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Abstract

Bicyclic graphs are connected graphs in which the number of edges
equals the number of vertices plus one. In this paper we determine the
first three graphs among all bicyclic graphs with n vertices, ordered
according to their least eigenvalues in increasing order.
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1. Introduction

The graphs in this paper are simple. Let G = (V, E) be a graph on vertex
set V(G) = {v1,v2,-++ ,un }, and let A(G) be a (0, 1)-adjacency matrix of
G. The characteristic polynomial of G is just det(AI — A(G)), denoted by
P(G; )). Since A(G) is symmetric, its eigenvalues are real. Without loss
of generality, we can write them as A1(G) > A2(G) = -+ - > A\, (G) and call
them the eigenvalues of G. In particular, we denote the largest eigenvalue
A1(G) by p(G), called the spectral radius of G, and the least eigenvalue
An(G) by A(G).

As G ranges over the collection of all simple graphs with n vertices, it
is often required to know how small A(G) gets. Brigham and Dutton [2]

proved
2mn_ 2mny
/\(G)Zma-x{—\/l_’_n_, \/1+n+}3

*Supported by National Natural Science Foundation of China (10771103), Natural
Science Foundation of Jiangsu Province (BK2008198) and Qing Lan Project of Jiangsu
Province.

ARS COMBINATORIA 95(2010), pp. 427-436



where ny,n_ are the numbers of positive eigenvalues and negative eigen-
values of G, respectively. Constantine [4] showed that A(G) > —n/2 if n
is even or A(G) > —vn? —1/2 if n is odd. The same result was obtained
by different means in [9) and [12]. For some special families of graphs, the
above problem has also been studied by several authors. Let G be a simple
graph with n > 3 vertices, orientable genus g and non-orientable genus h.
Hong and Shu [10] defined the Euler characteristic X(G) of a graph G by
X(G) = max{2 — 2g,2 — h}, and proved that A(G) > —/2(n — X(G)). In
particular, if G is a planar graph, they obtained A(G) 2 —v/2n — 4 with
equality if and only if G = Kj n~2. For series-parallel graphs, they obtained
a similar result. Xu, Xu and Wang [15] gave a sharp lower bound on the
least eigenvalue of a unicyclic graph with n vertices and characterized the
graph attained the lower bound.

Bicyclic graphs are connected graphs in which the number of edges
equals the number of vertices plus one. The eigenvalues of bicyclic graphs
have been studied by many authors, for example, one may see (3, 7, 8, 16]
and the references therein. Denote by B, the set of all bicyclic graphs with
n vertices. In this paper we determine the first three graphs in 8B,, ordered
according to their least eigenvalues in increasing order.

2. Preliminaries

P
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Fig. 1 B(p,!,q) Fig. 2 6(p,1,q)

Denote by C, and P, the cycle and the path, respectively, each on n
vertices. Let Cp and C, be two vertex-disjoint cycles. Suppose that v
is a vertex of Cp and v; is a vertex of C,. Joining v; and v; by a path
vvg - -+ vy of length [ — 1, where [ > 1 and ! = 1 means identifying v; with
, the resulting graph (Fig. 1), denoted by B(p,1,q), is called an co-graph.
Without loss of generality, we may assume that p < g. Let Pr41, Pp41 and
P41 be three vertex-disjoint paths, where 1 < l < p <€ g and at most one
of them is 1. Identifying the three initial vertices and terminal vertices
of them, respectively, the resulting graph (Fig. 2), denoted by 6(p,!,q),
is called a 6-graph. Let B, be the set of those graphs on n vertices each
of which is an oo-graph with trees attached, and ©, be the set of those
graphs on n vertices each of which is a f-graph with trees attached. Then
B, =B, U6,
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Denote by B;,(p, 1, g) the graph on n vertices obtained from B(p, 1, g) by
attaching n —p—g+1 pendant edges at the vertex of degree 4, by 6%(p, , q)
the graph on n vertices obtained from 8(p, !, g) by attaching n—p—g—1+1
pendant edges at one vertex of degree 3, and for p=g=2o0rp=gq =
3,{ =1, by 67*(p,!,q) the graph on n vertices obtained from (p,l,q) by
attaching » — p — g — | + 1 pendant edges at one vertex of degree 2.

By the Perron-Frobenius theory of non-negative matrices and Theorem
8.8.2in [6], we have A(G) > —p(G) with equality if and only if G is bipartite.
If G is connected, then A(G) is irreducible and by the Perron-Frobenius
theory of non-negative matrices, p(G) has multiplicity one and there exists
a unique positive unit eigenvector corresponding to p(G). We shall refer to
such an eigenvector as the Perron vector of G. For v € V(G), d(v) denotes
the degree of vertex v and N(v) denotes the set of all neighbors of vertex
v in G.

The terminology not defined here can be found in [1, 5, 6]. In order to
complete the proofs of our main results, we need the following lemmas.

Lemma 1 ([11, 14]). Let G be a connected graph and p(G) be the spectral
radius of A(G). Let u,v be two vertices of G and d(v) be the degree of
verter v. Suppose v1,v2, -+ ,v; € NW\N(u)(1 < s < d(v)) and z =
(z1,Z2,- - ,Zn) is the Perron vector of A(G), where z; corresponds to the
vertex v;(1 < i < n). Let G* be the graph obtained from G by deleting
the edges vv; and adding the edges wv;(1 < i < 8). If z, > z,, then
P(G) < p(G").

As immediate consequences of Lemma 1, we have the following.

Lemma 2. Let G be a connected graph and let e = uv be a non-pendant
edge of G with N(u) N N(v) = 0. Let G* be the graph obtained from G by
deleting the edge wv, identifying u with v, and adding a pendant edge to
u(=v). Then p(G) < p(G*).

Proof. We use z,, and z, to denote the components of the Perron vector

of G corresponding to « and v. Suppose that N(u) = {v,v1,-- ,v; } and
N(v) = {u,uy, -+ ,u: }. Since e = uv is a non-pendant edge of G, it follows
that s,t > 1. If =, > z,, let

G' =G-{vuy, - ,vue } + {uuy, - v, }.
If z, < zy, let
G'"=G—{uvy, - ,uv, } +{vv, - ,vu, }.

Obviously, G* = G’ = G”. By Lemma 1, we have p(G) < p(G*). This
completes the proof.
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The following result is often used to calculate the characteristic poly-
nomials of graphs.

Lemma 3[3, 5, 18]. Let u be o vertez of G, and let C(u) be the set of all
cycles containing u. The characteristic polynomial of G satisfies

P(G;)) = PG -5 \) - Y. P(G-u-v;0)-2 > P(G\V(2);)).
vEN(u) ZeC(u)

Lemma 4[10]. If G is a simple connected graph with n vertices, then there
ezists a connected bipartite subgraph G’ of G such that

AG) 2 X&)
with equality if and only if G =G'.

For 1 < k < n—1, denote by C,:“'" the graph formed by attaching n—k
pendant edges at a vertex of the cycle Ck. The following two lemmas were
given in [15].

Lemma 5[15]. Let n > 4, F be a forest on n vertices and G # Kin-1.
Then
AF) > MCF9).

Lemma 6[15]. Let n > 4, G be a unicyclic graph on n wvertices and
G # Cs"':. Then MG) 2 MCJ™%), and the equality holds if and only if
G = 04 -,

Lemma 7. Ifn > 6, then p(8*(2, 2, 2)) > p(6**(2, 2, 2)), p(6*(2, 2, 2)) >
p(6*(3, 1, 3)) > p(6*(3, 1, 3)), p(6*(2, 2, 2)) > p(Br(4,1,4)).

Proof. Since 6*(2, 2, 2), 6**(2, 2, 2), 6*(3, 1, 3) and 6**(3, 1, 3) all have
the star K 3 as an induced subgraph, it follows that their spectral radii

are greater than v/3. Applying Lemma 3 to their highest degree vertices
respectively, we have

P(6°(2,2,2);A) AP4E — (n 4+ 1)X° + 3(n - 5)],
P(0**(2,2,2); N) A"4E — (n+ 1)A% + 4(n - 5)],
P(6*(3, 1, 3);\) AO[\6 — (n 4 1)A% + (4n — 17)A% — 3n + 17),

P(O*(3,1,358) = A"°A°—(n+ 1))+ (50— 23)A" - 20+ 11).

It follows that when n > 6,
P(6*(2, 2, 2); \) < P(6*(2, 2, 2); A),
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P(6*(3,1, 3);)) < P(6°°(3, 1, 3); \)

and
P(6"(2, 2, 2); \) < P(6"(3, 1, 3); )

hold for A > v/3. These imply that
p(6°(2, 2,2)) > p(6**(2, 2,2)), p(6°(3, 1, 3)) > p(6**(3, 1, 3)),

and
p(0%(2, 2, 2)) > p(6°(3, 1, 3)).

Applying Lemma 3 to the highest degree vertex of B} (4, 1,4)), we have
P(Br(4,1,4);2) = A7[A° = (n + )X + 4(n — 4)A% - 4(n - 7))].

Since the star K 4 is an induced subgraph of B}(4,1,4), it follows that
p(B;(4,1,4)) > p(K1,4) = 2. Thus, we have

P(B;(4,1,4);A) — P(6%(2, 2, 2); A) = A*8[(n - 1)A2 —4(n—7)] > 0
holds for A > p(By(4,1,4)). This implies p(6*(2, 2, 2)) > p(B(4,1,4)).
The proof is complete.

Lemma 8. (1) If8 <n <27, then
A(6*(2, 2, 2)) < A(B;(3,1,3)) < A(6°(2, 1, 2)).
(2) If28 < n < 29, then
A(0*(2, 1, 2)) < A(6*(2, 2, 2)) < A(B;(3,1,3)).
(3) If n > 30, then
A(0*(2,2,2)) > A(Br(3,1,3)) > M6 (2, 1, 2)).

Proof. Applying Lemma 3 to the highest degree vertices of B(3, 1, 3)
and 6;,(2, 1, 2), respectively, we have
P(B;(3,1,3);0) = A" ¢(\Z-1)(M* —n)2 —4A+n-5),
P(67(2,1,2);0) = X7\ = (n+1)A2 — 4\ 4 2(n — 4)].
From these and the proof of Lemma 7, we can see A(65, (2, 2, 2)), A(B%(3, 1, 3)),
A(0n(2, 1, 2)) are the least roots of following equations respectively:
M — (n+1)A% +3(n—5) =0,
M-nA2_4A+n-5=0,
Mo(n+1)A2—4r+2(n—-4)=0.
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By the straightforward calculation via the MATLAB Programming, we can
verify that(1) and (2) hold.

Now we show (3) holds. Denote f(\) = A* —nA?2 —4A+n—5 and
g(A) = M = (n+1)A%2 - 4A + 2(n — 4). Then

FQO)=g(A) =X —-(n-3),

A(Bz(3, 1, 3)) and A(6;(2, 1, 2)) are the least roots of the equations f()) =
0 and g(\) = 0, respectively. Since

f(-vVn-3)=-2n+4+4vn-3<0
holds for n > 6, it follows that A(B4(3, 1, 3)) < —v/n — 3. Thus
FNBL(3, 1, 3))) — g(A(BA(3, 1, 3))) = A(B}(3, 1, 3))% = (n— 3) > 0,

and so g(A(B%(3, 1, 3))) < 0. Thus A(B;(3, 1, 3)) > A(6;(2, 1, 2)).
Since

f(M0n(2,2,2)

- (_\/n+1+\/(n—5)2+36')
)

3 211 .

+2(2n+2+2y/(n-5)2+36)/2<0
holds for n > 30, it follows that when n > 30,
A6(2, 2, 2)) > A(BR(3, 1, 3)).

The proof is complete.

Lemma 9. Let n > 8 and G be a bicyclic graph on n vertices with girth

g=>4. Then
n+1+y/(n—"5)2+36
<
#(G) _\/ : ,

and the equality holds if and only if G = 6*(2, 2, 2).

Proof. Let G be a bicyclic graph on n vertices with girth g > 4 such that
the spectral radius of G is as large as possible. Denote the vertex set of
G by {v1,v2,+ ,v5 } and the Perron vector of G by z = (21,22, ,Zn),
where z; corresponds to the vertex v;(1 < ¢ < n). Let Ba(g > 4) and
©,,(g > 4) denote the sets of all bicyclic graphs with girth g > 4 in By, and
©,,, respectively. We consider the following two cases.
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Case 1. G € B, (g > 4). We first prove that G is an co-graph B(p, 1, ¢)
with one tree T attached to the vertex of degree 4, denoted by v;. Let
B(p,l,q) be the co-graph in G, and v1va---y be the path joining the
cycles Cp and C, in B(p,l,q).

We claim that ! = 1. Assume, on the contrary, that I > 1. Applying
Lemma 2 to the edge e = v3v2, we obtain a graph G* € B,(g > 4) such
that p(G*) > p(G), a contradiction. Hence { = 1.

Assume that there exists a vertex v; of B(p,1,q) such that v; # v,
and there exist a tree T attached to v;. By symmetry, we may assume
that v; is a vertex of Cp. Denote N(v;) = {vi—1,vi41,21, - ,2 }, and
N(v1) = {vj-1,vj41,w1,* - ,w }, where v;_1,vi41,vj-1,v41 are vertices
of Cp. Then s > 1and ¢t > 2. If z; > =;, let

G'=G- {vizl,"' avizs}+{vlzla"‘ ,‘Ulzs}-
If 2; < x;, let
G=G- {vlwl,-n ,vlwt}+{v.-w1,--- y ViWwy }

Then in either case G* € B,(g > 4). By Lemma 1, we have p(G*) > p(G),
a contradiction. Hence G has a unique attached tree.

We second prove that each vertex of T' not in V(B(p, 1,q)) has degree 1,
i.e., G is an oo-graph B(p, 1, q) with some pendant edges attached to v;. On
the contrary, if there exists one vertex v; of T such that v; ¢ V(B(p, 1, q))
and d(v;) > 2, then there exist a path joining v; and v;. Without loss of
generality, we may assume that v; is adjacent to v;. Applying Lemma 2
to edge v v;, we get a graph G* € B,(g > 4) such that p(G*) > p(G), a
contradiction. Hence G is an co-graph B(p, 1,q) with some pendant edges

attached to v;.

Finally, we show that both C, and C; have length 4. Assume that
p 2 5. Let Cp = v1v2---vpv1. Applying Lemma 2 to edge vyvs, we get a
graph G* € B,(g > 4) such that p(G*) > p(G), a contradiction. Therefore
p = 4. Similarly, we can verify that ¢ = 4.

From the above arguments, we have G = B},(4,1,4). This contradicts
Lemma 7.

Case 2. G € ©,,(g > 4). Using Lemma 1, Lemma 2 and Lemma 7, by
similar arguments to the proof of Case 1, we can show G = 6%(2,2, 2). .

Combining Case 1 and Case 2, we have G = 65(2, 2,2). From the proof
of Lemma 7, we have

oG) _\/n+1+\/*-2_(n—5) 36
- - .

This completes the proof.
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3. Main results

Theorem 1. Let n > 8, G be a bicyclic graph on n vertices and G #
B;(3,1,3),6:(2,1,2). Then

) >_‘/;+1+\/(n—5)2+36
- 2 ?

and the equality holds if and only if G = 0;,(2,2,2).

Proof. Case 1. The girth of G is greater than or equal to 4. Since
6%(2,2,2) is bipartite graph, it follows from Lemma 9 that

and A(G) = A(85(2,2, 2)) if and only if G = 6°(2, 2, 2).

Case 2. The girth of G is equal to 3. By Lemma 4, there exists a span-
ning bipartite subgraph G’ of G such that A(G) > A(G'). Obviously, G’ is
either a tree or a bipartite unicyclic graph. Since G # B}(3,1,3),0;(2,1,2),
it follows that G’ # K n—1. By Lemma 5 and Lemma 6, we have

MG 2 NCF™Y),
and so M(G) > A(CP4). '
Applying Lemma 3 to the highest degree vertex of C7?~4, we have

P(C7~%2) = A"~ = na? + 2(n - 4)),
4

A4 = _F (n;4)2+16.

By the proof of Lemma 7, we have

\/n+ 1 +\/(72z EDIET

and so

A6%(2,2,2)=-
Combining the above arguments, we obtain a proof of Theorem 1.

By Theorem 1 and Lemma 8, we have the following Theorem 2 imme-
diately.
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Theorem 2. Let G be a bicyclic graph on n vertices.
(1) If8 <n <27 and G # 6,(2, 2, 2), then A(G) > A(84(2, 2, 2)).
(2) If28 <n <29 and G # 05(2, 2, 2), 65(2,1,2), then
AG) > A0;(2, 2, 2)) > A(6n(2, 1, 2)).
(3) If n > 30 and G # 6;(2, 2, 2), B;(3,1,3), 64(2,1,2), then
AG) > A(67(2, 2,2)) > AX(B,(3, 1, 3)) > A(64(2, 1, 2)).

Acknowledgments

The author would like to thank the anonymous referees for valuable sug-
gestions and corrections which result in an improvement of the original
manuscript.

References

(1] J. A. Bondy, U. S. R. Murty, Graph Theory with Applications, The
Macmillan Press Ltd,1976.

[2] R. C. Brigham, R. D. Dutton, Bounds on graph spectra, J. Combin.
Theory Ser. B37(1984)228-234.

(3] A. Chang, F. Tian, A. Yu, On the index of bicyclic graphs with perfect
matchings, Discrete. Math.283(2004)51-59.

[4] G. Constantine, Lower bounds on the spectra of symmetric matrices
with nonnegative entries, Linear Algebra Appl.65(1985)33-39.

[5] D. Cvetkovié, M. Doob, H. Sachs, Spectra of Graphs, Academic Press,
New York, 1980.

[6] C. Godsil, G. Royle, Algebraic Graph Theory, Grad. Texts in Math.
207, Springer-Verlag, 2001.

[7] S. G. Guo, On bicyclic graphs whose second largest eigenvalue does
not exceed 1, Linear Algebra Appl.407(2005)201-210.

[8] S. G. Guo, The spectral radius of unicyclic and bicyclic graphs with n
vertices and k pendant vertices, Linear Algebra Appl.408(2005)78-85.

[9] Y. Hong, Bounds of eigenvalues of a graph, Acta Math. Appl.
Sinica4(1998)165-168.

435



(10] Y. Hong, J. L. Shu, Sharp lower bounds of the least eigenvalue of
planar graphs, Linear Algebra Appl.296(1999)(1-3)227-232.

[11] H. Liu, M. Lu, F. Tian, On the spectral radius of graphs with cut
edges, Linear Algebra Appl.389(2004)139-145.

[12] P. L. Powers, Graph partitioning by eigenvectors, Linear Algebra
Appl.101(1988)121-133.

[13] A. Schwenk, Computing the characteristic polynomial of a graph. In:R.
Bary , F. Harary ed., Graphs and Combinatorics-Lecture Notes in
Mathematics, No. 406, Berlin: Springer-Verlag, 1974, 153-172.

[14] B. F. Wy, E. L. Xiao, Y. Hong, The spectral radius of trees on k
pendant vertices, Linear Algebra Appl.395(2005)343-349.

[15) G. H. Xu, Q. F. Xu, S. K. Wang, A sharp lower bound
on the least eigenvalue of unicyclic graph, J. of Ningbo
University(NSEE).16(3)(2003)225-227. (in Chinese)

[16) A. M. Yu, F. Tian, On the spectral radius of bicyclic graphs, MATCH
Commun. Math. Comput. Chem.52(2004)91-101. :

436



