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Abstract

For a vertex v in a graph G, a local cut at v is a set of size d(v)
consisting of the vertex z or the edge vz for each z € N(v). A set
U c V(G) U E(G) is a diameter-increasing set of G if the diameter
of G — U is greater than the diameter of G. In the present work, we
first prove that every smallest generalized cutset of Johnson graph
J(n, k) is a local cut except for J(4,2). Then we show that every
smallest diameter-increasing set in J(n, k) is a subset of a local cut
except for J(n,2) and J(6,3).
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1 Introduction

The Johnson graph J(n,k) has as vertices the k-subsets of an n-element
set (). Two vertices A, B are adjacent if and only if |ANB| = k— 1. Hence
J(n, k) has (}) vertices, and is k(n— k)-regular. Since J(n,k) & J(n,n—k)
[5], we always assume n > 2k in this paper. Brouwer and Numata [2] and
Numata (7] gave characterizations of J(n,k). Some parameters of J(n, k)
have been discussed: J(n,k) has connectivity k(n — k) (3], diameter k,
wide-diameter k + 1 [6] and the chromatic number less than = [4].
Motivated by the reliability of a communication network, Yau [9] intro-
duced generalized cutsets. A set W C V(G) U E(G) is a generalized cutset
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of G if G — W is disconnected or has only one vertex. It is known that the
size of smallest generalized cutset is equal to the vertex connectivity [1],
and the vertex connectivity is equal to the regular degree in J(n,k) [3]. A
local cut at v is a set of size d(v) consisting of the vertex z or the edge
vz for each ¢ € N(v), where N(v) is the set of neighbors of a vertex v.
Clearly, every local cut is a generalized cutset and every local cut in J(n, k)
is a smallest generalized cutset. In Section 2, we show that every smallest
generalized cutset in J(n, k) is a local cut except for J(4, 2).

From [6], we know that the diameter of J(n,k) is k. In Section 3,
we study the smallest diameter-increasing set in J(n,k). A set U C
V(G) U E(G) is a diameter-increasing set of G if the diameter of G — U is
greater than the diameter of G. Ramras (8] studied the smallest diameter
-increasing set in hypercubes. We show that every smallest diameter-
increasing set U in J(n,k) is a subset of a local cut except for J(n,2)
and J(6,3), and deleting U will increase the diameter by exactly 1. In
addition, |U| = k2 for n > 2k, and |[U| = k% — 1 for n = 2k. Our analysis
is based on the existence of pairwise internally disjoint short paths joining
arbitrary pairs of vertices.

In this paper, by “element” we mean “element in Q.

2 Smallest generalized sets

In Theorem 2 of [3], the authors gave the following Lemma which reveals
the connectivity and minimum cutset of J(n, k).

Lemma 1. [3] J(n,k) has connectivity k(n — k). Furthermore, each min-
imum cutset in J(n, k) is the set of vertices adjacent to a single vertez. O

It is obvious that every minimum cutset in J(n, k) is actually a local
cut. In the following, we show that a smallest generalized cutset of J(n, k)
is also a local cut.

Before proving our main result, we give two useful lemmas. Define
N[v] = N(v) U {v}. Let x(G) and «'(G) be the connectivity and edge-
connectivity of a graph G respectively. Ramras characterized smallest gen-
eralized cutset of a graph G (not complete) with equal connectivity and
edge-connectivity in the following lemma.

Lemma 2. [8] If G is a simple graph with k(G) = #'(G) < |V(G)| -1,
then every smallest generalized cutset in G has size k(G) and consists of a
subset of a minimum separating set end one edge incident to each remain-
ing vertez of that separaling set. O
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Lemma 8. For each vertez v in J(n,k), J(n,k) — N[v] is connected.

Proof. For k =1, J(n,1) is a complete graph, the result is obvious.

For k > 2, let v = {a1,0a2,--- ,ax}. There exists a vertex & = {az1,
@k+2,° "+ , a2k} such that |5Nv| = Osince n > 2k. Clearly, 5 ¢ N [v]. Now we
show that there exists a path from vy to 7 for any vertex vg in J(n, k)~ N [v].
Let vo = {b1, b2, ,bx}. Then vo,v1, v, ,v%_1, 7 is a path from v, to 3,
where v; = {@k41,ak42,° ", Cktiy bty e 0k}, = 1,2,-++ ,k — 1. Since
vp is not adjacent to v, vy contains at least two elements different from
the elements of v. Hence each v; contains at least two elements different
from the elements of v, which implies that »; ¢ N[v]. So J(n,k) — N[v] is
connected for each vertex v. O

Now, we give our main result of this section.

Theorem 4. Every smallest generalized cutset in J(n,k) is a local cut
ezcept for J(4,2).

Proof. Let W be a smallest generalized cutset in a graph and A, B be the
sets of vertices and edges in W respectively.

For J(n,1), since J(n,1) is complete, we prove an even stronger as-
sertion that the result holds for all complete graphs. Let G be a com-
plete graph with |V(G)| = n and |A] = m. Denote one component of
G - W by C1, and C; = G — W — C}. Suppose that |V(C))| = z. Then
[V(C2)| = n—m—=z, and |B| = z(n —m — z) since B is a smallest edge-cut
of G- A. /(G — A) =n—m— 1since G — A is a complete graph. Hence
n—m—1=z(n—m-—g), that is (z - 1)(z — (n —m — 1)) = 0. Therefore
z =1 or z = (n—m—1), which implies that |C;| = 1 or |C;| = 1. Without
loss of generality, suppose that |C| = 1 and v, is the vertex in C;. Clearly,
W is a local cut at v;.

If K > 2, then n > 2k > 4 for J(n,k). In the following, we first
prove that for any vertex v in J(n, k), each vertex in N(v) has at least
two neighbors outside N[v]. Let v = {a1,02,as, - ,ax}. Without loss of
generality, denote any vertex vz in N(v) by {ax41, 02,43, - ,az}. Since
n 2 2k and k > 2, it is easy to see that n — k > 3 except when n = 4
and k = 2. So there exist two elements ax42,ak+3 € Q such that they are
different from a;,i = 1,2,--- ,k + 1. Then v} = {ary1,ak42,03, - » Gk}
and vy = {ax+1,0x43,a3, - ,ar} are two neighbors of v, outside N [v].

By Lemma 1, &(J(n, k)) = k(n—k). Since x(J(n,k)) < |V(J(n,k))|-1
except for the complete graph J(n,1) and the fact that x(H) < &/'(H) <
0(H) for any simple graph H, we have

K(J(n,k)) = £'(J(n, k)) = k(n — k) < [V(J(n, k)| - L.
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By Lemmas 1 and 2, A C N(v) for some vertex v and B consists of one
edge incident to each remaining neighbor of v in J(n, k).

If A= N(v) then W = A and W is a local cut. So suppose that A
is a proper subset of N(v). As noted above, for each w € N(v) \ 4, w
has (at least) two neighbors in J(n,k) — N[v]. By Lemma 2, at most one
of the resulting edges belongs to B, so for some z ¢ N[v],wz ¢ B. By
Lemma 3, J(n, k) — N[v] is connected. Since wz ¢ B, w is in the connected
component of J(n, k) — W containing J(n, k) — N[v]. Finally, if W is not
a local cut, we can choose some wp € N(v) \ A such that vwo ¢ B. Then
for some zo ¢ N|[v], v, w0, 20 is & path of length two in J(n,k) — W. Thus
N[v] \ A is contained in the connected component of J(n,k) — W contain-
ing J(n, k) — N[v]. Hence J(n,k) — W is connected. Since this contradicts
the fact that W is a generalized cutset, we conclude that W is indeed a
generalized cutset.O

Now, we show that J(4,2) is indeed a counterexample. Suppose that
Q={a;, a2,a3,a4}. Clearly, vertices {a1,a4}, {az,a3} and edges {{az, a4},
{a3,a4}}, {{a1,a2}, {@1,03}} form a smallest generalized cutset of J(4,2),
but it is not a local cut.

3 Diameter-increasing sets

A set U C V(G) U E(G) is a diameter-increasing set of G if the diame-
ter of G — U is greater than the diameter of G. In J(n, k), destroying all
the paths of length no more than k makes the resulting graph have larger
diameter. We use this idea to get the smallest diameter-increasing set of
J(n, k). Denote the diameter of G by diam(G). The distance between v;
and v, is denoted by dg(v;, v2) in graph G. We first give an obvious Lemma.

Lemma 5. [8] If v1 and vz are two vertices in a graph G, and G has k
pairwise internally disjoint vy, vo-paths of length at most s, then at least k
vertices and edges must be deleted to make the distance between vy and vy
larger than s. O

Denote the set of pairwise internally disjoint paths of length ¢ between
vertices v; and vz by Py(v,v2), and its size by |P;(v1,v2)|. There ex-
ist k(n — k) pairwise internally disjoint paths between any two vertices of
J(n, k) since k(J(n,k)) = k(n — k). The following lemma provides a clas-
sification of these paths.

Lemma 6. [6] For vi,v2 € V(J(n,k)) such that |vy Nva| = k — ¢, where
1<t <k, dynk)(v1,v2) = t, and there exists a classification of k(n — k)
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pairwise internally disjoint v,,vo-paths such that

I-Pt(vl’v2)l = t2?

nt — 2t2, if t#k

nk — 2k2, if t=k
nk—nt—k2+1t%, if t#k

0, if t=k a

|Pri1(v1,v2)| =

| Peya(v1,v2)| =

From Lemma 6, we can obtain the following remark.

Remark. For v;,v2 € V(J(n,k)) such that |v; Nvy| = k — ¢, where
1 < t < k, v; has exactly 2 neighbors such that each of them contains
exactly ¢t — 1 elements different from the elements of vz, while each of the
remaining neighbors of vy contains at least t elements different from the

elements of vs.

Proof. Without loss of generality, we may assume that v; = {1,2,--- ,k}
and vp = {1,2,--- ,k—t,k+1,--- ,k+t}. We want to count the number
of neighbors z of v; with the additional property that |z \ vo| =t — 1. For
z to be a neighbor of vy, |zNv;| = k= 1. Thus z = (v; — {j}) U {4} for
some 1 < j <k andsomei>k+1.

Case 1. j € v, i.e. 1 <j < k—t. Without loss of generality, we may
assume that j = k—¢. Then 2 = {1,2--- ,k—t-1}U{k—t+1,.-- ,k}U{i}.
But [{k—t+1,---,k}| =t, and none of the elements of {k —t+1,--- ,k}
are in v3. So |z\ v2| = ¢ > ¢t — 1. Thus in Case 1 the number of neighbors
zwith [z\vl=¢t—-1is0.

Case 2. j ¢ vo. Without loss of generality we may assume that
J=k z=uv-{k}u{i} ={1,2 ,k-1}U{i}. Soz\v D
{1,2,--- ,k—1}\vo = {(k—t+1,--- ,k — 1}, a subset of cardinality
t—1. Thus |2\ vp| = t—1 if and only if ¢ € va. So i € va\ v1, and therefore
there are |va \ v1| = k — (k — t) = t choices for . Now we assumed, for
simplicity, that j = k, but the same argument holds for any 1 < j < k with
J ¢ vo. Since vy = {1,2,--- ,k—t,k+1,--- ,k+t}, thereare k—(k—t) =t
such j. Thus z is determined by ¢ choices for i and ¢ choices for j and so
the number of z is 2.0

For |u; Nvz| = 0, we denote the set of the k? neighbors of v; (v2) that
each contains exactly & — 1 elements different from the elements of vy (v1)
by Ny, (v1) (N, (v2)). Note that Ny,(v1) (N, (v2)) consists of precisely
those neighbors of v; (v2) whose distance from vp (v1) is k — 1.
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Lemma 7. Let v}, v € Ny,(v1). Ny, (v2) contains at least k% — k vertices
such that each of them lies on a shortest vy, vz-path with at least one of vy
and vy.

Proof. By Lemma 6, since d(v},v2) = k — 1, Ny, (v2) contains exactly
(k—1)2 vertices at distance k — 2 from v;. We claim that there are at least
k — 1 other vertices in Ny, (v2) at distance k — 2 from vy’

We shall construct vertices v},j = 2,3,--- ,k such that v} € Ny, (v2),
d(vj,v{) = k — 2 and d(v},v}) 2 k— 1. Since d(vj,v}) # k—2,v; is
not one of the (k — 1)? vertices already found. Thus we will have at least
(k = 1)2 + (k — 1) = k% — k vertices with the desired properties.

Letv, = {a1,a2,-« ' )ak}!v? = {bl1b21 tee ,bk}a.ndv{ = {bl’a2ya?n' )
ax}. If by € v{, then without loss of generality we may assume that vy =
{a‘l,blsa& v ’ak}- For j = 2,3,-- ,k, let v,;' = {als by, b2, -~ ’bk} \ {bj}
It is easy to verify that d(vj,v1) =k — 1,d(v},v{) =k —2, and d(vj,v]) =
k — 1. If, on the other hand, b; ¢ v{, without loss of generality we may
assume that v = {a1,bq,as,- - ,ax} for some g € {2,3,--- ,k}. Then for
p# 2,9, = {ap,bo, b3, -+ ,bi} are k—1 vertices satisfying d(vp,v1) = k-1,
d(vp,vf) = k-2, and d(vp,v}) 2 k—1. O

Now, we prove an important Lemma which reveals the smallest set
U c V(J(n,k)) U E(J(n,k)) whose deletion makes two disjoint vertices in
J(n, k) have larger distance in the resulting graph.

Lemma 8. For any vi,v2 € V(J(n,k)),k # 2, and |vy Nw| = 0,
let U C V(J(n,k)) U E(J(n,k)) — {v1,v2} be a smallest set such that
djn,k)-v(v1,v2) > k. ThenU is a subset of a local cut at vy or va.

Proof. If k = 1, J(n,1) is a complete graph and edge e = v1v is the
unique desired set U, which is a subset of a local cut at vy or v;.

Now we consider the case k > 3. Using Lemma 6 and the Remark, for
1 <t < k it is easy to prove by induction on t that if d(w,vz) = t then the
number of shortest w, va-paths is (¢!)2. Hence, taking ¢ = k, the number of
shortest vy, vz-paths is (k!)2. Thus for 1 < ¢ < k& — 1 and any vertex v, the
number of shortest vy, ve-paths such that d(v,v2) =t and d(v;,v) =k - ¢
is (t)2((k — £)1)2 = [t!(k — t)!]%. Thisis < [(k - 1)!]* since for 1 < ¢t <
k—1,(5) > k, and equality holds if and only if t = 1 or k — 1. Similarly, for
an edge e = zy on any shortest v;,vo-path such that d(z,v2) =t +1 and
d(y,ve) =t,0<t < k-1,elieson [t!(k —1—¢)!)? shortest v, vo-paths, and
again equality holds if and only if ¢ = 0 or k — 1. Thus deleting one vertex
or edge destroys at most [(k — 1)!]? shortest vy, vz-paths. So deleting a set
of k2 vertices and edges destroys at most [(k — 1)!]2 - k2 = (k!)? shortest
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v1, v2-paths, with exactly (k!)? if and only if no two vertices or edges in U
lie on same shortest v;, vo-paths and U is a subset of the union of a local
cut at v; and a local cut at vp. Furthermore, |U| = k2.

In the following, we prove that U is a subset of either the local cut at
vy or the local cut at vs. Suppose to the contrary that some objects of U
belong to the local cut at v; and the others belong to the local cut at v,.

(i) If only one object w € U belongs to the local cut at v; or vs, say
at vy, then each of the remaining k2 — 1 objects of U/ must lie on different
shortest v;, vo-paths not containing w. By the Remark after Lemma 6,
N, (v2) has exactly k? vertices on shortest vy, vs-paths. Thus there are
exactly k? — (k — 1)2 = 2k — 1 vertices in N, (v;) such that each lies on a
different v, v2-path not containing w. Let U’ = U\{w}. Then |U’| = k2-1,
so for k > 3,|U’| > 2k —1. Thus there must be two vertices of U’ that lie on
the same shortest v;,vo-path not containing w. This contradicts the fact
that no path contains two different objects of U.

(ii) At least [523] objects in U belong to the local cut at v; or v, say
at va. We consider the case that at least two objects in U belong to the
local cut at v;. Let w;y, we € U belong to the local cut at v;. Then each of
~ the | %3] objects must lie on different shortest v;, vo-paths with w; and ws

respectively. By lemma 7, there are at most k% — (k2 — k) = k vertices in
Ny, (v2) such that each of them lies on different shortest v;, vo-path with
wy and ws. Since for k > 3, [ L‘;] > !‘,‘-,3 > k, this contradicts the fact that
no two objects in U lie on the same shortest v;, vo-path.

Hence, for k > 3, U is a subset of a local cut at vy or vp. O

Now, we show that J(n, 2) is indeed & counterexample. Since N,,(v;) =
Ny, (v2) and | Ny, (v1)| = 4, it is easy to see that two edges from v; to any
two vertices in N,,(v1) and two edges from v to the remaining vertices in
Ny, (v1) form a diameter-increasing set U, which is not a subset of a local
cut at v, or vs.

The following theorem is the main result of this section. Let J[X] be
the subgraph induced by the vertex set X.

Theorem 9. For (n,k) # (n,2),(6,3), let U be a smallest diameter-
increasing set in J(n,k). Then U is a subset of a local cut, |U| = k2 for
n > 2k and U| = k21 for n = 2k. In addition, diam(J(n,k)—U) = k+1.

Proof. Let U be a smallest diameter-increasing set of J(n, k). For some
v1,v2 € V(J(n,k)), dyni)—v(v1,v2) > k. I djin k)(v1,v2) < k=2, then by
Lemmas 5 and 6, IUI > k(n—k) Letting t = k-1, if dJ(,,,k)(vl,vg) =k-1,
then |U| > t2 + (nt —.2t2) =tn—t). If dJ(,.,k)('vl,vz) = k, then |U| > k2.

It is easy to verify that k(n — k) is the largest among k(n — k), t(n — t)
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and k2. Also, except for (n,k) = (5,2), if n > 2k then t(n —t) > k%. On
the other hand, for n = 2k,t(n — t) < k2.

Thus for n > 2k, |U| = k2. For n =2k, [U| > t(n —t) = (k — 1)(2k -
k +1) = k? — 1. Now we distinguish the following two cases:

Case 1. n > 2k. By the definition of Ny, (1), d(n k)—N,, (vy)(v1,v2) >
d(v1,v3) = k, s0 Ny,(v;) is a diameter-increasing subset of V(J(n,k)).
Hence |U| < | Ny, (v1)] < k2. Since we already know that |[U| > k2, we have
[U] = | Ny, (v1)] = ¥*. By Lemma 8, for k # 2,U is a subset of a local cut
at vy or at vs.

Case 2. n = 2k. Let v,w € V(J(n,k)) such that djmr)(v,w) = k—1.
Then |vNw| = 1. Suppose that @ = {a;,b; : ¢ = 1,2,--+,k}. We may
assume that v = {a;,0a2,03, - ,ax} and w = {a1,b2,b3,--- ,bx}. N(w) =
{uijv U4, ul,u£ 14, =2,3,- ’k}3 where U5 = {alx a;, b, b3, - abk}\{bj}s
uy = {b17b21 b3) MY bk}sui = {ai) b2) o )bk}a u: = {alably b2) 'ty bk}\{bt}~
Let U’ consist of exactly one of {uij,u;jw} for each u;;, exactly one of
{us, usw} for each u;, and exactly one of {uj,uw} for each uj. Then in
J(n, k)-U’, the only neighbor of w is u;. Since [vnu;| =0, dj(n,k)-v (v,21)
= k and therefore dj(n x)-v’ (v, w) = k+1. Thus U’ is a diameter-increasing
set. Since U is a smallest such set, [U| < |U’| = ¥? — 1. We already have
|U| > k2—1,s0 [U| =k2-1.

It remains to show that U is a subset of some local cut. Since n = 2k,
deleting U must make some two vertices with distance k — 1 have larger
distance. Without loss of generality, we let these two vertices be v and w.
Partition the vertex set of J(2k, k) into two parts X and Y, where

X = {the vertices in J(2k, k) containing a},
Y = {the vertices in J(2k, k) not containing a; }.

Then

J[X) = J(2k - 1,k — 1),
J[Y] & J(2k — 1,k).

Clearly, v,w € V(J[X]), diam(J[X]) = k — 1. By Lemma 6, we know
that there are k? pairwise internally disjoint paths between v and w in
J(2k, k), where (k — 1)? of which have length k — 1, 2(k — 1) of which have
length k, and the last one of which has length k + 1. Since dj(ak,k) (v, w) =
k — 1, all the (k — 1)? pairwise internally disjoint paths of length k — 1
contain a;, and then these paths also lie in J[X]. Deleting U must break
all the paths of length k — 1 between v and w. Thus in particular deleting
U must break all the paths of length k — 1 between v and w in J[X]. Now
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in J[X] by Lemma 8 and the minimality of U, we get that U contains a
subset of a local cut at v or w, which implies that U contains exactly one of
{uij, uijw} for each u;;, or exactly one of {u};, uj;v} for each uj; if k—1 > 3,
that is k > 4, where uj; = {a1,bi,a2,a3, - ,ax}\{a;},4,j = 2,3,--- ,k.
Without loss of generality let U contain exactly one of {uij, uijw} for each
u;5. For simplicity we set Uy = {{wsj, wjw}nU : 4,5 = 2,3,--. ,k}. So
[U1] = (k—1)

In the following, we prove that U also contains U,, where U, consists
of exactly one of {u;,u;w} for each u;, and exactly one of {u,uw} for
each uf, for 2 < ¢ < k. Thus |Uz| = 2(k — 1). Suppose to the contrary
that there exists some vertex p € {us,u} : i = 2,3,-..,k} such that p,
pw ¢ U. Since dj(n k)-v(w,v) > k, deleting U must break all the paths
of length k — 1 between p and v. Since d(p,v) = k — 1 (whether p = u;
or u{), by lemma 6 there are (k — 1)2 pairwise internally disjoint paths of
length k& — 1 between p and v. It is easy to verify that u; has exactly k — 1
neighbors contained in {ui; : j = 2,3, ,k}, while u} has exactly one.
Hence p has at most k& — 1 neighbors in {u;; : j = 2,3,-.- ,k}. Thus at
most k — 1 neighbors of p belong to U;. Hence U must contain U; and an
additional (k—1)2— (k—1) vertices. Therefore |U| > |U;|+(k—1)2—(k—1).

Subcase 2.1. k > 5. Now we get that (k—1)2 — (k—1) > 2(k—1). Then
|U| > [U1|+2(k —1) = k2 — 1, which contradicts the fact that [U] = k2—1.
Hence U consists of U; and Up, which is a subset of a local cut at w.

Subcase 2.2. k=4 (k-12-(k-1)=2k-1),n =8 v =
{01,02,03,04} and w = {ah b21b31b4}' If I(U2 \ {PJ”W}) nUl > 0, IUl =
[U1| + (k= 1)2 = (k — 1) + 1 > k? — 1. Hence we suppose that [U; NU| =
0 and also we assume that p is any vertex of u;. There exists a path
{a1, b2, b3, ba}, {a1, b1, b3, bs}, {a1, b1, @3, b4}, {a1, b1, a3, as}, {@1, a2, a3, a4}
from w to v such that the internal vertices on this path contain b;. There-
fore these vertices don’t lie on any path of length 3 between v and p. Then
|U| > |U1} + ((k = 1)2 = (k = 1)) + 1 > k2 — 1, which contradicts the fact
that |U| = k2 — 1. Hence U consists of U; and Us, which is a subset of a
local cut at w. O

For J(5,2), let @ = {a;,a2,a3,a4,a5}. Then edges {{a1,a2}, {a2,a3}},
{{a1, a2}, {a1,a3}}, {{a2, a3}, {a2, a4} } and {{a2, a3}, {a2, as}} form a small-
est diameter-increasing set U such that diam(J(5,2)-U) = dys,2)-v({a1, a2},
{az2,a5}) = 3. However U is not a subset of a local cut.

For J(4,2), let Q@ = {a1,a2,a3,a4}. Then edges {{a1, a2}, {a1,as}},

{{a1,@2},{a1,@4}} and {{a1, as}, {2, as}} form a smallest diameter-increasing
set U such that diam(J(4,2)-U) = dj(4,2)-v({a1, a2}, {a1,a3}) = 3. How-
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ever U is not a subset of a local cut.

For J(6,3), let Q@ = {a;,a2,as,a4,a5,a6}. Then vertices {a1,a3,a4},
{01,0'3, a5}a {a2: as, 04}7 {02, as, 05}, {aﬁv as, as}v {aly as, 06} and edges
{{as, a4, a5}, {61,04,05}}, {{as, as, a5}, {a2, a4, as}} form a smallest diameter-
increasing set U such that diam(J(6,3) — U) = dj(3)-v({a1,a2, a3}, {as,
ag,a5}) = 4. However U is not a subset of a local cut.
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