof of Theorem 4.0) According to Lemma 2.1, if the non-
simple graph G is upper embeddable, then there must exist a spanning
tree T of G such that the deficiency £(G) of G is at most one. Performing
some times of even-deletions on G with respect to T, G’ , which is upper
embeddable and an even-ancestry of G, would be obtained.

Conversely, if one of the even-ancestries G of G is upper embeddable,
then G is upper embeddable according to Theorem 5.1. a

317



Remark 1 Since k-vertex-connectivity implies k-edge-connectivity,
the condition required in the theorems obtained in this paper that G is a
k-edge-connected graph can be replaced by that G is a k-vertex-connected
graph (k=1,2,3).

Remark 2 Theorem 5.1 provides a sufficient condition but not a
sufficient and necessary condition, i.e., if the even-posterity G* of G is upper
embeddable, G may be not upper embeddable. For example, in Fig.11, the
graph Gig, which is an even-posterity of G17, is upper embeddable, but the
graph Gi7 is not upper embeddable.

the graph Gy7 the graph Gis
Fig.11.
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