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Abstract
We study the factorisations of a cyclic permutation of length n
as & product of & minimal number of transpositions, calculating the
number f(n,m) of factorisations in which a fixed element is moved m
times. In this way, we also give a new proof-in the spirit of Clarke’s
proof of Cayley’s theorem on the number of labelled trees—of the fact
that there are n™~2 such factorisations.

It is well known that the number of ways of writing an n-cycle as a
product of a minimal number, n — 1, of transpositions is "2, equal to
the number of labelled trees on n vertices. For instance, the 33~2 minimal
factorisations of the 3-cycle (1 2 3) are (1 2)(1 3), (2 3)(1 2), and (1 3)(2 3).
This was first proved by Dénes ([2]), while Moszkowski ([7]) was the first
to give an explicit bijection between such products and labelled trees.

Amongst the later bijections we mention the one found by Goulden and
Pepper ([4]), which works by showing that both trees and factorisations
satisfy a particular recurrence relation, and the “structural” one by Goulden
and Yong ([5]), which translates nicely some of the properties of the tree
into the factorisation: for instance, to a tree with k leaves corresponds a
factorisation with k transpositions of the form (i i + 1).

In this paper we compute the number of minimal factorisation moving
a fixed element a given number of times. In this way, we shall also give
a new proof of the total number of minimal factorisations, in the spirit of
Clarke’s proof for Cayley’s theorem on the number of labelled trees. That
proof enumerated trees according to the degree of a fixed vertex.

: Given a permutation o € S,, a factorisation of o is a sequence of
transpositions (ay,...,a,) such that the product o;...q, is equal to o.
Multiplication is always from left to right. A factorisation is said minimal
if it involves the minimum number of transpositions, that is, n — k, where
k is the number of cycles (including cycles of length 1) of o written as a
product of disjoint cycles.
When o is an n-cycle, a minimal factorisation is also transitive, namely,
its transpositions generate the symmetric group. A good deal of research
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(see for instance [3]) has been done on minimal transitive factorisations for
arbitrary permutations, that is, factorisations such that the transpositions
ajy,...,a, generate S, and the cardinality r is minimal with respect to this
property. In this case, the number of traspositions for a minimal transitive
factorisation is n + k — 2, where k is the number of cycles.

The main result on minimal factorisations of a cycle is the following.

Theorem 1 (Dénes) The number of minimal factorisations of a fized n-
cycle is n™2, forn > 2.

We shall enumerate factorisations of a cycle according to the number of
their transpositions moving a fixed symbol, say n.

Observe that the claimed total number of minimal factorisations of a
fixed cycle (without loss of generality, (1 2...7n)) can be written as

n-2
= ((n-1)+1)"2 = ) (n : 2) (n-1)}

=0

= fi(:lzzl)(n—l)"-m-l. 1)

m=1

Now, we shall show in Theorem 2 that the term (273)(n — 1)*~™"!
has an interpretation in our context: it is the number of factorisations of
(12...n) in which exactly m transpositions move the point labelled n. In
this way, we also obtain a new proof of Dénes theorem.

This nicely mirrors the fact that the number of labelled trees on n
vertices in which the vertex labelled n has exactly m neighbours is also

"~2)(n — 1)*~™-1. This was proved by Clarke in ([1]), who then used
equation (1) to give a proof of Cayley’s theorem. Unfortunately, it seems
that this fact cannot be used directly: the known bijections between trees
and factorisations do not behave nicely with respect to the degrees of the
vertices: in our case this means that they do not map trees with a m-degree
vertex n to factorisations moving n exactly m times.

Observe in particular that there clearly is & unique minimal factorisation
of (12...n) in which all the transpositions move n, that is ((1 n), (2 n),...,
(n — 1 n)). In fact, if (1 2...n) = (a1 n)(az n),...,(an-1 n), then a; is
equal to 1, since a, is the image of n. And an easy induction does the trick.

We have the following result about our factorisations.

Theorem 2 Let F(n,m) be the set of minimal factorisations of (12...n)
in which ezactly m transpositions have n in their support, and let f(n,m) =
|F(n,m)|. Then the following holds:

flowm) = (77 - 1, @)
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The proof of the theorem will follow from two lemmas. We are going
to define the numbers a(n,m), which enumerate minimal factorisations of
certain suitable permutations; we shall show how f(n,m) and a(n,m) are
related, and then give an expression for a(n,m).

Consider the set of the permutations of S,_; consisting of exactly m
disjoint cycles—including the 1-cycles—and admitting an expression as a
product of disjoint cycles in which 1, 2, ..., n— 1 appear consecutively. An
example of such a permutation is

(12)(3)(4567)...(n-3n—2n—1).

Now, let A(n,m) be the set of the minimal factorisations of these per-
mutations, which we are going to call contiguous factorisations, and let
a(n,m) = |A(n,m)|.

Remark. Let us remark some facts we shall use later about manipulating
factorisations and, in particular, about making the transpositions moving
n appear where we need them. Observe that, if a, b, ¢ are in [n — 1] and
a # b, then the following holds: (a b)(c n) = (¢ n)®¥(a b) = (c*®) n)(a b),
where 7 is equal to 0~ 170, the permutation = conjugated by o, and ¢ is
the image of ¢ under the permutation .

So, if

(@1,...,ai-1,(CN), Qig1y .oy Oy Qj41, 00, A1)

is a minimal factorisation of the n-cycle, and n is not moved by any of 41,
..., @j, then

(@) e vy @im1, @igy e v ey @, (€3 1), gy, .00y 0ny)

is again a minimal factorisation with the same number of transpositions
moving n. In general, from a minimal factorisation we can obtain another
one with the same transpositions fixing n in the same relative order, and
with the transpositions moving n located in arbitrarily chosen positions.

The numbers f(n,m) and a(n,m) are linked in a straightforward way,
which relates explicitly the two types of factorisations.

Lemma 3 With f(n,m) and a{n,m) as above,
s m) = alo,m) (" ). ®)

Proof. We shall prove the claimed equality by giving a bijection between
F(n,m) and the set A(n,m) x (I"~!), that is the set of pairs whose first
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element is a contiguous factorisation and the second one is an m-subset of
{1,2,...,n=1}.
Map a minimal factorisation F = (a3, ...,@n-1) to the pair

((aix 1ecey ain—m-l)’ S)s

where the a;;s (with iy > i3 > -+ > in—m—1) are the transpositions of
F not moving n; and the elements of S are the positions in F of the
transpositions moving n. Call this map ¢.

We shall show:

1. that the sequence (i,,...,Qi,_,..,) given by the transpositions of
F not moving n is indeed a contiguous factorisation; and so ¢ takes
values in A(n,m) x (["n:l]);

2. that ¢ is a bijection; we shall obtain this by showing that, given
any contiguous factorisation G and any m-subset S of [n — 1], one
can uniquely determine m transpositions moving n, such that the
sequence F obtained by putting them in the positions given by S
and the transpositions of G in those given by the complement of S
is a minimal factorisation of the n-cycle, and all factorisations are
obtained this way.

Let us prove the claims:

1. Note that we get a permutation of the kind factorised by contigu-
ous factorisations by multiplying an n-cycle (on the right) by trans-
positions of the form (am 7), (@m-1 7), ..., (a2 n), (1 n) with
am > Om—1 > -+ > a1 =1:

(12...n)(@m n}{@m-17)... (a2 R)(1 n) =
=(1...a.2—1)(a,2...a3—1)...(am...n—1)(n).

So, if in a minimal factorisation F of the n-cycle the transpositions
moving n are in the last positions, we get a.contiguous factorisation
simply by deleting them. Otherwise, by the procedure described in
the Remark, we can get a minimal factorisation of the n-cycle with
the same transpositions fixing n as F, and with the transpositions
moving n at the end.

2. Let us consider any factorisation G = (a3, ..., @n—1-m) of the permu-
tation (1...a2 —1)(az...a3—1)...(am...n—1), in the set A(n,m).
We can append to it m transpositions of the form (a n) to obtain
a factorisation F in F(n,m), using the transpositions (a; n), with



l=a1<az2 <+ < am:

(a1y.. yQn—1-m, (@1 1), ..., (Gm n))=: F.
N, —
G
The numbers a;,...,an are uniquely determined: suppose that

(al, veeyOnel—m, (bl n), ey (bm n))

is another minimal transitive factorisation of the cycle (1 2...n) (so
that the b;s are different from each other), then

(a1 m)...(am n) = (b1 n)...(bm n).

This implies that (a; a2 ... am n) = (b1 b2 ... by, n). Then a; = by,
veey G = by

The minimal factorisation F will correspond in this way to the pair
G, {n-mn-m+1,...,n-1}).

To get the factorisation F corresponding to the pair (G,S) for an
arbitrary set S, we start by completing G with m transpositions at the
end as above, obtaining (ay,...,~1-m, (a1 n),...,(am n)). Then,
by the Remark, we can move the transpositions (a; n) leftwards: if
sy is the minimum element in S, we “push” the transposition (a; n)
in position s;, conjugating it along the way:

(als ceey gy, (bl n)1a81ta81+1’ ey Qnalem, (a'2 n)’ LR (am n)))

with by equal to gp"~*~m*""*~m%141%1 By an analogous proce-
dure, all the transpositions moving n will appear in the positions
dictated by S.

¢

Example. Take the permutation o = (1 2 3)(4)(5 6 7 8), with n = 9 and
m = 3. Let us choose the factorisation G = ((1 3), (5 8), (2 3), (6 8), (7 8)).
It can be completed in just one way to a factorisation of (123456 789)
in F(9,3), by adding at the end three transpositions moving 9:

((13),(58),(23),(68),(78),(19),(49),(59)).

Each choice of five positions for the transpositions of G, out of eight, gives
a single factorisation of the cycle; for instance, the positions 2, 3, 5, 7, and
8 yield

((39),(18),(58),(49),(23),(59), (6 8),(7 8)).

The transpositions involving 9 are uniquely determined by conjugation.

In the next lemma we calculate the value of a(n,m).

401



Lemma 4 With a(n,m) as above,
a(n,m) = m(n —1)""™"2, (4)

Proof. First, it is possible to show that the following equality holds:

a(n,m) = Z (l1 —nl,—. .1.’-177:— 1) Hlé‘_z'

‘ll-")m i=1

Yh=n-1
Vili21

In fact, by Dénes theorem, each of the m cycles (of length, say, L),
admits lﬁ"'z factorisations consisting of {; — 1 transpositions. The multi-
nomial coefficient counts in how many ways these transpositions can be
intertwined—more formally, the ways of choosing the {; — 1 positions for the
transpositions factorising the first cycle, and so on.

(Note that this follows immediately from Theorem 3 in the classical
paper by Dénes [2], which gives an expression for the number of minimal
factorisations of a permutation of given cycle structure. The equality then
follows by summing on all ordered partitions of n — 1.)

Now, a closed form for the above sum is obtained by noting that it is
evaluated by a multinomial identity of Abel type due to Hurwitz (eq. (36),
p. 26 in the book by Riordan [8], or eq. (VI) in the original paper by
Hurwitz [6]). We have

Z (l o ) ﬁl?—z =m(n—1)""™"2

n 1=L..,0n-1 paie}
Slh=n-1
vili21

%

Remark. Note that, although we use Dénes theorem in this proof, we have
given an original proof of it, in which we reason by induction on n, the length
of the cycle: this lemma invokes the theorem only for permutations on at
most n — 1 points (because A(n,m) consists of permutations in Sp_1).

This completes the proof of Theorem 2: we obtain the claimed result
about the number of factorisations with exactly m transpositions moving
n from equalities (3) and (4).
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