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Abstract: In this paper, we use the finite Heine ®,; transformations
given in [4] and some elementary simplifications to obtain several Rogers-
Ramanujan type identities.
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1. Introduction

Heine 2@, transformation formula play a fundamental role in the theory
of g-series. There are many applications of this formula. Recently, G.
E. Andrews [4] gave several finite Heine o®,; transformations from the
terminating Sears 3®, transformation. Then he used them to give two
finite Rogers-Ramanujan type identities. In-this paper, using the method
in [4], we get the identities
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as M — oo respectively. Equation (1.4) dues to Andrews [1], equation (1.5)
can be found in [2, 3, 5. Letting ¢ = —1, M — oo, the third identity dues
to S. O. Warnaar [17]
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Applying the limits of the finite Heine transformation formulas and some
elementary techniques, we also get the following identities
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The first two identities can be easily derived from g-binomial theorem, the
last two are not included in the papers [1-7, 11, 14-17].

Throughout the paper, we take 0 < Jg| < 1. And we also use the
following notations
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2. Main Results

In [4], G. E. Andrews gave the following finite Heine transformation
formulas

Lemma 2.1. We have
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Lemma 2.2. We have
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Lemma 2.3. We have
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In [4], Andrews applied terminating Sears 3®, transformation and some
elementary techniques to arrive them. In fact, the identities above can be
obtained from the identity
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given by Gasper [10]. It is an extension of ¢-Chu-Vandermonde’s identity.
In [8, p. 1402), we gave a new proof and an application of it. To make our
paper self-contained, we present the following proofs.

Proofs of Lemmas 2.1-2.3

For the left hand side of (2.4) is a symmetrical about the variable ¢ and
d, we have
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Iterating (2.5), we have (c£.[9, p. 61, Eq. (3.2.3)])
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Again iterating (2.6), we have
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Letting d = g'~M /z, equation (2.4) turns to (2.1), equation (2.6) reduces
to (2.3), equation (2.7) come to (2.2). Now we complete the proofs. l

Setting = = g, then letting b — 0, Lemma 2.1 comes to

Theorem 2.1. We have

M M &
(aiq)ed® _ (agia)m (=c)kq(®)
(99 CTY; ;(aq;q)k(q;Q)M—k' (2.8)

Taking = = g, then letting ¢ — 0, Lemma 2.2 reduces to
Theorem 2.2. We have
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Putting z = g, then letting @ — 0 in Lemma 2.3, we have
Theorem 2.3. We have
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In (2.10), taking ¢ — 1/q, then replacing (b, c) by (1/b, 1/c) respectively,
we get

Theorem 2.4. We have
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3. Some special cases
Theorem 3.1. Identity (1.1) is valid.
Proof. In (2.8), setting a = ¢ = -1 in (2.8), we complete the proof. B
Theorem 3.2. Identity (1.2) is valid.
Proof. In (2.8), setting a = 0,c = —g, we complete the proof. B
Theorem 3.3, Identity (1.3) is valid.
Proof. In (2.8), setting a = g,c — cg, we complete the proof. B
In (2.8), setting @ = —1,c = q, we have
Theorem 3.4. We have
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In (2.9), setting a = q, we have
Theorem 3.5. We have

kq(3)
S (biaa = (1 - M“)Z[ ]“L)q,:{T (32)

k=0 k=0

In (2.10), letting b — 0,9 — ¢2, we have
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Theorem 3.6, We have
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In (2.11), taking ¢ = ¢,b = —1, we get
Theorem 3.7. We have
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In (1.3), setting M — o0, we have
Theorem 3.8. For 0 < |¢| < 1, we have
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If ¢ — —1, equation (3.5) reduces to the identity (1.6).
Theorem 3.9. Identity (1.7) is valid.
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Proof. Setting b= g,c = —¢, M — oo in (2.10), combining with (1.6),

we have
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Substituting the identity above into (3.6), from (g;¢®)eo(~4; Q)eo = 1,

we complete the proof. B

Corollary 3.1. Identity (1.8) is valid.
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Proof. Applying (1.7), then combining with the g-binomial theorem,
we immediately complete the proof. B

Remark. The two identities (1.7) and (1.8) can be easily derived from
the ¢g-binomial theorem. For example, from
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we get the identity (1.7). So we conclude that

Corollary 3.2. Ifw®* =1,w#1,n=1,2,.-, then
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Corollary 3.3. Identity (1.9) is valid.

Proof. Setting c = ¢, M — oo in (3.3), then applying (1.7), we complete
the proof. B

Corollary 3.4. Identity (1.10) is valid.

Proof. Setting ¢ = ¢3, M — oo in (3.3), then using (1.8), we complete
the proof. B

As M — o0, (3.1), (3.2) and (3.4) tend to
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respectively. The identity (3.8) can be found in G. E. Andrews, J. Jiménez-
Urroz and K. Ono’s paper [6].
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