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Abstract Let D be a 2-(v, k,4) symmetric design, and G be a subgroup
of the full automorphism group of D. In this paper, we prove that if G <
Aut(D) is flag-transitive, point-primitive then G is of affine or almost simple
type. We prove further that if a nontrivial 2-(v, k, 4) symmetric design has a
flag-transitive, point-primitive, almost simple automorphism group G, then
Soc(G) is not a sporadic simple group.
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1 Introduction

A symmetric 2— (v, k, \) design is an incidence structure D = (P, B) where
P is a set of v points and B is a set of b blocks with an incidence relation
satisfying every block is incident with exactly k points, every 2-element
subset of points is incident with exactly A blocks, and b = v. The design
is called nontrivial if A < k < v — 1. We study nontrivial 2 — (v,k, \)
symmetric designs here which denoted by (v, k, A)-symmetric designs for
simplicity. An automorphism of a design D is a permutation of the points
which also permutes the blocks, preserving the incidence relation. The set
of automorphisms of a design with the composition of functions is a group.
A permutation group G < Aut(D) is transitive on D if for any o, € P,
there exists an element g € G such that o = 8, and G is point-primitive
on D if G is a primitive permutation group on the point set P, otherwise
is called point-imprimitive. A flag in a block design is a point-block pair,
such that the point is incident with the block. Thus to say that G is
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flag-transitive means that if &, oy are points, By, By are blocks, and a; is
incident with B; for ¢ = 1,2, then there is an automorphism of D taking
(aly Bl) to (02)32)'

Symmetric 2— (v, k, A) designs with A small are of interest. For example,
those with A = 1 are the projective planes, while those with A = 2 are
called biplanes. Flag-transitivity is just one of many conditions that can
be imposed on the automorphism group G of a symmetric design D. For
the flag-transitive projective planes, Kantor [7] proved that either D is a
Desarguesian projective plane and PSL(3,n) < G, or G is a sharply flag-
transitive Frobenius group of odd order (n? + n + 1)(n + 1), where n is
even and n? + n + 1 is prime. In [12, 13, 14, 15], using the theorem of
classification of finite simple groups, Regueiro reduced the classification of
flag-transitive biplanes to the situation where the automorphism group is a
one-dimensional affine group. After the work of Regueiro on biplanes, it is
necessery to consider the classification of flag-transitive (v, k, A)-symmetric
designs with A < 4. In 2009, Law, Praeger and Reichard also suggested the
following problem.

Problem 1.1. (Law, Praeger, Reichard (8, Problem 1]) Reduce the clas-
sification of flag-transitive 2-(v,k, \) symmetric designs with A =3 or 4 to
the case of one-dimensional affine automorphism groups.

For the case A = 3, a (v,k,3)-symmetric design is called a triplane.
Recently, in [17, 18, 19, 20] the authors reduced the classification of flag-
transitive 2-(v, k, 3) symmetric designs to the case that G < Aut(D) is of
affine type, and proved the following result.

Proposition 1.2. If D is a nontrivial 2-(v,k,3) symmetric design with a
flag-transitive automorphism group G, then one of the following holds:

(i) D has parameters (45,12,3),
(ii) D has parameters (11,6,3),
(i1i) D has parameters (15,7,3),
(iv) G is of affine type.

In this paper we discuss nontrivial flag-transitive 2-(v, k,4) symmetric
designs. Here are some elementary results on symmetric designs.

Lemma 1.3. ([1, Theorem 2.7]) Let p be a prime divisor of the order of the
automorphism group of & (v,k, \)-symmetric design such that1 < A < p
and ged(p,v) = 1. Thenp < k.

Lemma 1.4. Let D be a (v,k,4)-symmetric design, and G be a flag-
transitive primitive automorphism group of D, then
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(i) k(k—1) =4(v-1).
(i) 16v — 15 is a square.
(iii) 4v < k2, and hence 4|G| < |Gz|?, where = is a point in P.
(iv) k| dged(v — 1,|Ggl).
(v) 4(|Gz|v)? > v where |Gz|y denotes the part of |G| coprime with v.
(vi) k| 4d;, where d; is any subdegree of G ([4]).

Proof. Part (z) is well-known. Part (¢) follows from (). (¢i4) The equality
k(k —1) = 4(v — 1) implies k? = dv — 4 + k, so clearly 4v < k2. Since
v = |G : Gz|, and k < |G|, the result follows. (iv) Since k& | 4(v —
1), 7 | |Gz| and k = r, we have that r | 4ged(|Gz|,v — 1). (v) By (iv)
we have that r < 4gecd(|Gz|,v — 1). Hence 4v < k% < 16gcd(|Gz|,v -
1)2 = 16gcd(|Gzlv|Galv, v — 1)?, and v < 4ged(|G|vr, v — 1)2. Therefore
4(]Gz|wr)? > v. (vi) Suppose that I is a nontrivial suborbit of G,. Let
IT'| = d;. Consider the action of G on the set P x P. Let A be an orbital of
G. Counting the number of triples (z,y, B) where ¢ # y € B, B € B and
(z,y) € A in two ways, we find

4|A| = vkt,

where vk is the number of flags (z, B), t the number of triples that contain
the flag (z, B). Since G is flag-transitive, t is independent of the choice
of the flag (z, B), and since |A| = vd;, then 4vd; = vkt. It follows that
4d; = kt, so k | 4d;. a

In the next section we need the O’Nan-Scott theorem on primitive per-
mutation groups. We restate it as follows.

Lemma 1.5. (O’Nan-Scott Theorem, [9]) Let G < Sym(Q2) be a primitive
group of degree |Q}| =n. Then one of the following holds.

(1) Affine type: G < AGL(), acting on a finite vector space Q of prime
power order n;

(2) Diagonal type: T* < G < T*(OutT x Si), where T is a nonabelian
simple group and k > 2. The stabiliser in T* of a point of Q is a
diagonal subgroup of T* (that is a subgroup conjugate in (Aut T)* to
D={(t,t,--+ ,t)|t € T}) and n = |T* : D| = |T|*-1.

(8) Almost simple type: T Q G < AutT for some nonabelian simple
group T';
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(4) Product type: Here Q = A® for some set A and € > 1, and G < H1S,,
where H is a primitive permutation group on A. HS; has the natural
action zn Q and G projects onto a transitive subgroup of Se. Thus
n = A}

(5) Twist wreath product type: G is a twist wreath product T twry P,
where T is a nonabelian simple group, P i3 a transitive permutation
group on {1,2,-- ,k} and ¢ is @ homomorphism from Py, the sta-
biliser of 1 in P, to AutT such that the image of ¢ contains InnT.
The stabiliser in G of a point of Q is P. Thus n = |T|*.

2 Imprimitive Case

Let D be a (v, k, 4)-symmetric design. Suppose that G < Aut(D) is flag-
transitive, point-imprimitive. In [11], C. E. Praeger and S. L. Zhou dis-
cussed the flag-transitive imprimitive (v, k, A)-symmetric designs. From
[11, Theorem 1.1 and Table 1 of Corollary 1.3}, we know that if a (v, k, 4)-
symmetric design admits a flag-transitive imprimitive automorphism group,
then it has parameters (15,8,4) or (96,20,4). There is a unique example
with the first parameter set, see [11, Proposition 1.5], namely the points
and hyperplane complements of the projective geometry PG(3,2) relative
to a subgroup S5 or Ss.3 of the full automorphism group PSL(4,2) & As.
Recently, in [8], M. Law, C. E. Praeger and S. Reichard proved that there
are four non-isomorphic symmetric designs with parameters (90, 20, 4), the
structures and automorphism groups of these designs are given in 8, Sec-
tion 4], and they are all point-imprimitive.

Proposition 2.1. (i) (Praeger, Zhou [11, Proposition 1.5]) The design
of points and hyperplane complements of the projective geometry PG(3,
2) is the unique design admitting a flag-transitive, point-imprimitive
subgroup of automorphisms with parameters (15,8,4).

(i) (Law, Praeger, Reichard [8, Theorem 1.1]) There are up to isomor-
phism ezactly four flag-transitive (96, 20, 4)-symmetric designs. Fur-
thermore, they are all point-imprimitive.

This, together with [10], gives the following

Proposition 2.2. (Law, Praeger, Reichard (9, Corollary 1.2]) Al 2-(v,k, A)
symmetric designs with A < 4 admitting o flag-transitive, point-imprimitive
subgroup of automorphisms are known.

Corollary 2.8. If G is a group acting flag-transitively on a 2-(v,k,4)
symmetric design D other than (15,8,4) and (96,20,4), then G is point-
primitive.

336



The following lemma asserts that there exists a flag-transitive, point-
primitive (15, 8, 4)-symmetric design.

Lemma 2.4. If D is a flag-transitive, point-primitive (15,8, 4)-symmetric
design, then D = PG2(3,2), G = Ag, Se, A7 or As, and the stabiliser
G = 84,54 x Z3, L3(2) or AGL3(2) respectively.

Proof. Let D be a (15,8, 4)-symmetric design, and G < Aut(D) be
point-primitive. As a primitive permutation group of degree 15, we know
that G is one of the following ([3, p. 597]): Ag, Se, A7, As = L4(2), A5, Sis,
and the stabiliser G; is S4, Sy x Z2, L3(2), AGL3(2), 14.3, 14.4 respectively.

If Soc(G) = Ag, then G; = S, or S4x Z2, and the subdegrees of G acting
on the stabiliser G are 1, 6, 8, and so G is a rank 3 primitive group acting
on points set (and blocks set) of a symmetric 2-(15,8,4) design. By [5,
Theorem] we know that this design exist and it is the symmetric 2—(15, 8, 4)
design of points and complements of hyperplanes from PG(3,2). It is easy
to see that D is flag-transitive.

If Soc(G) = A;s with natural action, there exists a prime p = 13 satis-
fying the conditions of Lemma 1.3, but p > k, which is a contradiction.

If G = A7 or As, the subdegrees are 1, 14, then the action of G is 2-
transitive, this has been done by Kantor. From [6, Theorem] we know that
there is a 2-transitive symmetric design, i.e. a projective space PG5(3,2),
with parameters (15, 8,4) which is the complement of a (15, 7, 3)-symmetric
design. It is easily know that D is also flag-transitive. So Lemma 2.4 holds.

a

3 Primitive Case

From [8] we know that the automorphism group of flag-transitive (96, 20, 4)-
symmetric design cannot be point-primitive. Therefore, by Corollary 2.3
and Lemma 2.4, if a (v, k, 4)-symmetric design other than (15, 8,4) admits
a flag-transitive automorphism group G, then it must be primitive. So we
just need to analysis the primitive case. Here, we will investigate the case
in which D admits a primitive, flag-transitive automorphism group. The
O’Nan-Scott Theorem (see Lemma 1.5) classifies primitive groups into the
following five types:

(1) Affine type.

(2) Almost simple type.
(3) Simple diagonal type.
(4) Product type.
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(5) Twisted wreath product type.

In this section we will prove that cases (3), (4) and (5) cannot occur. Here
is the main theorem.

Theorem 3.1. If D is a (v, k, 4)-symmetric design admitting a flag-transitive
primitive automorphism group G, then G is of affine, or almost simple type.

We will prove the theorem by a series of lemmas. Suppose that G has
a product action on the set P of points. Then there is a group H acting
primitively on a set ' ([T'| > 5) with almost simple or diagonal action,

where
P=T%¢>2 and G< H!x S, =H1S,.

We first give the following general lemma on a flag-transitive, point-
primitive 2-(v, k, A) symmetric design which will be very useful for the proof
of Theorem 3.1.

Lemma 3.2. ([12, Lemma 4]) If G is a primitive permutation group acting
flag-transitively on a (v,k, \)-symmetric design D, with a product action
on P, then v = |T|¢ < M3(|T| — 1)2, and £ = 2 forces A > 4.

Lemma 3.3. If D is a (v, k, 4)-symmetric design admitting a flag-transitive,
primitive automorphism group G, then G does not have a nontrivial product
action or twisted wreath action on the points of D.

Proof. Let || = m. By Lemma 3.2, we have m* < 4¢2(m — 1)? which
implies £ < 5. If £ = 4 then m* < 64(m — 1)2. It follows that m = 5 or
6, and v = 5% or 64 respectively, but then in every case 16v — 15 is not a
square, contrary to Lemma 1.4(¢%).

Therefore £ = 3, and m® < 36(m — 1)? < 36m? which implies 5 < m <
36. On the one hand, it is easily known that the only value of m such that
16v — 15 = 16m3 — 15 is a square is m = 34.

On the other hand, by Lemma 1.4(%), k | 4(v—1) = 4(m®—1), also from
the proof of [12, Lemma 4] we know that k | A(m — 1), so k | ged(4(m® -
1),12(m — 1)) = 4(m — 1) ged(3,m® + m + 1). Hence k divides 12(m -
1). Suppose that k = 13(’:;11 for some positive integer n, then from the
equality k(k — 1) = 4(v — 1) we have

12m-1)(12(m-1)  _
n ( n - 1) =4(m® - 1),

so
3[12(m — 1) — n] = (m? + m + 1)n?.

If m = 34, then 397n2 4+ n — 396 = 0, it follows that n = g—g—g orn=-1,a

contradiction.
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Groups with a twisted wreath action are contained in twisted wreath
groups H twry S, with a product action and H is of diagonal type. Here we
have also considered subgroups of G, thereby also ruling out groups with a
twisted wreath action. This completes the proof of Lemma 3.3. a

Lemma 3.4. If D is a (v,k,4)-symmetric design which admits a flag-
transitive, primitive automorphism group G, then G is not of simple diag-
onal type.

Proof. Suppose that G is of simple diagonal type. Then
Soc(G)=N=T", m>2,

for some nonabelian simple group T, where T &= N, 4 G, < Aut(T) Spy..
Here v = |T|™~! = |N|™"L.

The fact that G is flag-transitive implies that G is transitive on the k
blocks through z, so N, < G, implies that all the orbits of N, on the set
of k blocks through z have the same size, say, £. Therefore ¢ divides k, so it
divides 4(v — 1), and also divides |T), that is, £ divides ged(|T, 4(|T|™"! -
1)) = ged(|T|,4). So £=1,2 or 4.

If £ = 2 or 4 then, for a block B € B, we have |N, : N;g| = 2 or 4. This
is impossible since N, is a nonabelian simple group.

Thus ¢ = 1, and N, fixes all the k blocks through z. Since N, is a non-
abelian simple group, then there exists an odd prime p such that p | |G| and
p > 5. Otherwise, |N;| = 223, by p®q®-Theorem, N, is solvable, and so
it is not simple, a contradiction. Choose an element t € N, o(t) = p > 5.
There is a point y which is not fixed by ¢. The point-pair {z,y} is incident
with exactly 4 blocks. Since y is in each of these blocks, the points in the
t-orbit O of y, together with z, must be also incident with each of these
blocks as these blocks are fixed by N,. Since |O| > 5, then every pair of
these 4 blocks is incident with at least [O] + 1 > 6 points, this contradicts
the fact that there are exactly four points incident with two blocks. O

Proof of Theorem 3.1. Now Theorem 3.1 follows from Lemmas 3.3,
34. O

4 The case where the socle is a sporadic group

Theorem 4.1. Let D be a nonirivial (v,k,4)-symmetric design with a
flag-transitive, point-primitive, almost simple automorphism group G, then
Soc(G) can not be a sporadic simple group.

Proof. We suppose there is a nontrivial (v, k,4)-symmetric design D
which has a flag-transitive, point-primitive, almost simple automorphism
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group G with socle X, where X is a sporadic simple group, and arrive at a
contradiction. We follow the same procedure as in [13, 17] for biplanes and
triplanes.

Assume that the automorphism group G of D is almost simple, such that
X < G < Aut(X) with X a sporadic group. Then G = X, or G = Aut(X),
since for all sporadic groups X either Aut(X) = X or Aut(X) = X.2. We
know that v = |G : G}, where z € P and G; is a maximal subgroup of
G. The lists of maximal subgroups of X and Aut(X) appear in [2]. Note
that they are complete except for the 2-local subgroups of the Monster
group M, and any possible maximal subgroup of the Monster M which is
not listed in [2] has socle isomorphic to one of the following simple groups:
L5(13), Ly(27), S2(8), Us(4), Ua(8).

For each sporadic group (and its automorphism group), we rule out the
maximal subgroups whose index |G : G| = v such that 16v — 15 is not a
square. In the remaining cases, for those v > 2, we rule out the maximal
subgroups whose order is too small to satisfy 4|G| < |Gz|*.

To illustrate this procedure, suppose X = Jz, the sporadic Hall-Janko
group. Then G = J; or J2.2, since |Out(Jz)| = 2. The maximal subgroups
H of J, and J2.2, with their orders, indices and 16v — 15 are listed as
follows([2, p.42]):

Order Index X X2 16v — 15
6048 100  Ua(3) : Ua(3) : 2 5.317
2160 280 3'PGLy(9) 13" Ag 22 5.19.47
1920 315 2144 : 21+ 5, 3.52.67
1152 525 22+4:(3x S3) :H.2 3.5.13.43
720 840 Ay x As :(Ag x As):2 3.5%2.179
600 1008 Asx Djo : (As x Dyo)2 3.41.131
336 1800 L3(2):2 :L3(2):2x2 3.5.19.101
300 2016 52:Dy5) : Us(3) : 2 3.11.977
60 10080 As : Ss 3.5.13.827

Table 1: Maximal subgroups of groups Jz and J;.2

From the last column of Table 1 we know that in every case 16v — 15 is not
a square, a contradiction. Hence X # Jo.

For the Monster group M, there are 43 classes of maximal subgroups
known so far. These 43 classes of maximal subgroups G, can be ruled
out by the fact that |G;|> < 4|G| and 16v — 15 is not a square. Any
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other possible maximal subgroup N of M which is not listed in (2] satis-
fies S 4 N < Aut(S) where S is isomorphic to one of the following sim-
ple groups: L3(13), Lz(27), Us(4), Us(8), Sz(8). However, for any possible
maximal subgroup N, its order is also too small to satisfy 4|M| < |NJ?, a
contradiction. O
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