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Abstract

Suppose G is a simple graph with average vertex degree greater than
k — 2. Erd6s and Sés conjectured that G contains every tree on k vertices.
Sidorenko proved G contains every tree that has a vertex v with at least [ £] —
1 leaf neighbors. We prove this is true if v has only [£] — 2 leaf neighbors.
We generalize Sidorenko’s result by proving that if G' has minimum degree
d, then G contains every tree that has a vertex with least (k — 1) — d leaf
neighbors. We use these results to prove that if G has average degree greater
than k — 2 and minimum degree at least k — 4, then G contains every tree on
k vertices.

1 Terminology and definitions

We will use standard graph theory notation and will consider only simple graphs
(finite and undirected with no loops and no multi-edges). The graph G has vertex
set V(G), edge set E(G), order |V (G)| and size ¢(G). The degree of v € V(G)
is the number of edges incident to v and is denoted degi(v). The set of neighbors
of v is denoted Ng(v) (or N(v)), thatis, N(v) = {w € V(G)|vw € E(G)}. The
closed neighborhood of v is denoted Ng[v] (or N[v]), thatis, N[v] = N(v)u{v}.
Note that dega(v) = [N (v)).

If uv € E(G), we say « hits v and v hits v; if uv ¢ E(G) we say u misses v
and v misses u. If a vertex in A C V(G) hits a vertex in B C V{(G) we say that
A hits B; otherwise we say A misses B. Specifically, if u hits any vertex in 4, we
say that u hits A. If vertex  hits every vertex in A, we say that u hits all of A. If
u misses every vertex in A, we say that « misses all of A.

Aleaf w € V(T) in atree T is a vertex of degree one. If v has w (a leaf) as its
neighbor, then w is referred to as a leaf neighbor of v. The set of leaf neighbors
of v is denoted L (v) (or simply L(v)), thatis, L(v) = {w € N(v)|w is a leaf}.
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The minimum degree among all vertices in V(G) is denoted 6(G). The maxi-
mum degree among all vertices in V(G) is denoted A(G).

For any graph H, we denote the average degree of H as avedeg(H); that is,
avedeg(H) = 2¢e(H)/|V(H)|.

P; represents a path on j vertices; C; represents a cycle on j vertices.

2 Background and Statement of Main Theorems

In 1959, Erd6s and Gallai [1] proved the following (which we state as a theorem)
for a fixed, positive integer & and for a graph G:

Theorem 1 If avedeg(G) > k — 2, then G contains a path on k vertices.
In 1962, Erd6s and S6s stated the following conjecture:

Conjecture 1 If avedeg(G) > k — 2, then G contains every tree on k vertices as
a subgraph.

Various specific cases of Conjecture 1 have already been proven. Each places
limitations on the graph G or on the tree T'. In 1989, Sidorenko [3] proved the

following.

Theorem 2 If avedeg(G) > k — 2, then G contains every tree on k vertices that
has a vertex with at least [£] — 1 leaf neighbors.

In 2003, McLennan [2] proved the following theorem which proved very use-
ful in the proofs of our main results.

Theorem 3 If avedeg(G) > k — 2, then every tree of order k whose diameter
does not exceed 4 is contained in G as a subgraph.

In particular, McLennan’s theorem above and Theorem 1 imply that Conjec-
ture 1 holds for k < 6. In this paper, we will prove the following theorems and
corollaries. The first theorem is an improvement to Theorem 2.

Theorem 4 If avedeg(G) > k — 2, then G contains every tree on k vertices that
has a vertex with at least [%] — 2 leaf neighbors.

The following theorem generalizes Theorem 2.

Theorem 5 If avedeg(G) > k —2 and §(G) 2 d (d € N), then G contains every
tree on k vertices that has a vertex with at least (k — 1) — d leaf neighbors.

We use Theorem 5 to prove Theorem 6 which has, as corollaries, two special
cases of Conjecture 1.
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Theorem 6 Ifk > 8, 6(G) > k — 4 and G has a vertex of degree at least k — 1,
then G contains every tree on k vertices that has diameter at least 5.

Corollary 1 If avedeg(G) > k — 2 and 5(G) > k — 4, then G contains every
tree on k vertices.

Corollary 2 If avedeg(G) > k — 2, k < 8, then G contains every tree on k
vertices.

In sections 3, 4 and 5, we provide necessary lemmas and background infor-
mation as well as proofs for Theorems 4, 5 and 6, respectively.

3 Preliminaries and proof of Theorem 4

Before proving Theorem 4, we define some terms and prove some useful lemmas.

3.1 Embedding trees into graphs

Let T be a tree on k vertices and let g : V(T') — V(G) be an isomorphism from
V(T) to a k-subset of V(G). If g preserves edges, that is, if g(u)g(v) € E(G) for
every uv € E(T'), then we call g an embedding of T into G. If such an embedding
exists, then G contains a copy of T as a subgraph. Or, we say G contains T or
simply T C G.

Let T’ C T be a proper subtree of T' and let g’ be an embedding of 7" into
G. If there exists an embedding g : V(T') — V(G) such that g(v) = ¢’(v) for all
v € V(T"), we say that g’ can be extended to an embedding of T or simply, that
g’ is T-extensible.

Definition 1 Suppose G is a graph, T is a tree andp,q € V(T). If f : V(T) —
V(G) is an embedding, we construct a new function (not necessarily an em-
bedding) fp._.q : V(T') — V(G) from f by switching the values of f(p) and
f(9)- Thatis, foeg(p) = f(9). frsq(@) = F(P) and fpeg(t) = f(t) for all
teV(T) - {pq}

Suppose G is a graph, H is a tree and h : V(H) — V/(G) is an embedding
of H. Let u,v € V(H). If h(u) hits all of A(N(v) — {u}) and h(v) hits all of
h(N(u) — {v}), then hy.,, : V(H) — V(G) is an embedding of H.

If G is a graph with 6(G) = d and T is any tree on d + 1 vertices, then one
can easily find an embedding of T in G. Moreover, McLennan [2] provides a
proof of the following lemma which will be used in the proofs of our lemmas and
theorems.

Lemma 1 If6(G) > dand T is a tree on at most d + 1 vertices, then any embed-
ding of a subtree of T in G can be extended to an embedding of T.
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3.2 Average degree of subgraphs of G

Suppose G is a graph with avedeg(G) > d for some d € N. It is well-known that
removing a vertex v with degg(v) < % results in a subgraph of G whose average
degree still exceeds d. If we iteratively remove every such vertex, the result is a
subgraph G' C G with avedeg(G’) > d and §(G’) > 4. After defining new
terms, we extend this notion in Lemma 2.

We denote the sum of the degrees (in G) of the vertices in W C V(G) as
sumdegg(W); that is, sumdege(W) = 3, cw degc(v). We denote the number
of edges that are incident to at least one vertex in W as ei(W). Notice that
e&(W) = sumdega(W) — e(G[W]) where G[W] is the subgraph of G induced
by W.

Lemma 2 Let G be a graph with avedeg(G) > dforsomed € N, le W C V(G)
andlet G' = G — W. If 2e,(W) < d|W/|, then avedeg(G’) > d.
Proof. Let n = |V (G)| and observe that:

s = ams<|F|-| 52

- 1+ [%W—”J <1+ [%'—‘J — (W) < e(@)

Therefore, avedeg(G') > d. B

For a fixed integer j < |V(G)|, suppose every j-subset of V(G) that satis-
fies the hypothesis of Lemma 2 is iteratively removed from G. Then the result-
ing subgraph G’ C G has avedeg(G’) > d and for all j-subsets W C V(G),

25 () - 4 We characterize this below.

Definition 2 Suppose G is a graph with avedeg(G) > d, d € N. Fora fixedc €
N, we say G has Property A(d,c) if 2e(W) > d|W | for every subset W C V(G)
with |[W| < c

The following proposition is a consequence of Lemma 2 and will be used in
the proof of Theorem 4.
Proposition 1 Ifd € N and graph G has property A(d, 3), then:

(i) dega(v) = [1'2’;2—] forallv € V(G)

(ii) if d is odd and uw € E(G), then one of {u,w)} has degree at least %2

(iii) if d is even and three vertices z,y, z € V(G) induce a K3 in G, then one
of {z,y, z} has degree at least 442,

Suppose G C G a subgraph of G having Property A(d, 3). Since an embed-
ding into G’ is also an embedding into G, to prove our results there is no loss of
generality in assuming that G has Property A(d, 3).
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3.3 Proof of Theorem 4

Without loss of generality, assume G has Property A(k — 2, 3). So, by Proposi-
tion 1, §(G) 2 m = |£|. If T has a vertex with [£] — 1 leaf neighbors then
T C G by Theorem 2, s0 assume @ € V/(T') has | L(a)| = [£] — 2 leaf neighbors.
We will prove that T C G.

If the diameter of T is at most 4, then ' C G by Theorem 3, so assume this
is not the case and that P = ag, ay,...,a,, r 2 5, is a longest path in T Since
a must be distance at least 3 from either ag or a,, assume dist(a, ag) > 3; so, in
particular, assume a ¢ {ao, a1, az2}. Let ny = |L(ay)|.

Let H=T — (L(a) U L(a1)); so, [V(H)| =m+2 —n;. Mapa € V(H) to
z € V(G) where degg(z) > k — 1 and extend this to an embedding f of H into
G (possible by Lemma 1). Let X = V(G) — f(V(H)).

Since dege(f(a)) 2 k — 1, f is T — extensible if f(a;) hits n, vertices in
X ; so we may assume this is not the case. Thus, f(a;) hits all of V(f(H — a;))
as well as n; — 1 vertices in X, in particular, degg(f(a;)) = m.

If f(a2) hits n; vertices in X, then f,, ., is T-extensible. Since this must
be the case if k is odd (by Proposition 1), assume k is even and f(a2) does not hit
ny vertices in X. Thus, f(az) hits all of V(f(H - a3)) as well as n; — 1 vertices
in X, in particular, degg(f(az2)) = m.

Let o’ € Ng(a). Since {f(a1), f(a2), f(a’)} induce a K3 in G, it must be
that dege(f(a’)) > m + 1 (Proposition 1) and that f(a’) hits at least n; vertices
in X. Since f(a1) hits all of f(N(a’)), fa;—a is T-extensible. B

4 Lemmas and Proof of Theorem 5.

We begin this section with two lemmas, the first of which proves that Conjecture 1
holds when k = 7.

Lemma 3 Conjecture 1 holds true fork = 1.

Proof of Lemma 3. Assume G is Property A(5,3) and let T be a tree on 7
vertices. If T is a path, if T has diameter at most 4, or if if T has a vertex with
at least 2 leaf neighbors, then T C G by Theorem 1, 3, or 4, respectively. So,
assume T is a non-path tree on 7 vertices that has diameter 5 and no vertex with 2
leaf neighbors. It must be that T is isomorphic to v, vy, . . . , s + vovs.

Let P = wo,w,...,wy, 7 2 6, be a maximal path in G (so P is not a
subgraph of a longer path in G). Such a path exists by Theorem 1.

If wo hits ws, then wy, we, ..., ws + wawp is a copy of T in G; so assume
wp misses w3. If wp hits wy, then wy, we, ..., we + wawp is a copy of T in G;
SO assume wo misses wy. If wo hits ws, then ws, wy, ws, wo, w1, wa, +wswe is a
copy of T in G;; so assume wp misses ws.
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Since 8(G) > 3, wo hits {we, wr,...,w,}. Let j > 6 be the smallest index
such that wp hits w;. If wp hits wg, then ws, w4, w3, w2, wo, w;, +waw is a copy
of T' in G; so assume wo misses ws. Since6 < j < r—1, w;—2, wj—1, w;, Wo, W1,
wa + wjwjy isacopyof TinG. M

McLennan [2] showed that the hypothesis of Theorem 2 can be weakened.
Specifically, the condition “avedeg(G) > k — 2” can be replaced with “5(G) =
|_§_| and A(G) > k — 1”. We generalize this in a lemma which will be used in the
proof of Theorem 5.

Lemma 4 Suppose a graph G is such that A(G) > k-1 and §(G) 2 d for some
0 < d < k — 2. Then G contains every tree T' on k vertices that has a vertex t
with at least (k — 1) — d leaf neighbors. Moreover, there is an embedding of T
into G that maps t to v € V(G) where degg(v) = A(G).

Proof. Let G be a graph with §(G) > d and let v € V(G) be such that degg (v) >
k — 1. Let T be a tree on k vertices and let a € V(T') be such that |L(a)| >
(k—1) —d. We will prove that T C G.
Let T = T — L(a); so T' is a tree on d + 1 vertices. Map a € V(I") to
v € V(G) and extend this to an embedding f of T" into G (possible by Lemma 1).
Since dege(f(a)) = k — 1, clearly f is T-extensible. W

Proof of Theorem 5. Assume G has Property A(k — 2,1); so §(G) > | &]. Since
avedeg(G) > k — 2, there must exist a vertex v € V(G) such that dege(v) >
k — 1. The rest of the proof follows from Lemma 4. B

5 Lemmas and Proof of Theorem 6.

A cut-vertez in a graph G is a vertex whose removal disconnects the graph, and
a block of G is a maximal connected subgraph of G that has no cut-vertex.

Lemma 5 Suppose k > 8 and G is a graph with 6(G) 2 k-4 IfB C G
is a block with §(B) > k — 4 and such that B contains exactly one cut-vertex
b € V(G), then G contains every tree on k vertices that has diameter at least 5.

Proof. Notice that G’ = G — V(B) is such that §(G’) > k — 5. Let ¥’ € V(G')
be such that bb’ € E(G).

Let T be a tree on k vertices that has diameter at least 5 and let P = ag, a,,
..., @Gr, T > 5, be a longest path in T. Without loss of generality, assume
sumdegr({a1,a2}) < sumdegr({ar—2,ar-1}). So, the number of vertices in
V(T) — V(P) that hit {a;, a2} is at most I.ﬂ—;illj < [52‘-] -3<k-1

Consider the two subtrees of T that remain after removing edge aza3 from T
Let T} be the subtree that contains a3 and let T be the subtree that contains as.
Notice that [V (T2)] < k—3and [V(T1)| £ k- 4.
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Map a3 € V(T32) to b € V(B) and extend this to an embedding of T into
B (possible by Lemma 1). Map az € V(T2) to b’ € V(G’) and extend this to
an embedding T into G’ (possible by Lemma 1). Since bb’ € E(G), we have an
embedding of T into G. B

Lemma 6 Suppose T is a tree and vertices v, v1,v2, w,wy € V(T') (v may equal
w) are such that v is the neighbor of leaves vy and va, w is the neighbor of leaf w,
and f is an embedding of T into a graph G. If there is a matching from f({v1,v2})
into f({w,uwn}), then G also contains a copy of the tree T' = T — vv; + v,vz.

Proof. Suppose there is a matching from f({v1,v2}) into f({w, w1 }). If
{f(n)f(w), f(v2)f(w1)} € E(G), then fy, v, is an embedding of T" into
G. If {f(v1)f(w1), f(v2) f(w)} C E(G), thenset g = f, set g(v1) = f(wr),
9(v2) = f(v1), g(w1) = f(v2) and g is an embedding of 7" into G. B

Proof of Theorem 6.

Let T be a tree on k vertices with diameter at least 5. Let P = ap, ay, ..., ar,
r 2> 5, be a longest path in T'. If any vertex in T has 3 leaf neighbors, then T C G
by Lemma 4, so assume this is not the case.

Case 1 A vertex a € T has 2 leaf neighbors.

The distance from a to one of {ay, a,} is at least 3; assume dist(a,ap) > 3.
Consider the subtree of T defined as H = T'~ Lr(a). Let v € V(G) be such that
dege(v) = k — 1. To prove T C G, it suffices to show there is an embedding of
H into G where a is mapped to v.

Let H = H — ap. Mapa € V(H’) to v € V(G) and extend this to an
embedding g of H' into G (possible by Lemma 1). Let X = V(G) — g(V(H")).

So, V(H') = k—3 and every vertex z € g(V(H")) is such that either Ng[z] =
g9(V(H')) or z hits X. If g(V(H’ — a)) misses X, then since g(a) hits X, g(a) is
a cut-vertex of G, g[V (H')] is Kx—3 in G, and G contains every tree on k vertices
by Lemma 5; so assume one of g(V(H' — e)) hits X

If g(e1) hits X, then clearly g is H-extensible (and therefore, T-extensible);
so assume this is not the case; thus N{g(a1)] = V(H').

Case 1.1 |Ly(a1)| =1

If g(a2) hits X, then g,, a4, is H-extensible; so assume this is not the case;
thus N{g(az)] = V(H’). Leta’ € V(H’) — {a, a1, a2} be such that g(a’) hits X
Then gg, o is H-extensible,

Case 1.2 |Lg(a1)| =2
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Let w € V(H' — a,) be the leaf neighbor of a;.

Suppose g(a2) hits z € X. If z hits two vertices in X U {g(u)}, then set
f = g and f(a;) = z and f is H-extensible. Suppose z hits at most one vertex
z; € X U {g(u)}. Then, let o’ = {a3,as}\{a} and set f = g, f(a') = =,
f(ao) = g(a') and f is an embedding of H into G. So, assume g(az) misses X.
Thus, N{g(a2)] = V(H').

If g(u) hits X, then gg, . is H-extensible, so assume g(u) misses X; thus,
Nlg(v)] = V(H'). Leta” € g(V(H' - {a,a1,a2,u})) be such that a” hits a
z € X. Thenset f = ga, ~ar and f(ag) = z and f is an embedding of H into G.

Case 2 No vertex in T has 2 leaf neighbors.

Since T" = T — aga; + apaz has two leaf neighbors, there is an embedding g
of T' into G. Let X = V(G) — g(V(T")).

If g(ao) hits g(ay) or if g({ao, @1}) hits X, then clearly T C G; so assume
this is not the case. Thus, each of g({ao,a1}) misses at most two vertices in
g(V(T'" - {ao,a1}))-

A caterpillar is a tree in which a single path (the spine) is incident to (or con-
tains) every edge.

Case 2.1 T is a caterpillar.

First, suppose T is a P;. Since k > 8 and degg(g(ao)) = & — 4, it must be
that g(ao) hits two adjacent vertices g(a;) and g(a;+1) for some 2 < i < 6. Thus,
g(al)vg(GZ)r ..-»9(as), g(a'o)ig(ai+1)19(ai+2)v ..-;9(ak-1) is a P in G. So,
assume that T is not a Py,

Case 2.1.1 T has at least 2 leaves besides ag and a,

Let 2 < i < j < r — 2 be such that a; and a; have leaf neighbors /; and /;,
respectively.

If there is a matching from g({ao, a1}) to one of the three pairs g({a;, :}),
9({a;,1;}) or g({ar—1,ar}), then T C G by Lemma 6. Notice both g(ao) and
g(a1) hit at least 4 of the 6 vertices in the three pairs; so g(ao) hits both vertices
in one of the pairs. Assume g(ag) hits both of g({a, ;}) (the proofs for the other
two pairs are similar). If g(a,) hits g({a:,;}) we have a matching so assume this
is not the case. So g(a;) hits all 4 vertices in g({a;,;}) U g({ar-1,ar}) and
g(ao) hits at least two of them. Therefore, T C G.

Case 2.1.2 T has exactly 1 leaf | besides ap and a,
Let 2 < i < r — 2 be such that a; hits L. If g(ao) hits g(a3), then set f = g,

f(ao) = g(a1), f(a1) = g(az), f(a2) = g(ao) and f is an embedding of T
into G. If g(a;) hits g(as), we reach a similar result; so assume g({ao,a1})
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misses g(as). Thus, each of g({ao,a;}) misses at most one vertex in g(V (T’ -
{0, a1,a3})).

If4 < i < r—4 then there is a matching from g({ao, a, }) into either g({a;, })
or g({ar,ar—1}); so T C G by Lemma 6; so assume i € {2,3,7 — 2,7 — 3}.

Case2.1.2.1 i € {2, — 2}

We may assume ¢ = r — 2. Since each of g({a1,az}) hits 3 vertices in
9({as,1})Ug({ar-1,ar}), there must be a matching from g({a1, az}) into either
g9({ai,1}) or g({ar-1,ar}). By Lemma 6, T C G.

We may assume ¢ = 3. If there is a matching from g({ao, a,}) into
9({ar-1,a.}) then T C G by Lemma 6; so assume this isn’t the case. So, each of
9({ao, a1}) misses exactly one vertex in g({a_1,@,}) and each of g({ag,a1})
hits g(1).

If g(ao) hits g(ar—1), then C = (g(ao), g(az), 9(a1),9(!), 9(as), g(as),
g(as),...,9(ar-1)) is a Cx_1 in G and C + a,_;a, contains T'; so assume g(a;)
hits g(a,). Then C’ = (g(ao), g(a2),9(a1), 9(), g(as), g(as), g(as), - . ., g(ar))
isaCrinG. If z € V(C’) hits z ¢ V(C’) then C’ + zz contains T, so assume
V(C') = V(G). Thus, one of the vertices in V(C’) has degree k — 1; assume
degc(g(ar)) = k — 1. Then C” = (g(az), 9(a1), 9(1), 9(as), g(aa), 9(as),. ..,
9(a,)) is a Cx—_; and C" + g(ao)g(a,) contains T

Case 2.2 T is not a caterpillar.

Let p € V(T)\V(P) be be a penultimate vertez, that is, a vertex with at
least one leaf neighbor (here, exactly one) and exactly one neighbor that is not a
leaf. Let ! be the single leaf neighbor of p. Since p must be distance at least 3
(in T') from one of {ai,a,_1}, assume dist(p,a;) > 3. [If dist(p,a;) < 3 and
dist(p, ar—1) = 3, the proof is identical after we reverse the order of the labels of
the vertices on P.]

If g(ao) or g(a1) hits all of g(N(az)\{ao0,a1}), then gagesa, OF gayra,, TE-
spectively, is an embedding of T into G; so, assume this is not the case. Thus,
9(ao) hits either both of g({a,—1,a-}) or both of g({p, {}) and g(a, ) hits at least
one from both of those sets. So, there is a matching from g({ao, a1 }) into either
g({ar-1,0:}) or g({p,1}). By Lemma 6, T C G.

Proof of Corollary 1.
Since avedeg(G) > k — 2, there is a u € V(G) such that degg(u) > k — 1.
The rest of the proof follows from Theorem 6. B

Proof of Corollary 2.
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We already showed that Conjecture 1 (and Corollary 2) hold for k& < 7; so
assume k = 8. Without loss of generality, assume G has Property A(6,1) so
5(G) > 4 = k — 4. Since avedeg(G) > 6, there is a u € V(G) such that
degg(u) > 7. Therefore, by Theorem 6, G contains every tree on 8 vertices. B
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