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Abstract

Let G be a graph with domination number 4(G). A dominating
set S C V(G) has property UK if all components of the subgraph it
induces in G are complete. The union of complete graphs domination
number of a graph G, denoted .k (G), is the minimum possible size
of a dominating set of G, which has property /. Results on chang-
ing and unchanging of vyu« after vertex removal are presented. Also
forbidden subgraph conditions sufficient to imply v(G) = v,«(G) are
given.
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1 Introduction

We discuss only finite undirected graphs without loops or multiple edges.
For the graph theory terminology not presented here, we follow Haynes, et
al. [9]. We denote the vertex set and the edge set of a graph G by V(@)
and E(G), respectively. The subgraph induced by S C V(G) is denoted
by (S,G). The number of components of a graph G is denoted by c(G).
For a vertex z of G, N(z,G) denote the set of all neighbors of z in G
and N[v,G] = N(v,G) U {v}. The maximum degree of the graph G is
denoted by A(G). C, will denote the cycle on n vertices, K,, the complete
graph on m vertices, sK,, the union of s disjoint copies of K,, and K,
the complement of Ky,. Let {G1,Gq,..} be a given (finite or infinite) set
of non isomorphic undirected graphs. We denote by Forb(Gy, Ga, ..) the
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class of all graphs containing no induced subgraph isomorphic to any G;,
i > 1. A dominating set for a graph G is a set of vertices D C V(G)
such that every vertex of G is either in D or is adjacent to an element of
D. The domination number v(G) of a graph G is the minimum cardinality
taken over all dominating sets of G. The literature on this subject has been
surveyed and detailed in the two books by Haynes et al. 9, 10].

Let G denote the set of all mutually nonisomorphic graphs. A graph
property is any non-empty subset of G. We say that a graph G has property
P whenever there exists a graph H € P which is isomorphic to G. We list
some properties in order to introduce the notion which will be used in the
paper:

F={Heg: Hisa forest }
I= {KlaK2,K39'"};

M= {Kz, 2K2, 3K2, },

C = {K, K3, Ks, ...}

Any dominating set S C V(G) such that the subgraph (S, G) satisfies
property P is called a P-dominating set. Harary and Haynes [8] defined
the conditional domination number v(G : P) as the smallest cardinality of
a P-dominating set of G. It follows by this definition that f Py CP C G
and (G : P1) exists then v(G : Py) 2 v(G : P) 2 7(G : G) = v(G). Any
P-dominating set with minimum cardinality is called a ¥(G : P)-set. A
vertex v of a graph G is ¥(G : P)-critical if ¥(G — v : P) # v(G : P). The
graph G is 4(G : P) - critical if all its vertices are 7(G : P) - critical.

Note that the conditional domination numbers y(G : F), ¥(G : I), ¥(G :
M) and ¥(G : C) are the well known acyclic domination number ¥2(G) {11}
, independent domination number i(G), induced-paired domination number
7ip [13] and cliqgue domination number 7e1(G) [6] , respectively. Since M C
F and T C F then 7ip(G) = 7a(G) and [11] 7(G) < i(G).

In this paper we introduce the study of a new type conditional dom-
ination parameter as follows. Let the union of complete graphs property,
denoted UK, be:

e UK = {H € G : each component of H is complete }.

The conditional domination number (G : UK) will be called the union of
complete graphs domination number and will be denoted by 1uk(G). Since
T CUK and M C UK, then 4(G) < 71ux(G) < i(G) and 7(G) < 7uk(G) <
7ip(G) (when 7;5(G) exists).

We shall consider and the following subsets of UK:

e UK, = {H € UK : each component of H has order at most s}, s 2 1.

The conditional domination number v(G : UK,) will be denoted by Yy, (G)-
By these definitions we immediately have that for any s > 1, Yuk, (G) 2



Yukss1 (G) 2 Yuk(G). Note that since UK; = T then vy, (G) = i(G), and
since UKy 2 M and UKy C F then yuk,(G) < 7ip(G) (when 7ip(G) exists)
and Yuk, (G) 2 74(G).

We proceed as follows. In Section 2, we examine critical vertices in a
graph with respect to the union of complete graphs domination number
and give a necessary and sufficient condition for a graph to be ~yk-critical.
In Section 3 we present some classes of graphs with equal domination and
union of complete graphs domination numbers.

2 Vertex Deletion

Much has been written about the effects on a parameter (such connected-
ness, chromatic number, domination number) when a graph is modified by
deleting a vertex. (G : P) - critical graphs for 4(G : P) = v,i was inves-
tigated by Brigham et al. [3] and Ao and MacGillivray (see [10, Chapter
16]) respectively. Further properties on these graphs can be found in (2],
(7], [9, Chapter 5], [10, Chapter 16], [12].

Troughout this section, let K € {UK;UK,,UK,, ...} and for any graph
G, 7(G : K) will be denoted by 7,(G). Here some properties of critical
vertices with respect to y, will be given.

Theorem 2.1. Let G be a graph of order n > 2 and u,v € V(G).
(1) Let (G - v) < 1(G).

(i.1) If uv € E(G) then u belongs to no y,-set of G — v;

(i.2) If M is a yy-set of G — v then MU {v} is a yu-set of G and v
is isolated in (M U {v},G);

(i3) (G - v) =w(6) - 1;
(ii) Let vy(G —v) > yu(G). Then v belongs to every Yu-set of G;
(ili) If 70(G — v) < y(G) and u belongs to every Yu-set of G then uv ¢

(iv) If v belongs to no yy-set then 4, (G — v) = w(G);
(V) I 1u(G-v) < 1(G) and wv € E(G) then vu(G—{u,v}) = 14(G)-1;

(vi) Let v belong to every y,-set of G and TW(G —v) = w(G). Ifuww €
E(G) then u belongs to no vy-set of G—v and Y (G—{u,v}) =y (G).

Proof. (i.1): Let uv € E(G) and M be a y,-set of G — v. If u € M then
M will be a K-dominating set of G with |M| < 7u(G) - a contradiction.
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(i.2) and (i.3): If M is a yu-set of G — v then (i.1) implies that M
M U {v} is a K-dominating set of G, v is isolated in (M1,G) and |M;|
(G —v) + 1 € 1(G). Hence M) is a yu - set of G and (G — v)
w(G) - 1.

(ii): If M is a yu-set of G and v ¢ M then M is a K-dominating set of
G —v. But then 7u(G) = |[M| = (G —v) > vu(G) and the result follows.

(ifi): Let 9u(G —v) < yu(G) and M be a qy - set of G —v. Then by
(i.2), M U {v} is a yu-set of G. This implies that u € M and by (i.1) -
uv € E(G).

(iv): By (ii), 1u(G — v) < 1u(G) and by (i.2), 7u(G - v) 2 W(G)-

(v): Immediately follows by (i) and (iv).

(vi): Let M beayy-set of G—vand uv € E(G). If u € M then M will
be a K-dominating set of G of cardinality 7u(G —v) = Y(G) with v ¢ M
- a contradiction. Now by (iv), 7(G — {%,v}) = W(G —v) =w(G). &

i

Theorem 2.2. Let G be a graph of order n > 2. Then G is a ~yy-critical
graph if and only if yu(G — v) = W(G) — 1 for allv e V(G).

Proof. Necessity is obvious.

Sufficiency: Let G be a yy-critical graph. Clearly for every isolated
vertex v € V(G), (G — v) = y(G) — 1. Hence if G is isomorphic to
XK, then 7u(G - v) = W(G)—1forall v € V(G). So, let G have a
component of order at least two, say Q. Because of Theorem 2.1 (ii), (iii)
and (i.3), either for all v € V(Q), w(Q@ —v) > yu(Q) or for all v € V(Q),
(@ — v) = 1(Q) — 1. Suppose, for all v € V(Q), 1(Q —v) > 1(Q)
But then Theorem 2.1 (ii) implies that V(Q) is & yu-set of Q. This is a
contradiction with vy (Q — v) > 1(Q)- [ ]

Theorem 2.3. Let G; and G2 be graphs, V(G1) N V(Gz) = {z}, and
G = G, UGs. Then v(G) 2 1w (G1) +w(G2) — 1.

Proof. Let M be a yu-set of G and M; = M NV(G;), i = 1,2. There
exist three possibilities:

(a) = € M and M; is a K-dominating set of Gy, i = 1,2;

(b) z ¢ M and there are 4,5 such that {i, i} = {1,2}, M; is a K-
dominating set of G; and M; is a K-dominating set of G; — z;

(c) z € M and M; is a K-dominating set of G;, i = 1,2.

If (a) holds, then yu(G) = |M| = |Mi| + IMz] 2 yu(G1) + w(Ge). If
(b) holds, then ,(G) = |M| = |My| + [M2| 2 1(G;) + (G — 2) 2
7u(G1) + 1u(G2) — 1. If (c) holds then 7(G) = M| = M|+ [Mz| -1 2>
u(G1) + (Ge) — 1.

Thus, in all casses, yu(G) = 1(G1) + 1(G2) — 1. [ ]
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Theorem 2.4. Let Gy and G2 be graphs, V(G1)NV(Gs) = {z}, 7u(C: -
z) < y(G1) and G = G; UG,. Then:

() W(G) =w(G1) +w(G2) - 1;

(i) If (G2 — ) < W(G2) then 1 (G - z) = 1(G) - 1;
(iii) If vu(G2 — z) > v (G2) then z belongs to every yy-set of G;
(iv) If = belongs to no yy-set of G then x belongs to no ~y-set of G.

Proof. (i): Let U; be a qu-set of G; — = and U, be a 4y - set of G,.
It follows by Theorem 2.1 (i.2) that Uy U U, is a K-dominating set of G.
Hence 10(G) < |U1 UUs| = 1u(G1 — 2) +10(G2) = 1(G1) + 1(G2) - 1.
Now the result follows by Theorem 2.3.

(ii): By Theorem 2.1 (i.3), 1(G — z) = 7(G1 — z) + W(G2 — 7) =
70(G1) + 1(Gz2) — 2. Hence by (i), 1(G ~ z) = 7,(G) - 1.

(ili): Y (G=2) = 1(G1—2)+1(G2—2) = 1 (G1) - 1+7(Cz2—z) =
1W(G) +%G2 — ) — 1(G2) > 7u(G). The result now follows by Theorem
2.1 (i).

(iv): Let M be a yy-set of G and M; = M N V(G;), i = 1,2. Suppose
z € M. Hence M; is a K-dominating set of G;, i = 1,2 and then Ww(Gi) <
|M;]. Since = belongs to no yu-set of G2 then |My| > y,(G;). Hence
W(G) = M| = |My| + |Mz] — 1 > v(G1) + 7(G2) - a contradiction with
(). [ |

Theorem 2.5. Let G) and G2 be two connected ~-critical graphs having
ezactly one common vertezr. Then G = G1UG; is y,-critical and w(G) =

W(G1) + w(G2) — 1.

Proof. Let {z} = V(G,) N V(G;). By Theorem 2.4 (ii) it follows that
(G) — 1 =7u(G — z). Let without loss of generality y € V(G, — z). By
Theorem 2.4 (i), applied to the graphs G; and G3 — y we have 7y, (G-y) =
W(G1) +W(G2 — y) — 1 = 1(G1) + 1(Ge) — 2= 7,(G) - 1. n

3 Forbidden Subgraphs

Although the characterization of graphs G for which v(G) = i(G) is still
an open problem, several results give sufficient conditions for a graph to
have 7(G) = i(G). See Allan and Laskar (1] and Topp and Volkmann
(14]. Here we give some forbidden subgraph conditions sufficient to imply
¥ = Yuk. Note that in general, a forbiden subgraph characterization cannot
be obtained since for any graph H, the join G = H + K; has Yuk(G) =
7(G) = i(G) = 1. Troughout this section, let the graphs R, F,, .., Fi5 be
as is shown in Fig.1. Let U be the graph obtained by F, by adding an
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edge connecting the two end-vertices of F» which are at distance four. Our
results are:

Theorem 3.1. If G € Forb(Cy, F1, F2,U) then v(G) = vuk(G).

Corollary 8.2. If G is bipartite and G € Forb(Cy, F1) then v(G) =
Yuk(G) = Yuka (G).

Corollary 3.3. If T is a tree and T € Forb(Fy) then v(G) = 7u(G) =
Yuks (G)

Theorem 3.4. Let G be a connected graph of order at most nine. Then
G € Forb(Fy, .., Fis) if and only if (G) = uk(G) = Tuks (G)-

Theorem 3.5. Let G be a graph, G € Forb(F, .., Fis) and A(G) = 4.
If the set of all vertices of mazimum degree is independent then v(G) =
Yuk(G) = Yuks (G). :

Corollary 3.6. If G is a graph with A(G) = 3 then ¥(G) = 7uk(G) =
Yuka (G)-

3.1 Proofs
We need the following lemma:
Lemma 3.1.1. Let G be a graph and s > 2 be an integer.

(a) If each complete subgraph of G of order s has a vertez of degree at
most s in G then Yuk(G) = Yuk,_,(G);

(b) If A(G) 2 2 then Yuk(G) = Yukaa)-1(G)i
(¢) If G is connected and |[V(G)| 2 3 then Yuk(G) = Yukyv(eyi/s) (G).

Proof. (a) Choose a yuk-set D of G such that the graph (D,G) has
the fewest components of order at least s. Let Cp be any component of
order at least s in (D, G). Then there is z € V(Cp) which has degree at
most s. Since s > 2 and D is a yuk-set of G, then there is v € V(G) — D
with N[v,G]n D = {z}. Hence [V(Cp)| = s and Nlz,G] = V(Cp) U {v}.
But then D; = (D — {z}) U {v} will be a yur-set of G such that (D;,G)
has fever components of order at least s than (D,G) - a contradiction.
Hence any component of < D,G > has order at most s — 1 and then

Yuk(G) = Yuk,-,(G).
(b) Immediately follows by (a).

(c) Choose D to be a yui-set of G such that (1) the largest component
Cp of (D, G) to have minimum order over all yux-sets of G; (2) subject to
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(1), (D, G) to have minimum number of largest components. If [V(Cp)| =1
then 7ux(G) = 7uk, (G) and the result is obvious. So, let |V(Cp)| > 1.
Since D is a yuk-set then for any z € V(Cp), the set p, = {yveV(G)-D
: N(y,G)N D = {2}} # 0. Suppose Cp has order at least [|V(G)|/3] + 1.
Then there is z € V(Cp) with p, = {u}. But then D; = (D — {2})U {u}
will be a y,x-set of G which contradicts the choice of D. [ |

Proof of Theorem 3.1, Theorem 3.4, Theorem 3.5 and Corollary
3.6: It is easy to see that for all i = 1,2,..,15, y(F;) =3 < Yuk (F}) = 4.
Let G be a graph with 4(G) < 7.k(G). Choose Dy to be a y-set of G
such that the number of components of (Do, G) is the maximum number
taken over all y-sets of G. Then there is a component Q of (Do, G) which is
not complete. Hence there exist three vertices g, z,, 25 € V(Q) such that
({z0,1,22},G) = P5. Let Y; = {u € V(G) = Dy : N(u,G)N Dy = {z;}},
1 =0,1,2. Since Do is a y-set then ¥; #£ 0, i = 0,1,2. If y; € Y; and
N[y, G) 2Y, for some i € {0,1,2}, then Dy = (Do — {z;}) U{y;} will be a

39



4-set of G with ¢((Do,G)) < ¢({D1,G)) which is a contradiction with the
choice of Dp. Hence Y; # @ and for any y; € Y; there is z € Y; — {3}
such that yi2; € E(G), i = 0,1,2. Thus if F is a graph with [V(F)| £8or
A(F) = 3 then 7(F) = yuk(F). Further if A(F) = 3 then by Lemma 3.1.1
(b), Yuk(F) = Yukq (F). So, Corollary 3.6 is proved.

Let {yi,%i2} € Y and yavyie ¢ E(G), i = 0,1,2. Denote H =
({z0, T1, T2, o1, Yoz, Y11, Y12, Y21, Y22}, G). Let Ry = {{wo1, voz, Y21, y22}, G)

and Ri = ({yx1,¥k2, Y11, %12}, G) for £ =0,2.

First assume G € Forb(Cq, Fi,F2,U). Since H € Forb(Cy) then
E(Ro) = E(R;) = 0 and A(R;) < 2;since H € Forb(F,,U) then E(Ry) =
0. Hence H = F; - a contradiction. Thus Theorem 3.1 is proved.

Now, let G € Forb(F, ..., Fis) and one of the following holds:

@ V<9
(ii) A(G) = 4 and no two vertices of degree four are adjacent.

Note that if (i) holds then G = H and if (ii) holds then N(z;,G) =
{z1,9j1,¥j2} for j =0,2 and N(z1,G) = {0, T2, y11, Y12}

Claim 1. |[E(R))| < 1.

Proof. Suppose |[E(Ry)| > 2. If Ry has a matching then Dy = (Do —
{zo,2}) U {301, 902} Will be & 7-set of G with c((D2,G)) > c((Do,G)) -
a contradiction. Hence there is yk, € V(Ry) with two neighbors in R,
and then D3 = (Do — {Zo,Z2}) U {¥k1,yx2} will be a -set of G with
¢({Ds, G)) > ¢({Do, G)) - a contradiction. O

Claim 2. Let k € {0,2}. Then |E(Ri)| < 2 and if equality holds then
E(Rx) = {yr1y1j, Yretn;} for some j € {1,2}.

Proof. Ify11,412 € N(yk1, Rk)UN(yx2, Rx) for some k € {0,2} then D4 =
(Do — {zx,21}) U {91, yx2} will be a y-set with c((Ds, G)) > (Do, G)) -
a contradiction. O
Claim 3. Let k € {1,2}. Then yix has at most two neighbors among
Yo1, Y02, Y21, Y22.

Proof. Without loss of generality, let k = 1 and yo1, Y02, %21 € N(y11,G).

Then D5 = (Do—{z0, z2})U{¥11, ye2} will be & y-set of G with c((Ds, G)) >
c({Do, G}) - a contradiction. O

Since G € Forb(F)) then at least one of the sets E(R;), i = 0,1,2 is
nonempty.

CASE E(R,) # : By Claim 1, |[E(R;)| = 1 and without loss of generality,
let E(Ry) = {yo1yz1}. Since G € Forb(F,) it follows that at least one



of the sets E(Rp) and E(Rz) is nonempty. Let without loss of generality,
0# |E(Ro)| = |E(Rp)|. By Claim 2 we additionally have 2 > |E(Rp)|.

SUBCASE E(R;) =0 : If |E(Rp)| = 1 then H will be isomorphic to either

Fy or Fy - a contradiction. Hence by Claim 2, E(R,) = {vo1v15, yo211,} for
some j € {1,2}. But then H will be isomorphic to Fy - a contradiction.

SUBCASE |E(Ro)| = |E(R2)| = 1: If yoryri, y21v1: € E(G) for some
i € {1,2} then H will be isomorphic to Fjg - a contradiction. If either
Yor¥1i, Y1iy22 € E(G) or ya1y1i, Y1902 € E(G) for some i € {1,2} then the
graph H will be isomorphic to Fy; - a contradiction. If Yo1¥1k, Y21yt €
E(G), where {k,1} = {1,2} then the graph H will be isomorphic to Fi,
- a contradiction. If yooy1k, y20yu € E(G), where {k,1} = {1,2} then the
graph H will be isomorphic to Fi3 - a contradiction.

SUBCASE |E(R)| = 1 and |E(Ryg)| = 2: By Claim 2, E(Ro) = {yo1y1;,
Yozy1;} for some j € {1,2}. Let without loss of generality j = 1. By Claim
3, ynye1,y11y22 € E(G). Hence either y12y21 € E(G) or y12y22 € E(G).
If y12y21 € E(G) then Dg = (Do — {z0,Z1}) U {wo2, ¥21} will be a y-set
with ¢({(Dg, G)) > ¢((Do,G)) - a contradiction. If yi2y22 € E(G) then
D7 = (Do — {0, z1,22}) U {01, ¥11, 22} Will be a ~y-set with c((D7,G)) >
¢({Do, G)) - a contradiction.

SUBCASE |E(R;)| = |[E(Ro)| = 2: By Claim 2, E(Ro) = {yo1915, Yo215}
and E(Rz) = {y21910, Y2241} for some j, s € {1,2}. By Claim 3, j # s, say
j=1, 8s=2. But then Dg = (Do - {(Bo,:'b‘l,xz}) U {y01,y11,y22} will be a
¥-set of G with ¢({Ds, G)) > ¢({Do, G)) - a contradiction. O

Case E(R;) = §: Without loss of generality, let |E(Ro)| > |E(R;)|.
Hence E(Rp) # @ and without loss of generality, let yo,3,; € E(G). Since
H # F; then |E(H)| > |E(F3)|. By Claim 2, if |E(Ro)| > 1 then E(Ry) =
{yo1911, Yo2u11 }.

SUBCASE yo2y11 € E(G): Since H # F; and |E(Ryp)| > |E(R2)| we have
|E(Rz)| = 1. Thus, exactly one of y11y21, Y1122, y12921, Y1222 is an edge
of G. But then H will be isomorphic to either F3 or Fg - a contradiction.

SUBCASE yo2y11 € E(G): Since H is not isomorphic to F% it follows that
E(Rp) # 0. By Claim 3, y;; is an isolate vertex in R;. Hence there
are three possibilities, namely E(R;) = {y12y21}, E(R;) = {y12922} and
E(Rz2) = {y12y21, y12¥22}. But then H will be isomorphic to Fi4, Fi4 and
Fi5 respectively. a

Hence we prove that if G € Forb(F,.., Fi5) and at least one of the (i)
and (i) holds, then ¥(G) = 4u(G). Further if (i) holds then by Lemma
3.1.1(c), Yuk(G) = Yuks (@), if (ii) holds then by Lemma 3.1.1 (a), Tuk(G) =
Yuks(G). This proves Theorem 3.4 and Theorem 3.5. |
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Finally, note that Corollary 3.2 and Corollary 3.3 immediately follow
by Theorem 3.1.

4 Remarks
Hedetniemi and al. [11, Theorem 4.3] proved that if G is 3-regular then
7(G) = ¥a(G). This result follows immediately by Corollary 3.6.

Cockayne and Mynhardt [5] showed that there is a class of 3-connected
cubic graphs for which the difference i —+ is unbounded. Hence this is true
and for i — Yuk, = 1 — Tuk (for such class of graphs).

We conclude with:

Conjecture 4.1. There ezists a class of 4-connected {-regular graphs for
which the differences yux — v and i — Yur are unbounded.

Problem 4.2. Characterize the class of all bipartite graphs G with v(G) =
Yuka (G).
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