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Abstract: The modified Zagreb indices are topological indices which reflect
certain structural features of organic molecules. In this paper we study the
modified Zagreb indices of joins and compositions.
INTRODUCTION

Zagreb indices have been introduced in 1972 by Gutman and Trinajstic [1] as
terms in their derivation of the pi-electronic energy of conjugated molecules.
Three years later Gutman et al. [2] formulated Zagreb indices as the branching
indices. After this paper, the Zagreb indices start appearing in the
structure-property-activity modeling procedures[3-7). They are very useful
topological indices in QSPR and QSAR [6, 7). The first Zagreb index M,(G)
and the second Zagreb index My(G) are defined as follows [6, 7]: for a simple

connected graph G, let My(G) = )" d(v)’,My(G) = Y d(u)d(v), where

veV(G) weE(G)

d(u) and d(v) are the degrees of vertices u and v respectively.

However, recently some authors found their shortcoming [8]. It has been
noted that the contributing elements to the Zagreb indices give greater weights
to the inner (interior) vertices and edges and smaller weights to outer (terminal)
vertices and edges of a graph. This opposes intuitive reasoning that the outer
atoms and bonds should have greater weights than inner vertices and bonds,
because the outer vertices and bonds are associated with the larger part of the
molecular surface and consequently are expected to make a greater contribution
to physical, chemical and biological properties. One way to amend Zagreb
indices is to input in the definitions of M;(G) and M,(G) inverse values of the
vertex-degrees. We call these indices the modified Zagreb indices and denoted
them by symbols "M, and "M, [4]. They are defined as follows [8): for a simple

1 m _ 1
Zaor MO 2 e

where d(u) and d(v) are the degrees of vertices u and v respectively.

connected graph G, let ™M,(G) =
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In this paper we study the modified Zagreb indices about join and
composition of graphs. In [14], Sagan et al studied Wiener polynomial problem
about graph operations containing join and composition problems.

PRELIMINARIES

For further details, see [12, 13].

Definition 2.1[9, 10, 11]. The zeroth-order general Randic index °R(G) =
Zvev(q,d(v)' for general real number t, where d(v) is the degree of v. When t =
—0.5, °R5(G) is the famous zeroth-order Randic index R%G) [6]. Randic
index of graph G, denotes #(G) , is defined as follows:

1
P ool
Definition 2.2[12]. The join G + H of graphs G and H with disjoint vertex sets
V(G) and V(H) and edge sets E(G) and E(H) is the graph union GUH together
with all the edges joining V(G) and V(H).
Definition 2.3[15). The composition G = Gy[G;] of graphs G, and G, with
disjoint vertex sets V, and V, and edge sets E; and E; is the graph with vertex
set V, x V; and u = (u;, v;) is adjacent with v = (uy, v;) whenever u, is
adjacent with u, or u; = u, and v, is adjacent with v,.
Lemma 2.4[12]. Every nontrivial tree has at least two vertices of degree one.
Lemma 2.5[16]. dogs((2, b)) = [V(E)|do(a) + du(b).

MAIN RESULTS ABOUT JOINS

2 Lm- 2 + 2 P 2

(n+1* (n+2)?* (m+1)? (m+2)

Theorem 3.1. "M, (P +P,) = >, mn=2.

Theorem 3.2. "M,(Ky+Ka,) =—mln—7 ,where m,n>2.
(m+n-1)

m_._n
(n+2)} (m+2)
m-1 n-1 2
(n+1)?  (m+1* (m+n-1)
2 3 m-22 z T,m22,n23.
(n+1)?® (n+2)° (m+2)

2 + m-2 + n-1 + 1 ’
(n+1? (n+2¢ (m+1> (m+n-1)

Theorem 3.3. "M, (C,+C;) = -, Where m,n2>3.

Theorem 3.4. mM](K]. m.|+K|. n-l) = 7 MmN >2,

Theorem 3.5. "M,(P+C,) =

Theorem 3.6. "M;(P.+K|. n1) =

where m,n 2.
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m n-1 1

Theorem 3.7. "M(C,+K;. 0.1) = w2 me T mns R where m >

3,n>2,

Theorem 3.8. "M, (P, +K,) = 2 =+ m-22 + n ,m,n>2,
(n+1) (n+2* (m+n-1y

m + = n
(n+2*  (m+n-1)

Theorem 3.9. "M,(C,+K,) = —»where m2>3,n>2.

m+1 - n-1

, wh ,n22,
men-1y  (menp o MR

Theorem 3.10. "M, (K +K, 1.1) =

Theorem 3.11. Let G and H be simple connected graphs, we have min 5
(m+n-1)
n-1 + 2
(m+1)>  (m+n-1)*

<"M,(G+H) <min{ % R.(G) +$ R,(H),

( " 1)2 }»  °Ru(G) is defined in Definition 2.1, m = [V(G)| 2 2, n = [V(H)| > 2.
n

Proof. Since d(u) + d(v) > 2(d(u)d(v))°", by the definition of "M, we have
1
"M(G+H)= )

P (d(u)+n) F L@@y

s ¥ — °R(G)+— R.,(H). Since G+H is a
uevz<:c) dnd(u) Y 4md(v) 4n 1(G) o 1(H). Since

subgraph of K +K; = Knin, by Theorem 3.2 and the definition of ™M, we have

"M,(G+H) > __L
(m+n-1)
1 1 1

< + ,
B @-17 @t

Claim: Let a, b be natural numbers, we have —1- +—
at

>2,a<b
1 1
In fact, let Fe — ,X22. We have f’(x) =—2(—~ — ———
t, let ) x (x+1)? X ) ( x (x+ (x+1) ) <
0. Hence, f(x) is a decreasing function. Thus, we have i, - ;2
b b+1

(_ll)_’ - iz . The claim follows. By the claim above we have "M,(G+H) <

a -

m-l, n7l 2 The theorem follows.

(n+1? (m+1)? (m+n-1)*
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Similarly, we have

Theorem 3.12. "M;(Poi+P,) = 2 4 =3 -+ 2
(m+D)(m+2) (m+2f  (n+l)(n+2)
m-3 4, 2n-2) , 2Am-2)  (m-2)n-2)

(n+2)? +(n+l)(m+1) (n+D(m+2) (n+2)(m+1) (n+2)(m+2)’

where m,n23.

Theorem 3.13. "My(Kxr+Ko) = MR where m,n>2.

(m+n-1)

m + n mn m,
(n+2P (m+2y (n+2)(m+2)’
2(m-1) . 2(n-1)

(m+n-1)(n+1) (m+n-1)(m+1)

n=3.

Theorem 3.14. "M;(C,+C,) =

Theorem 3.15. "M,(K,. .1 HK1. n1) =

(m-Dn-1) 1
(n+l)(m+1)  (m+n-1)

-, Wherem,n2>2.

2 + m-3 + 2n

Theorem 3.16. "MyPutCo) = gD ~ @eny | (medmeD)

n(m-2) + n

. where m, n > 3.
M)+ | @emy e E

o - 2 m-3
Theorem 3.17. Mz(Pm+K|, n-l) (n " 2)(n + l) + (2 " n)2
n-1 + 2(n-1) + 2 + (m-2)(n-1)
(m+n-1)(m+1) (m+1)(n+1) (m+n-1)(n+1) (m+)(n+2)

T+—m—l)—2(-+_2)’ where m=3,n>2,
m+n-1)(n
m n-1

(n+2)?  (m+n-1)(m+1)

Theorem 3.18. "My(C K. n1) =

mn=l) z , where m>3,n22.
(m+1)(n+2) (m+n-1)(n+2)
Theorem 3.19. "My(Po+K,) = 2 Pk B (ol
(n+1)(n+2) (n+2)? 2(m+n-1)>°
2n + n(m=2) , where m23,n22,

(m+n-)(n+1) (m+n-1)(n+2)
m + n(n-1)
(n+2)} 2(m+n-1)’

Theorem 3.20. "M,(C,,+K,) =
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mn

————————, where m>3,n22.
(m+n-D(n+2)

m(m+1) + n-1
2(m+n-1)? m+n-1

Theorem 3.22. Let G and H be simple connected graphs, we have "M,(G+H)

,wherem,n=>2.

Theorem 3.21. mMz(Km"‘K].n_[) =

0 0
= zif) ¥ ”f,’,f 22 (f J:—n( H) , where RUG) and (G are defined in

Definition 2.1, m = [V(G)| 2 2, n = [V(H)| > 2.
1 1
Proof. "M,(G+H) = +
oot "MA(G+H wg(:a) (d(u) +n)(d(v)+n) xye;(H) (d(x)+m)(d(y)+m)
1

+ .Sincea+b22Ja—b,whereaandbare
..avz(o) sevimy (n+d(u))(d(x) +m)

1
positive numbers, we have "M(G+H) < Z —_—— +
4,/d(u)nd(v)n

uveE(G)

1 1 B
Py rresrerrs el YD My e

0 0
2(©) +Z (H) + R(G)R (H) . Consideringa +b=2+ab ifandonlyifa=b,
4n 4m 4Jmn

1 1
iFOM)GHH) = Y e 4 S S
MG+ w§0,4 d@)nd(v)n mg(:m«/d(x)md(y)m

1
T Wehave d) =n, d(v) = n, d(x) =m, d(y) = m.
u;«smvzuw,/d(u)nd(x)m we have d(u) =n, d(v) =0, d(x) =m, d(y) = m

Because d(u) < m—1, d(x) <n—1, we have n < n—2, which is a contradiction.

0 0
Hence, we have ™M,(G+H) < 2(G) +Z (H) + R(GR (H) .The theorem
4n 4m 4\/mn

follows.
MAIN RESULTS ABOUT COMPOSITIONS
4 + 2(n-2) + 2(m-2) + (m-2)(n-2)
(n+1? (n+2* @2n+1*  (2n+2)

Theorem 4.1. "M, (P[P.]) =

’

wherem, n > 2.

m mn

Theorem 4.2. "M,(Kn[K,]) = ——7,

(mn-1)
mn

Theorem 4.3. "M,(C[C,]) =———, where m,n>3.
4(n+1)

where m,n>2.
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-l)(n—l)+ m-1 + n-1
(n+1)? @2n-1) (mn-n+1)

Theorem 4.4. li(Klo m-I[Kl- n-l]) = (m

+ (—-lW,where m,n>2.
mn—

2n +n(m—2)
(n+2? (2n+2)?*’
0=, 2 (m-2n-1) m-2
(n+1)? (2n-1) @n+1)? Gn-1?*’

Theorem 4.5. "M,;(P,[C.]) = wherem>2,n23.

Theorem 4.6. "M;(Pu[K). n1]) =

where m, n > 2,

m(n-1) m
@2n+1* (3n-1)

. __2n n(m-2)
Theorem 4.8. "M;(P[K,]) (2n—l)2 + (371—1)2 ’

Theorem 4.7. "M, (Cr[K.. p.1]) = >, where m>3,n>2.

where m,n>2.

Theorem 4.9. "M;(CulK,]) = (T'”"—z where m>3,n>2.
n

-1

Theorem 4.10. "My(Ka[Kin1]) = ¢ mn-D) ,_m

mn-n+1*  (mn-1)*’

where m,n=>2.

Theorem 4.11. Let G and H be simple connected graphs, we have re——) "ml) >
mn -
(m-Dr-D), _m-1
(n+1)° (2n-1?

smmmmmﬁ%©%®,

n-1 + 1
(mn—-n+1)* (mn-1)
IV(G)| 22, n=|V(H)| > 2.
Proof, Because n >dy(b), we have ndg(a) + du(b) > 2(ndg(a)du(b))>®, where
1
(a.b)evztcmn [ndg(a)+d,, ()

1 1 .
< ————— = — %R (G)"R.i(H). Since G[H] is a subgraph of
(ame;own 4nd;(a)d,(b) 4n I l

Kn[Kx ]= Kun, by Theorem 3.2 we have "M, (G[H]) =

-}, where °R.i(G) is defined in Definition 2.1, m =

b €V(H), we have "M,(G[H])=

mn
(mn-1)*

Claim: Let a, b and k be natural numbers,a>k+1,a<b, k=1, we have lz
a
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plo 11
b?  (a-k?  (b+k)
1

=1 1
In fact, let f(x) = = “‘W,x>0,wehavef'(x)= 25—

1
(x+ky )
<< 0. Hence, f(x) is a decreasing function. Thus, we have -l? - —1-—2 <

b (b+k)

1

(a—k)’

By Lemma 2.5 and the definition of "M, if edge e does not belong to E(G),
we have "M, ((G+e)[H]) < "M,(G[H])). Similarly, if edge e does not belong to
E(H), we have "M,(G[H+e]) < ™M,(G[H]). Hence, when ™M,(G[H]) attains its
maximum, both G and H are trees. If G # K, 5., by Lemma 2.4, without loss of
generality, let dg(a;) = 1, 2,8, E E(G), dg(a;) = A(G). Then, we let G= G—a,a +
a,3;. By Lemma 2.5, in G[H] we have dgy(a1, b)) =n +dy(b), dgp(az, b) =
ndg(az) + du(b), dp(ai, b) = ndg(a;) + du(b), di(a, b) = ndg(a) + du(b), where
a # a), a, 4;. Similarly, in G{H] we have dg’(a), b) =n + du(b), da’pm; (a2 b)
=n(dg(az)—1) + du(b), d 6’ (8, b) = n(dg(a;) + 1) + du(b), d g’y (8, b) =
ndg(a) + dy(b), where a # a,, a,, a;. By the claim above we have "M,(G[H]) <
"M,(GH]). If G'# K, ».,, we can do as above. Hence, considering the
maximum of "M;(G[H}), we can suppose G =K n.1.

Similarly, If H # K, 5., by Lemma 2.4, without loss of generality,. let dy(b;) =
1, bib, € E(H), dy(b;) = A(H). Then, we let H= H—b,b,+ b,b;. By Lemma 2.5,
in G[H] we have dgp(a, bi) = ndg(a) + du(b1),  dap(a, bz) = ndg(a) + du(by),
dami(a, bi) = ndg(a) + du(by), dm(a, b) = ndg(a) + du(b), where b # by, by, bi.
Similarly, in G[H'] we have dgpy” (8, bi) =ndg(a) + du(b)), dau’i(a, b2) =
ndg(a) + du(b2)— 1, d g’ i(a, by) = nda(a;) + di(b) + 1, d g’ (8, b) = ndg(a) +
dy(b), where b # by, b, b;. By the claim above we have "M;(G[H]) < "M,(G[H
‘D. IFH' # Ky 5.1, we can do as above. Hence, considering the maximum of
"M (G[H]), we can suppose H =K, ,.,. Thus, the maximum of ™M,(G[H]) is
attained by K m.1[K;.1]. By Theorem 3.4 the theorem follows.

Similarly, we have ‘

- 217 . The claim follows.

3n* -3mn+m+18n-22 + 2n-6
(2n+2) (n+2)?

2 —
Theorem 4.12, "M(P,[P,]) = e
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n’-4n+8 2mn-3m-6n+18  4m-12 4n=2) o4
(n+1)(n+2) (n+1)Q2n+1) @n+1* (n+2)2n+1)’ T
Theorem 4.13. "M(Kn[Ka]) =———— , where m, n>2.
4(n+1)
mn

Theorem 4.14. "M3(C,[C,]) =———, where m,n23.
2(mn-1)

Theorem 4.15. "My(Ky. mi[Kr. ) = + {—— (=D, m=]
2 mn-n+l n+l 2n-1

+ 1 )+ 1 (m-1)(n-1) +m-l+ n-1 m-1 _n-1

mn—1 mn-—1 n+l 2n-1 mn-n+l 2n-1 n+l

n-1 + 1
mn—-n+1 mn-1

(m-D(n-1 n-1 1 ll)},wherem,nzz-

n+l mn-n+1 2n-1 mn-~
2 2n  n(mn-3n+m-2)
Theorem 4.16. ™M -+ +
2PulCal) (n+2)n+l) (2+n) 4(n+1)?

where m, n > 3.
. __2n-) 2(n-1’
Theorem 4.17. "My(PolKs. D =20 0+ Gt

2n-1)  , 2m-D) 2 , Bm-8)n-1)
Gn-D(n+l) 4n*-1 (2n-1)@3n-1)  (Qn+1)B3n-1)

1N — -
+(n 1) (m2 3)_,_ m 32, wherem>3,n>2.
2n+1) (B3n-1)

m _m(n- 1)? m Im(n-1)
Theorem 4.18. "M(Cr[K,. n1]) ntl)’ + Gl + G )]’ where

m23,n=2.
2
2n + n(n-1) + n(2n-1) +

Theorem 4.19. "MyPulKe)) = (o 3G * @noly * G-Iy

n(m—4) , where m=3,n22.
2(3n-1)

Theorem 4.20. "My(Co[K,]) =————, where m>3,n>2.
2(3n-1)

. _ m*(n-1)
Theorem 4.21. "My(K[K) 51]) (mn—n+1)(mn-1)
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L m(m=1)n-1)’ L_m(m=1)
2(mn-n+1?  2(mn-1)*’
Theorem 4.22. Let G and H be simple connected graphs, we have "M:(G[H])

wherem,n>2,

0 0 2
<_R.,(G)x(H) : :’ (GYR'(H)) , where RG) and #(G) are defined in

Definition 2.1, m = [V(G)| > 2, n = [V(H)| > 2.
Proof. Since ndg(w) + dy(v) > 2 \/nde (w)d, (v) , we have "My(G[H]) =

1 1
+
wevz(o) we;(m nda (w)+ dH () ”dc (w)+ dH )
1 1
abezz(c) veVZ(H) uevein) Ndg(a) +dy (u) ndg (b)+dy (v) <

1 1
_— +
4n weVZ(G) mgﬂ ) dc (W)\l d” (u)dll (V)

1 1 1 1
4n de§(6) veVZ(H) ueVz(H)JdG(a)dG(b) Jd” (u) JdH(V)

'R (G)2(H)+ x(GYR'(H))
4n
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