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Abstract: Different neighbor conditions are considered in [3,4,9] for a
graph up-embeddable. In this paper, we consider the neighbor conditions
of all the pairs of vertices with diameter 2 and obtain the following new
result: if |Ng(u) N Ng(v)] > 2 for any two vertices u,v € D where D =
{(u,v)|de(u,v) =2, u,v € V(G)}, then G is up-embeddable.
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1 Introduction

A graph is often denoted by G = (V, E). A graph is simple if it has
neither multiple edges nor loops. In this paper, the graphs are allowed to
have multiple edges and loops. The edge-connectivity x;(G) of a connected
graph G is the minimum number of edges whose removal from G results
in a disconnected or trivial graph. By a surface, we shall mean a compact
connected 2-mainfold without boundary. The maximum genus of graph G,
denoted by vy (G), is the maximum genus among the genus of all orientable
surface on which G has a 2-cell embedding. By the Euler formula, we have

M(G) < [L*(_;:’)_J v
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where B(G) = € — v + 1 is called the Betty number of G, For a graph G,
if ym(G) = lﬁ(z_G.ZJ , then G is said to be up-embeddable on the orientable

surfaces.

The study of the maximum genus of a graph was inaugurated by Nord-
haus, Stewart and White [8]. There are two equivalent characterizations on
the maximum genus of a graph, due to Xuong [11] (Liu [6] independently
as well) and Nebesky (7], respectively. The characterization of Nebesky is
in terms of an edge cut set of the graph. The two characterizations in [11]
and [7) are dual to each other.

Let T be a spanning tree of a connected graph G. The edge comple-
ment G — T of the spanning tree T is called a co-tree. A component H
of G — T is called an odd component if H has an odd number of edges;
otherwise, an even component. The deficiency £(G,T) of a spanning tree T
of a connected graph G is defined to be the number of odd components of
G —T. The deficiency £(G) of a graph G is the minimum of £(G,T) over
all spanning trees T'. Now we restated the characterization theorem.
Theorem 1 [6,11] Let G be a connected graph. Then
(1) G is up-embeddable if and only if £(G) < 1, and
(2) ym(6) = DA,

Let A be a subset of E. let ¢ = ¢(G — A) be the number of components
of G— A, and let b = b(G — A) be the number of components of G — A with
odd Betty number.

Theorem 2 [7] Let G be a connected graph. Then

(1) G is up-embeddable if and only if ¢(G — A) +b(G — A) — 2 < |4, for
any subset A of E, and

(2) £(G) = maxace{c(G — A) +b(G — A) — |4| - 1}.

Combining this characterization and a result of Kundu (5], every 4-
edge connected graph is up-embeddable. However there are examples of
k-edge connected (k-vertex connected) graphs that are not up-embeddable,
for k = 1,2, 3. Based on these observations, it leads us to consider what con-
ditions are constrained such that a k-edge-connected is up-embeddable. Let
Ne(u) denote the set of neighbors of vertex u € G. In [9], Skoviera showed
that every multigraph (without loops) of diameter 2 is up-embeddable.
Since a graph without loops has diameter 2 if, and only if, V uwv ¢ E(G),
[Ng(u) N Ng(v)| = 1. In (3], Huang and Liu considered the neighbor con-
dition of adjacent vertices and proved the following result: Let G be a
graph without loops. If V uv € E(G) satisfy one of the following condition:
(1) [Ng(x) N Ng(v)] = 2; (2) G is 2-connected and |Ng(u) N Ne(v)| 2 1,
then G is up-embeddable. Let L € {Ki3,K13+ e}. In (4], He and Liu
further proved the following result: Let G be a simple graph, for any two
vertices u and v of distance 2 in L, i.e., dp(u,v) = 2, satisfy the condition
|Ng(u) N Ng(v)| = 2, then G is up-embeddable. Especially, the L— free



graphs are up-embeddable. In this paper, we consider the neighbor condi-
tions of all the pairs of vertices with diameter 2 and obtain the following
conclusion.
Theorem 38 Let G be a graph without loops and D = {(u,v)|dg(u,v) =
2, u,v € V(G)}. If INg(u) N Ng(v)| > 2 for all u,v € D, then G is
up-embeddable.

For any concepts not defined here, we may refer to [1], [6] or [10].

2 The proof of Theorem 3

Let Fj,,---, F}, be some connected components of G- A, and E(F;,,---, F;,)
be the set of edges each of which has one end vertex in in V' (F;_ ), the other
in V(F;,)(1 £ m,n < k,m # n). In [2], Huang and Liu obtained the fol-
lowing theorem.
Theorem 4 [2] Let G be a connected graph. if G is not up-embeddable,
then there exists an edge subset A satisfying the following properties,

(a) (G- A) > 2, and B(F) =1 (mod 2) for any connected component
F of G- A;

(b) F is an vertez-induced graph of G for any connected component F
of G- A;

(c) |E(Fyy,- -+, Fi,)| < 2k—3 for any k distinct components F;,---, F;,
of G — A;

(d) é(F) =1 for any connected component F of G — A;

(€) §(G) =2c(G - A) - |A| - 1.

The following fact is obvious.

1
|4l = 2 3" IB(F; 4) 1)
i=1

Proof (of Theorem 3). Suppose that G is not up-embeddable. By
Theorem 4, there exists A C F such that the properties (a)-(e) of Theorem
4 are satisfied. Let Fy, Fy,---, F} (I > 2) be the all connected components
of G- A.

Claim x;(G) > 2.

Suppose to the contrary, £1(G) = 1, thus G has a cut-edge e = uv. If
d(u) = d(v) = 1, in this case, G is K. Thus G is up-embeddable, it’s a
contradiction to our hypothesis. Without loss of generality, we may suppose
w is a neighbor of u and w # v. Since dg(w,v) = 2, by our assumption,
|[Ne(w) N Ng(v)| = 2. Let = be a neighbor of w and v and = # u. Thus uv
lies in a cycle uvzw and wv is not a cut-edge of G, it’s impossible.



If we prove that |E(F;, A)| > 4, fori =1,2,---,l, By (1),

Al = —ZlE(F,,A)l 2.

i=1

By Theorem 4,
|4l <2l —

It’s impossible. Then we complete the proof.

Suppose to the contrary, there exists a F; such that |E(F;, A)| < 3,
i€ {1,2,---,1}. By the claim, we know that 2 < |E(F;, 4)| < 3.

Case 1 |E(F;, A)| = 2. Let u,v be two contacting vertex of F;. Let
E(F;, F;) = {uz} and E(F, F}) = {vy}, (= € Fy,y € F).

Subcase 1 u = v. By Theorem 4, F; is a vertex-induced subgraph
of G and B(F;) = 1 (mod 2), we know |V(F;)| > 2. Let w be another
neighbor of u in F;. Since dg(w,z) = 2 and |Ng(w) N Ng(z)| 2> 2, there
exist a vertex z such that z is a neighbor of w and z. If w € Fj, it has
|E(F;, F;)| > 2, otherwise, |E(F;, A)| > 3. By Theorem 4 and |E(F;, A)| =
2, it’s impossible.

Subcase 2 u # v. By Theorem 4, we know |V (F;)| = 2. let h be a
neighbor of z in Fj. Since dg(u, h) = 2, we have [Ng(v) N Ng(z)| > 2, in
this case, |E(F;, A)| > 3, it’s contrary to our assumption |E(F;, A)| = 2.

Case 2 |E(F;, A)| = 3. Let u,v, w be three contacting vertex of F;.
Let E(F, F;) = {us}, B(F, Fx) = {vy}, and E(F, Fi) = {wz} (z €
Fj,y € Fy,z € F).

Subcase 1 u = v = w. By Theorem 4, F; is a vertex-induced sub-
graph of G and B(F;) = 1 (mod 2), we know |V (F;)| 2> 2. Let k be a neigh-
bor of u in F;. Since dg(z,h) = 2, we have [Ng(h) N Ng(z)| > 2, in this
case |E(F;, A)| > 4, it’s a contradiction to our assumption |E(F;, A)| = 3.

Subcase 2 u =v # w. (1) uw € E(G). Since dg(w,z) = 2, we have
|[Ne(w) N Ng(z)| > 2. Let t be a neighbor of w and z and ¢ # u. If ¢ # 2,
then |E(F;, A)| > 4, a contradiction. Thus t = z, i.e. zz € E(G). Similarly
we have yz € E(G). Let sbe a nelghbor of z in F;. Since dg(u, s) = 2,
we have [Na(u) N Ng(s)| 2 2. Let s’ be a neighbor of u and s and s # z.
If s # y, then |E(F;, A)| > 4, a contradiction. Thus s =y. In this case,
E(F;, F;,F, Fy) 2 {sy,wz,yz uz, uy, wz}, ie.,|E(F, Fj, Fx, Fi)| 2 6, by
(c) of Theorem 4, it’s impossible. (2) uw ¢ E(G), Since F; is connected,
we suppose h be a neighbor of v in F;. Because dg(h,z) = 2, we have
|[Ng(h) N Ng(z)| = 2. Let t be a neighbor of h and z and ¢ # u. By (c)
of Theorem 4, we have t ¢ F; U F; U F;; U F;. Thus |E(F;, A)| > 4. It's a
contradiction to our hypothesis |E(F;, A)| = 3.

Subcase 3 u # v # w. We first show that u € Ng(v) or w € Ng(v).
If u,w ¢ Ng(v), by the connectivity of F;, let h be a neighbor of v in F;.
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In this case, dg(h,y) = 2 and we have [Ng(h) N Ng(y)| > 2, in this case,
|E(F;, A)| > 4. It's impossible. Without loss of generality, let uv € E(G).
If vw ¢ E(G), Similarly, we have u € Ng(w) or v € Ng(w). By above
discussion, we may suppose uv,vw € E(G).

Since dg(w,y) = 2 and dg(u,y) = 2, we have [Ng(w) N Ng(y)| > 2
and |Ng(u) N Ng(y)| = 2. Let r be a neighbor of u and y, s be a neighbor
of w and y. By (c) of Theorem 4 and |E(F;, A)] = 3, we must have r = z
and s = 2. If uw ¢ E(G), then dg(u,w) = 2. Thus, let ¢ be a neighbor
of u and w (¢t # v). Since dg(t,z) = 2, we have |Ng(t) N Ng(z)| >
2, In this case |E(F;, A)] > 4. It's a contradiction to our assumption
|E(F;, A)| = 3. Otherwise uw € E(G), in this case dg(z,w) = 2, we
have |[Ng(z) N Ng(w)] > 2. let p be a neighbor of w and z such that
p # u. Since |E(F;,A)] = 3, we must have p € F; and p = 2. But
E(E,F}’Fk:ﬂ) 2 {zy, z2,y2, uz, vy, wz}, ie., IE(R)EﬁFk,FI)I 2 6, it’s
contrary to Theorem 4 (c). §

Fig. 1.

Fig. 2.

Remark 1 Note that the graph G in Fig. 1 has multiple edge and with
diameter 4. By Theorem 3, we know that G is up-embeddable. But, we
can’t decide the up-embeddability of G by using the methods of [4,9).



Remark 2 By Theorem 3, the graph G shown in Fig. 2 is up-embeddable.
Since uv € E(G) and |Ng(u) N Ng(v)] = 0, we can’t use the methods of
(3.4].

Thus, Theorem 3 is independent of the methods of (3,4,9].

By Theorem 3, we have the following corollary.
Corollary 5 Let G be a graph without loops and D = {(u,v)|dg(u,v) =
3, u,v € V(G)}. Let H =G U {uvluv € D}. Then H is up-embeddable.

Proof. If for all u,v € V(G),dg(u,v) < 2, then the diameter of G is
less than 2. By a result of [9], we know that G is up-embeddable. Otherwise
D = {(u,v)|dg(u,v) = 3, u,v € V(G)} is not empty, it’s routine task to
check that H satisfied the condition of Theorem 3.
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