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Abstract
We prove explicit formulas for the rank polynomial and Whitney
numbers of the distributive lattice of order ideals of the garland poset,
ordered by inclusion.

1 Introduction and Preliminaries

Given a finite poset (P, <), a very interesting and challenging computational
and enumerative problem, see e.g. [2, 3, 4, 5, 7, 10, 11, 12, 13, 14, 15, 16,
17, 18, 19, 21, 22, 23] and the references therein, is to study the distributive
lattice of all its order ideals ordered by inclusion, and the corresponding
Whitney numbers.

In particular, in [17] it is considered a specific class of posets having 2n
elements, called garlands and denoted by G,, and it is determined the
generating function of the sequence gn, the number of all order ideals of
Gn.

Here we get a generalization of the results in [17), giving a closed formula
for the rank polynomial of the lattice of order ideals of G, ordered by
inclusion, and the corresponding Whitney numbers g, x, the number of all
order ideals of G, having cardinality k.
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In the sequel we collect some definitions, notations and results that will
be used in the following. For z € R we let |z] = max{n € Z: n < z} and
[z] = min{n € Z: n > z}; for any n,m € N,n < m, welet [n,m] = {t €
N:n <t < m}, and [n] = [1,n], therefore [0] = @. The cardinality of a
set X will be denoted by #X. For two sets X,) we denote with X'l§Y
the disjoint union of X and ), and with X\ Y ={z:z € X, = ¢ J} the
difference set.

We follow [1, 9] for poset notations and terminology, and we refer to [6,
8, 20] for comprehensive references about enumerative combinatorics.

We recall that a ranked poset is a poset (P, <) with a function p: P —
N, called rank, such that p(y) = p(2) + 1 whenever z is covered by y in P
and min{p (z) : z € P} = 0. The rank polynomial of a ranked finite poset

P is the polynomial
Z X)) = ijxj,
z€P i20

where w; = #{z € P: p(z) = j} are called Whitney numbers of P.

An order ideal of a poset (P, <) is a subset ] C P such that if y € T
and z < y, then z € I; it is well known that the set of all order ideals of
P ordered by inclusion is closed under unions and intersections, and hence
forms a distributive lattice: we denote it by J (P), viz. J(P) = {I C
P : I is an order ideal}. It is not hard to see that its rank function is the
cardinality of order ideals.

Given a finite poset (P, <), we denote with Wp (k) the k—th Whitney
numbers of the ranked poset of all order ideals of P, i.e. Wp (k) =#{I €
J (P) : p(I) = k}, where p is the rank function of J (P), and the rank poly-
nomial of J (P) is denoted by Rp (X), i. e. Rp (X) = Lo Wr (k) X*.

For any n € N, we denote by G, the garland poset of order 2n, viz.
Go = 0, G, is the chain with two element (i.e. Gi = {21, 22}, with z; < 22),
and if n > 2 G, is the poset {z1,...,22,} in which the cover relations are
the following:

O 2Zp41d {21,32},
0 zn+j 4{2j-1,2j, zj+1} for any j € [2,n — 1],
0 22pd {zn—l,zn};

therefore

Nk if j € [n],
p(z’)'{n if j € [n+1,2n].

For example, the Hasse diagram of Gs is depicted.
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2 22 23 24 25
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We also denote by Z,, (k) the set of order ideals of G,, with cardinality k,
and by gn » the Whitney numbers of the poset of all order ideals of a garland
of order 2n, viz. gn i = #I, (k) = Wg, (k). Finally, we denote by R, (X)
the rank polynomial of the distributive lattice of all order ideals of the gar-
land poset, ordered by inclusion, i.e. Rn (X) = Rg, (X) = T 450 gn s X"

2 Main Results

The organization of this section is as follows. In Theorem 2.1 we establish a
recursion for gn i, which leads in Theorem 2.2 to an explicit formula for the
generating function of the sequence of rank polynomials R,, (X). Using the
latter result, we give explicit formulas for R,, (X) and g, x in Theorems 2.4
and 2.5, respectively.

Theorem 2.1. For all integersn € N and 0 < k < 2n,

gnk = ( ) + Z (2n+ l—k— a) + Z.%-ﬂ,k-zﬁu

822

+ Z Z Z (a ; 2).% ~B,k—28+2a~2~]

a>2pf>a j20

holds, where we set (') = 1.

Proof. Write
n n-1 n
L.(k) =Y (L+J y(a)) ) (&J Iy ;v(a,ﬁ)) ;
a=1 a=1f=a+l
where

e Y(0)={IeZ,(k): IN{z1,--- 22} =0},
V(@ ={I €T (®): IN (Up=i{2}) = Upmalas}),
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o V(a,B) = {I € I, (k) : minjen—1){2 € I} = @, minpcjas1,n){2n ¢
I} =g}

Then we have
o #Y(0) = (%),

o #Y (@) = (gni3-0) where we set (') =1,

o #YV(1,8) = gn-p.k-26+1,
o #V (0, ) = T52a 7 (°5°) gn-p k2642025
for any @ € [2,n — 1].

We explain how to calculate #) (e, 8) for any a € [2,n — 1]; the other

cases are similar and simpler.
By definition, Y (, B) is the set of all I € Z, (k) such that

zj¢ Iforall j€[a—1]and 25 ¢ 1,
zxw€lforallkela,f—1),thusz €I forallt€ [n+a—-1,n+p

Hence 28 — 2a + 2 elements of I are fixed and the others can be chosen
inside the subset {z; : j € [n + 1,7+ a — 2]} W{z), za+; : 5 € [B + 1,7]}.
Noticing that {z;, zn+4j : j € [8+1,7]} = Gn—g, we get the formula for

#Y (o, B).
Therefore
n
SN T8 Y kA I prasese
n—1 n k-28+2a-2 o—2
+ z Z Z ( . )gn—a,k-za+2a—2-j,
a=2 f=a+1 j=0 J
and the desired result follows. O

Theorem 2.2. Let H(X,Y) = 3 5oRa (X)Y" = 2220 Ik XFY™ be
> 20
the generating function of the sequence of rank polynomials Ry, (X); then

HX.Y) = |1z y(1+X +§;(2n+1—k a)xkyn
(1 _ X3y? (1 -Y) )'1
I-X)1-Y(A+X))/ '’

where we set ('01) =1,
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Proof. Taking in account Theorem 2.1 with the initial values conditions
gnk =0if n <0 ork ¢ [0,2k], we get

Fn ) = 2 ma X! z()xk+zz(zn+1 k— a)Xk

k20 k20 k20 a=1

+Y x%-1 (Z In—pk—2541 Xk—2ﬁ+l)

B22 k20

+ Z Z Z (a; 2) X 26-2a+2+j (E gn—ﬁ.k_zﬁ+2a_2_ij—2ﬂ+2a_2_j)

a>28>a j20 k>0

kg:o( )Xk'*;)‘; (2n+1—k a)Xk
+ S XWPIR, g (X) + Z Z Z (a - 2) XW-20+2HiR o (X)),

g>2 a>2f8>a520 V7

Using the identity 3,50 (5)X* = (14 X)™ and the closed form of the
geometric serie, we have

H(X,Y):Z( )X"Y"+ZZ(27H_1 a)X"Y"

n>0 n>0&—1
kS0
+ Z X2ﬂ—lyﬁ Z Rn_p (X) Yn-—ﬁ
822 n>0
+ Z Z Z (a — 2) X23—20+2+jyﬁ Z Rﬂ—ﬁ (X) yn—-8
a22pf>a j20 J n>0
kyn
1—Y(1+X) +Z>%§~: (2n+1—k a)X Y

X%y 2 X2yt
+H(X,Y) (X((l X)zy) ZZ(" )x2 2a+a(1_)32},)

a223j20
kyn
1—Y(1+X)+ZZ(2n+1—k a)X Y
2=
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1-X2Y | X = 7
150
kyn
1—Y(1+X) +ZZ<2n+1—k a)X Y
k>0
X3Y2(1-Y)
+HXY) sz a-ra s X))’
and the desired result follows. a

We define by N* the free monoid on N, viz. the set of all words with only
finitely many non—zero letters using N as alphabet and for any multi-index
o = (ao,01,02,...) € N*, we set [laf| = 350 and Q(a) = 3,507 - o5
For multi-indices a = (a;);,8 = (Br)y € Ié we set a+ B = (a; + ,6,) €
N*.

The following result is well-known.

Lemma 2.3. For any r € N and any sequence (2o, 21, 22,...) of real num-

bers,
z;| = r! &4
(; J) a%. Hk>1 (o) (_;I;](;z )

llafj=r

Theorem 2.4. For alln €N,

Rn(X) = Z[(1+X)’+ZZ(2J+1_k a)xk]

j=0 k20a=1

Z (X3|la[|+2ﬂ(a) 1+ X)¥8

lall [Iﬂll lI'YlI

L asﬂ)‘Y)—'n—J

(ledft)® am 17 (I
Moo () BN () Y 1},( ) )H

holds, where we set ('},1) =1 and #(a, 8,7) =2|lef| + L (a + B +7) for all
a,B,7 € N*.
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Proof. With an eye on Theorem 2.2, observe that from Lemma 2.3 we get

(1 X3Y2(1-Y) -
-X7)I-7Q +X)))

=Y |(x*r2(1-v)) (EX"Y‘) (ZY"(HX)")

j>0 t>0 n>0
r .
J ’ Q(a)
= X3y2 (—1)’()1’r X%y) e
% e (Ser () | S e
lall—J

— & _yew (14 x)0®
2 o@Dy -+
18ll=34
. . X2%e) (1 +X)ﬂ(ﬁ)
= X3iy?2s 35! 2 y a+8)
a’% ) 2 Lo (=) (B:1)

a,BEN”
lleli=lBlI=4

. Q(7) ()
u"%' H'u>0 ("/v') A ;[>Io( )
V=7

=[xy (j1y?

j20

X20(e) (1 +X)9 8) Q v
Qa+8+7) (7)
X Y e En e 130( )

a,f,veN"
Neell=l181I=Ilvll=3
3 [Y2{Iall+ﬂ(a+ﬁ+'7) X3lel+29() (1 | x)B)

a,8,7eN*
llell=liBl=llvl

(e’ an 17 (101
Mool (GH ) Y 711,( ) }
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= Z yr Z (X3||aﬂ+29(a) (1+ X)Q(B)
a,8,7EN®
lledi=lBl=[vI}

(e,8,7)=n

_ (o) a1 (N
e " () )}

The desired result follows from Theorem 2.2. O

The following Theorem follows from Theorem 2.4 using the same tech-
niques.

Theorem 2.5. For all integersn € N and 0 < h < 2n,

-5 5 (@560

t k>0 a=1
[Ial|=ilﬂll=ll"/ll

¢(°0p)'7)=n"j
¥(a,t,k)=h

Q(B) (lellty® o 17 (I
( t )nzzc,(az!)(ﬂz!)(wz!)‘ D 1},( )

holds, where we set (3!) =1, #(a,8,7) = 2|lall + Q(a+B8+1),
and ¥ (a,t,k) = 3||a||+2Q(a)+t+kfor all o,8,7y€N* and t,k €N,

O
Using the previous results, we have a purely combinatorial proof of the
following remarkably identity.
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Corollary 2.6. For all integersn € N and 0 < h < 2n,

f: > [()+Z(2J+1 k- a)]

=0  t,k>0

a,8,7€N*
lleli=ll8lI=lIvll
$(a,B,7)=n-j
¥(a,t,k)=h

(52(B) (llel®) () VI ™
< ¢ )szo(az!)(ﬁzl)(%')( g 7,1;!)( )

-3 2 [()+i(21+1—k a)]

3=0 t,k>0 a=1
a,B,7eN*
lleli=lBlI=lIvIl
¢(a,ﬁ,1)=n—j
¥(a,t,k)=2n—h

(2B (el _peo 1y (MN™
( t )szo (e2!) (B:)) (7)) =1) ,1;‘[,( T )

holds, where we set (3!) = 1, & (e, 8,7) = 2llo|| + R(a+ B +7),
and ¥ (a,t, k) = 3||a||+2Q(a)+t+kfor allo,B,y€ N* andt,k e N.

Proof. This follows immediately from Theorem 2.5 noticing that G, is a
self-dual poset, and therefore gn 4 = gn,2n—h. a
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