Flag-transitive 2-(v, k, 4) symmetric designs

Weidong Fang, Huili Dong, Shenglin Zhou*

Department of Mathematics, South China University of Technology,

Guangzhou, Guangdong 510640, China

Abstract Let \mathcal{D} be a 2-(v, k, 4) symmetric design, and G be a subgroup of the full automorphism group of \mathcal{D} . In this paper, we prove that if $G \leq Aut(\mathcal{D})$ is flag-transitive, point-primitive then G is of affine or almost simple type. We prove further that if a nontrivial 2-(v, k, 4) symmetric design has a flag-transitive, point-primitive, almost simple automorphism group G, then Soc(G) is not a sporadic simple group.

Keywords Symmetric design, automorphism group, flag-transitive, point-primitive, sporadic group

MR(2000) Subject Classification 05B05, 05B25, 20B25

1 Introduction

A symmetric $2-(v,k,\lambda)$ design is an incidence structure $\mathcal{D}=(P,\mathcal{B})$ where P is a set of v points and \mathcal{B} is a set of v blocks with an incidence relation satisfying every block is incident with exactly v points, every 2-element subset of points is incident with exactly v blocks, and v and v are design is called nontrivial if v and v are v and v are study nontrivial v and v asymmetric designs here which denoted by v and v approximation of the points which also permutes the blocks, preserving the incidence relation. The set of automorphisms of a design with the composition of functions is a group. A permutation group v and v is transitive on v if for any v and v are exists an element v and v are v and v are v and v are v and v are permutation group v and v are permutative on v if v are primitive permutation group on the point set v and v are point-primitive on v if v is a primitive permutation group on the point set v and v are point-block pair, such that the point is incident with the block. Thus to say that v is

^{*}Corresponding author: slzhou@scut.edu.cn. The project was sponsored by SRF for ROCS, SEM and Research Fund for the Doctoral Program of Higher Education of China(No. 200805611097).

flag-transitive means that if α_1, α_2 are points, B_1, B_2 are blocks, and α_i is incident with B_i for i = 1, 2, then there is an automorphism of \mathcal{D} taking (α_1, B_1) to (α_2, B_2) .

Symmetric $2-(v,k,\lambda)$ designs with λ small are of interest. For example, those with $\lambda=1$ are the *projective planes*, while those with $\lambda=2$ are called *biplanes*. Flag-transitivity is just one of many conditions that can be imposed on the automorphism group G of a symmetric design \mathcal{D} . For the flag-transitive projective planes, Kantor [7] proved that either \mathcal{D} is a Desarguesian projective plane and $PSL(3,n) \leq G$, or G is a sharply flag-transitive Frobenius group of odd order $(n^2+n+1)(n+1)$, where n is even and n^2+n+1 is prime. In [12, 13, 14, 15], using the theorem of classification of finite simple groups, Regueiro reduced the classification of flag-transitive biplanes to the situation where the automorphism group is a one-dimensional affine group. After the work of Regueiro on biplanes, it is necessery to consider the classification of flag-transitive (v,k,λ) -symmetric designs with $\lambda \leq 4$. In 2009, Law, Praeger and Reichard also suggested the following problem.

Problem 1.1. (Law, Praeger, Reichard [8, Problem 1]) Reduce the classification of flag-transitive 2- (v, k, λ) symmetric designs with $\lambda = 3$ or 4 to the case of one-dimensional affine automorphism groups.

For the case $\lambda=3$, a (v,k,3)-symmetric design is called a *triplane*. Recently, in [17, 18, 19, 20] the authors reduced the classification of flagtransitive 2-(v,k,3) symmetric designs to the case that $G \leq Aut(\mathcal{D})$ is of affine type, and proved the following result.

Proposition 1.2. If \mathcal{D} is a nontrivial 2-(v, k, 3) symmetric design with a flag-transitive automorphism group G, then one of the following holds:

- (i) \mathcal{D} has parameters (45, 12, 3),
- (ii) D has parameters (11,6,3),
- (iii) D has parameters (15,7,3),
- (iv) G is of affine type.

In this paper we discuss nontrivial flag-transitive 2-(v, k, 4) symmetric designs. Here are some elementary results on symmetric designs.

Lemma 1.3. ([1, Theorem 2.7]) Let p be a prime divisor of the order of the automorphism group of a (v, k, λ) -symmetric design such that $1 < \lambda < p$ and gcd(p, v) = 1. Then $p \le k$.

Lemma 1.4. Let \mathcal{D} be a (v, k, 4)-symmetric design, and G be a flag-transitive primitive automorphism group of \mathcal{D} , then

- (i) k(k-1) = 4(v-1).
- (ii) 16v 15 is a square.
- (iii) $4v < k^2$, and hence $4|G| < |G_x|^3$, where x is a point in P.
- (iv) $k \mid 4 \gcd(v-1, |G_x|)$.
- (v) $4(|G_x|_{v'})^2 > v$ where $|G_x|_{v'}$ denotes the part of $|G_x|$ coprime with v.
- (vi) $k \mid 4d_i$, where d_i is any subdegree of G([4]).

Proof. Part (i) is well-known. Part (ii) follows from (i). (iii) The equality k(k-1)=4(v-1) implies $k^2=4v-4+k$, so clearly $4v< k^2$. Since $v=|G:G_x|$, and $k\leq |G_x|$, the result follows. (iv) Since $k\mid 4(v-1), r\mid |G_x|$ and k=r, we have that $r\mid 4\gcd(|G_x|,v-1)$. (v) By (iv) we have that $r\leq 4\gcd(|G_x|,v-1)$. Hence $4v< k^2\leq 1\gcd(|G_x|,v-1)^2=16\gcd(|G_x|_v|G_\alpha|_{v'},v-1)^2$, and $v<4\gcd(|G_x|_{v'},v-1)^2$. Therefore $4(|G_x|_{v'})^2>v$. (vi) Suppose that Γ is a nontrivial suborbit of G_x . Let $|\Gamma|=d_i$. Consider the action of G on the set $P\times P$. Let Δ be an orbital of G. Counting the number of triples (x,y,B) where $x\neq y\in B$, $B\in \mathcal{B}$ and $(x,y)\in \Delta$ in two ways, we find

$$4|\Delta| = vkt$$

where vk is the number of flags (x, B), t the number of triples that contain the flag (x, B). Since G is flag-transitive, t is independent of the choice of the flag (x, B), and since $|\Delta| = vd_i$, then $4vd_i = vkt$. It follows that $4d_i = kt$, so $k \mid 4d_i$.

In the next section we need the O'Nan-Scott theorem on primitive permutation groups. We restate it as follows.

Lemma 1.5. (O'Nan-Scott Theorem, [9]) Let $G \leq Sym(\Omega)$ be a primitive group of degree $|\Omega| = n$. Then one of the following holds.

- (1) Affine type: $G \leq AGL(\Omega)$, acting on a finite vector space Ω of prime power order n;
- (2) Diagonal type: $T^k \leq G \leq T^k(Out T \times S_k)$, where T is a nonabelian simple group and $k \geq 2$. The stabiliser in T^k of a point of Ω is a diagonal subgroup of T^k (that is a subgroup conjugate in $(Aut T)^k$ to $D = \{(t, t, \dots, t) | t \in T\}$) and $n = |T^k : D| = |T|^{k-1}$.
- (3) Almost simple type: $T \subseteq G \subseteq Aut T$ for some nonabelian simple group T;

- (4) Product type: Here $\Omega = \Delta^{\ell}$ for some set Δ and $\ell > 1$, and $G \leq H \wr S_{\ell}$, where H is a primitive permutation group on Δ . $H \wr S_{\ell}$ has the natural action on Ω and G projects onto a transitive subgroup of S_{ℓ} . Thus $n = |\Delta|^{\ell}$.
- (5) Twist wreath product type: G is a twist wreath product $T twr_{\psi} P$, where T is a nonabelian simple group, P is a transitive permutation group on $\{1, 2, \dots, k\}$ and ψ is a homomorphism from P_1 , the stabiliser of 1 in P, to Aut T such that the image of ψ contains Inn T. The stabiliser in G of a point of Ω is P. Thus $n = |T|^k$.

2 Imprimitive Case

Let \mathcal{D} be a (v, k, 4)-symmetric design. Suppose that $G \leq Aut(\mathcal{D})$ is flagtransitive, point-imprimitive. In [11], C. E. Praeger and S. L. Zhou discussed the flag-transitive imprimitive (v, k, λ) -symmetric designs. From [11, Theorem 1.1 and Table 1 of Corollary 1.3], we know that if a (v, k, 4)-symmetric design admits a flag-transitive imprimitive automorphism group, then it has parameters (15, 8, 4) or (96, 20, 4). There is a unique example with the first parameter set, see [11, Proposition 1.5], namely the points and hyperplane complements of the projective geometry PG(3, 2) relative to a subgroup S_5 or S_5 .3 of the full automorphism group $PSL(4, 2) \cong A_8$. Recently, in [8], M. Law, C. E. Praeger and S. Reichard proved that there are four non-isomorphic symmetric designs with parameters (90, 20, 4), the structures and automorphism groups of these designs are given in [8, Section 4], and they are all point-imprimitive.

- Proposition 2.1. (i) (Praeger, Zhou [11, Proposition 1.5]) The design of points and hyperplane complements of the projective geometry PG(3, 2) is the unique design admitting a flag-transitive, point-imprimitive subgroup of automorphisms with parameters (15, 8, 4).
 - (ii) (Law, Praeger, Reichard [8, Theorem 1.1]) There are up to isomorphism exactly four flag-transitive (96, 20, 4)-symmetric designs. Furthermore, they are all point-imprimitive.

This, together with [10], gives the following

Proposition 2.2. (Law, Praeger, Reichard [9, Corollary 1.2]) All 2- (v, k, λ) symmetric designs with $\lambda \leq 4$ admitting a flag-transitive, point-imprimitive subgroup of automorphisms are known.

Corollary 2.3. If G is a group acting flag-transitively on a 2-(v, k, 4) symmetric design D other than (15, 8, 4) and (96, 20, 4), then G is point-primitive.

The following lemma asserts that there exists a flag-transitive, point-primitive (15, 8, 4)-symmetric design.

Lemma 2.4. If \mathcal{D} is a flag-transitive, point-primitive (15, 8, 4)-symmetric design, then $\mathcal{D} = PG_2(3,2)$, $G = A_6$, S_6 , A_7 or A_8 , and the stabiliser $G_x = S_4, S_4 \times Z_2$, $L_3(2)$ or $AGL_3(2)$ respectively.

Proof. Let \mathcal{D} be a (15, 8, 4)-symmetric design, and $G \leq Aut(\mathcal{D})$ be point-primitive. As a primitive permutation group of degree 15, we know that G is one of the following ([3, p. 597]): $A_6, S_6, A_7, A_8 \cong L_4(2), A_{15}, S_{15}$, and the stabiliser G_x is $S_4, S_4 \times Z_2, L_3(2), AGL_3(2), 14.3, 14.4$ respectively.

If $Soc(G) = A_6$, then $G_x = S_4$ or $S_4 \times Z_2$, and the subdegrees of G acting on the stabiliser G_x are 1, 6, 8, and so G is a rank 3 primitive group acting on points set (and blocks set) of a symmetric 2-(15, 8, 4) design. By [5, Theorem] we know that this design exist and it is the symmetric 2-(15, 8, 4) design of points and complements of hyperplanes from PG(3, 2). It is easy to see that \mathcal{D} is flag-transitive.

If $Soc(G) = A_{15}$ with natural action, there exists a prime p = 13 satisfying the conditions of Lemma 1.3, but p > k, which is a contradiction.

If $G = A_7$ or A_8 , the subdegrees are 1, 14, then the action of G is 2-transitive, this has been done by Kantor. From [6, Theorem] we know that there is a 2-transitive symmetric design, i.e. a projective space $PG_2(3,2)$, with parameters (15,8,4) which is the complement of a (15,7,3)-symmetric design. It is easily know that \mathcal{D} is also flag-transitive. So Lemma 2.4 holds.

3 Primitive Case

From [8] we know that the automorphism group of flag-transitive (96, 20, 4)-symmetric design cannot be point-primitive. Therefore, by Corollary 2.3 and Lemma 2.4, if a (v, k, 4)-symmetric design other than (15, 8, 4) admits a flag-transitive automorphism group G, then it must be primitive. So we just need to analysis the primitive case. Here, we will investigate the case in which \mathcal{D} admits a primitive, flag-transitive automorphism group. The O'Nan-Scott Theorem (see Lemma 1.5) classifies primitive groups into the following five types:

- (1) Affine type.
- (2) Almost simple type.
- (3) Simple diagonal type.
- (4) Product type.

(5) Twisted wreath product type.

In this section we will prove that cases (3), (4) and (5) cannot occur. Here is the main theorem.

Theorem 3.1. If \mathcal{D} is a (v, k, 4)-symmetric design admitting a flag-transitive primitive automorphism group G, then G is of affine, or almost simple type.

We will prove the theorem by a series of lemmas. Suppose that G has a product action on the set P of points. Then there is a group H acting primitively on a set Γ ($|\Gamma| \geq 5$) with almost simple or diagonal action, where

$$P = \Gamma^{\ell}, \ell \geq 2$$
, and $G \leq H^{\ell} \rtimes S_{\ell} = H \wr S_{\ell}$.

We first give the following general lemma on a flag-transitive, point-primitive $2-(v, k, \lambda)$ symmetric design which will be very useful for the proof of Theorem 3.1.

Lemma 3.2. ([12, Lemma 4]) If G is a primitive permutation group acting flag-transitively on a (v, k, λ) -symmetric design \mathcal{D} , with a product action on P, then $v = |\Gamma|^{\ell} \le \lambda \ell^2 (|\Gamma| - 1)^2$, and $\ell = 2$ forces $\lambda > 4$.

Lemma 3.3. If D is a (v, k, 4)-symmetric design admitting a flag-transitive, primitive automorphism group G, then G does not have a nontrivial product action or twisted wreath action on the points of D.

Proof. Let $|\Gamma| = m$. By Lemma 3.2, we have $m^{\ell} \le 4\ell^2(m-1)^2$ which implies $\ell < 5$. If $\ell = 4$ then $m^4 \le 64(m-1)^2$. It follows that m = 5 or 6, and $v = 5^4$ or 6^4 respectively, but then in every case 16v - 15 is not a square, contrary to Lemma 1.4(ii).

Therefore $\ell=3$, and $m^3 \leq 36(m-1)^2 < 36m^2$ which implies $5 \leq m < 36$. On the one hand, it is easily known that the only value of m such that $16v-15=16m^3-15$ is a square is m=34.

On the other hand, by Lemma 1.4(i), $k \mid 4(v-1) = 4(m^3-1)$, also from the proof of [12, Lemma 4] we know that $k \mid \lambda \ell(m-1)$, so $k \mid \gcd(4(m^3-1), 12(m-1)) = 4(m-1)\gcd(3, m^3+m+1)$. Hence k divides 12(m-1). Suppose that $k = \frac{12(m-1)}{n}$ for some positive integer n, then from the equality k(k-1) = 4(v-1) we have

$$\frac{12(m-1)}{n}\left(\frac{12(m-1)}{n}-1\right)=4(m^3-1),$$

so

$$3[12(m-1)-n] = (m^2 + m + 1)n^2.$$

If m = 34, then $397n^2 + n - 396 = 0$, it follows that $n = \frac{396}{397}$ or n = -1, a contradiction.

Groups with a twisted wreath action are contained in twisted wreath groups $H twr_{\psi} S_{\ell}$ with a product action and H is of diagonal type. Here we have also considered subgroups of G, thereby also ruling out groups with a twisted wreath action. This completes the proof of Lemma 3.3.

Lemma 3.4. If \mathcal{D} is a (v, k, 4)-symmetric design which admits a flagtransitive, primitive automorphism group G, then G is not of simple diagonal type.

Proof. Suppose that G is of simple diagonal type. Then

$$Soc(G) = N = T^m, m \ge 2,$$

for some nonabelian simple group T, where $T\cong N_x\lhd G_x\leq Aut(T)\wr S_m$. Here $v=|T|^{m-1}=|N_x|^{m-1}$.

The fact that G is flag-transitive implies that G_x is transitive on the k blocks through x, so $N_x \triangleleft G_x$ implies that all the orbits of N_x on the set of k blocks through x have the same size, say, ℓ . Therefore ℓ divides k, so it divides 4(v-1), and also divides |T|, that is, ℓ divides $\gcd(|T|, 4(|T|^{m-1}-1)) = \gcd(|T|, 4)$. So $\ell = 1, 2$ or 4.

If $\ell = 2$ or 4 then, for a block $B \in \mathcal{B}$, we have $|N_x : N_{xB}| = 2$ or 4. This is impossible since N_x is a nonabelian simple group.

Thus $\ell=1$, and N_x fixes all the k blocks through x. Since N_x is a nonabelian simple group, then there exists an odd prime p such that $p\mid |G|$ and $p\geq 5$. Otherwise, $|N_x|=2^a3^b$, by p^aq^b -Theorem, N_x is solvable, and so it is not simple, a contradiction. Choose an element $t\in N_x$, $o(t)=p\geq 5$. There is a point y which is not fixed by t. The point-pair $\{x,y\}$ is incident with exactly 4 blocks. Since y is in each of these blocks, the points in the t-orbit O of y, together with x, must be also incident with each of these blocks as these blocks are fixed by N_x . Since $|O|\geq 5$, then every pair of these 4 blocks is incident with at least $|O|+1\geq 6$ points, this contradicts the fact that there are exactly four points incident with two blocks. \square

Proof of Theorem 3.1. Now Theorem 3.1 follows from Lemmas 3.3, 3.4.

4 The case where the socle is a sporadic group

Theorem 4.1. Let \mathcal{D} be a nontrivial (v, k, 4)-symmetric design with a flag-transitive, point-primitive, almost simple automorphism group G, then Soc(G) can not be a sporadic simple group.

Proof. We suppose there is a nontrivial (v, k, 4)-symmetric design \mathcal{D} which has a flag-transitive, point-primitive, almost simple automorphism

group G with socle X, where X is a sporadic simple group, and arrive at a contradiction. We follow the same procedure as in [13, 17] for biplanes and triplanes.

Assume that the automorphism group G of \mathcal{D} is almost simple, such that $X \leq G \leq Aut(X)$ with X a sporadic group. Then G = X, or G = Aut(X), since for all sporadic groups X either Aut(X) = X or Aut(X) = X.2. We know that $v = |G: G_x|$, where $x \in P$ and G_x is a maximal subgroup of G. The lists of maximal subgroups of X and Aut(X) appear in [2]. Note that they are complete except for the 2-local subgroups of the Monster group M, and any possible maximal subgroup of the Monster M which is not listed in [2] has socle isomorphic to one of the following simple groups: $L_2(13), L_2(27), Sz(8), U_3(4), U_3(8)$.

For each sporadic group (and its automorphism group), we rule out the maximal subgroups whose index $|G:G_x|=v$ such that 16v-15 is not a square. In the remaining cases, for those v>2, we rule out the maximal subgroups whose order is too small to satisfy $4|G|<|G_x|^3$.

To illustrate this procedure, suppose $X = J_2$, the sporadic Hall-Janko group. Then $G = J_2$ or $J_2.2$, since $|Out(J_2)| = 2$. The maximal subgroups H of J_2 and $J_2.2$, with their orders, indices and 16v - 15 are listed as follows([2, p.42]):

Order	Index	X	X.2	16v - 15
6048	100	$U_{3}(3)$	$:U_{3}(3):2$	5.317
2160	280	$3 PGL_{2}(9)$	$: 3^{\cdot}A_{6}^{\cdot}2^{2}$	5.19.47
1920	315	$2^{1+4}_{-}:A_{5}$	$: 2^{1+4}_{-}.S_{5}$	$3.5^{2}.67$
1152	525	$2^{2+4}:(3\times S_3)$: H.2	3.5.13.43
720	840	$A_4 imes A_5$	$: (A_4 \times A_5) : 2$	$3.5^2.179$
600	1008	$A_5 \times D_{10}$	$: (A_5 \times D_{10})^{-2}$	3.41.131
336	1800	$L_3(2):2$	$:L_3(2):2\times 2$	3.5.19.101
300	2016	$5^{2}:D_{12}$	$: U_3(3):2$	3.11.977
60	10080	A_5	: S ₅	3.5.13.827

Table 1: Maximal subgroups of groups J_2 and $J_2.2$

From the last column of Table 1 we know that in every case 16v - 15 is not a square, a contradiction. Hence $X \neq J_2$.

For the Monster group M, there are 43 classes of maximal subgroups known so far. These 43 classes of maximal subgroups G_x can be ruled out by the fact that $|G_x|^3 < 4|G|$ and 16v - 15 is not a square. Any

other possible maximal subgroup N of M which is not listed in [2] satisfies $S \subseteq N \subseteq Aut(S)$ where S is isomorphic to one of the following simple groups: $L_2(13), L_2(27), U_3(4), U_3(8), Sz(8)$. However, for any possible maximal subgroup N, its order is also too small to satisfy $4|M| < |N|^3$, a contradiction.

References

- [1] M. Aschbacher, On collineation groups of symmetric block designs, J. Combin. Theory Ser. A 11(1971), 272-381.
- [2] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, London: Oxford University Press, 1985.
- [3] C. J. Colbourn, J. H. Dinitz, The CRC Handbook of Combinatorial Designs, Boca Raton, FL: CRC press, 1996.
- [4] H. Davies, Flag-transitivity and primitivity, Discrete Math. 63(1987), 91-93.
- [5] U. Dempwolff, Primitive rank 3 groups on symmetric designs, Des. Codes and Cryptogr. 22(2001), 191-207.
- [6] W. M. Kantor, Classification of 2-transitive symmetric designs, Graphs Comb. 1 (1985), 165-166.
- [7] W. M. Kantor, Primitive permutation groups of odd degree, and an application to finite projective planes, J. Algebra 106 (1)(1987), 15-45.
- [8] M. Law, C. E. Praeger, S. Reichard, Flag-transitive symmetric 2-(96, 20, 4)-design, J. Combin. Theory Ser. A 116(2009), 1009-1022.
- [9] M. W. Liebeck, C. E. Praeger, J. Saxl, On the O'Nan-Scott theorem for finite primitive permutation groups, J. Aust. Math. Soc. Ser. A 44(1988), 389-396.
- [10] C. E. Praeger, The flag-transitive symmetric designs with 45 points, blocks of size 12, and 3 blocks on every point pair, *Des. Codes and Cryptogr.* 44(2007), 115-132.
- [11] C. E. Praeger, S. L. Zhou, Imprimitive flag-transitive symmetric designs, J. Combin. Theory Ser. A 113(7)(2006), 1381-1395.
- [12] E. O'Reilly Regueiro, On primitivity and reduction for flag-transitive symmetric designs, J. Combin. Theory Ser. A 109 (2005), 135-148.

- [13] E. O'Reilly Regueiro, Biplanes with flag-transitive automorphism groups of almost simple type, with alternating or sporadic socle, European J. Combin. 26(2005), 577-584.
- [14] E. O'Reilly Regueiro, Biplanes with flag-transitive automorphism groups of almost simple type, with classical socle, *J. Algebraic Combin.* **26**(2007), 529-552.
- [15] E. O'Reilly Regueiro, Biplanes with flag-transitive automorphism groups of almost simple type, with exceptional socle of Lie type, J. Algebraic Combin. 27(2008), 479-491.
- [16] H. Wielandt, Finite Permutation Groups, Academic Press, New York, 1964.
- [17] S. L. Zhou, H. L. Dong, Sporadic groups and flag-transitive triplanes, Science in China Ser. A, 52(2)(2009), 394-400.
- [18] S. L. Zhou, H. L. Dong, Exceptional groups and flag-transitive triplanes, Science in China Ser. A, 52(2009), DOI: 10.1007/s11425-009-0051-5.
- [19] S. L. Zhou, H. L. Dong, W. D. Fang, Finite classical groups and flagtransitive triplanes, *Discrete Math.*, 309(16)(2009), 5183-5195.
- [20] S. L. Zhou, H. L. Dong, Alternating groups and flag-transitive triplanes, submitted, January, 2009.