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Abstract

Given a permutation m chosen uniformly from S,, we explore
the joint distribution of w(1) and the number of descents in #. We
obtain a formula for the number of permutations with Des(w) = d
and w(1) = k, and use it to show that if Des(x) is fixed at d, then
the expected value of 7(1) is d + 1. We go on to derive generating
functions for the joint distribution, show that it is unimodal if viewed
correctly, and show that when d is small the distribution of n(1)
among the permutations with d descents is approximately geometric.
Applications to Stein’s method and the Neggers-Stanley problem are
presented.

1 Introduction

Consider S, to be the set of all bijections from {1,2,...,n} to itself. We
will often identify a permutation = with the sequence m(1), 7(2),...,n(n).
So for instance if 7(1) = k and #(n) = ¢, we say that = “begins with” &
and “ends with” £.

A permutation 7 is said to have a descent at i if m(¢) > 7(i + 1). That
is to say, if we graph the points (i,7(#)) and connect them left to right,
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descents are the positions at which the connecting segments have negative
slope. Let Des(n) be the number of descents in 7, and define

(1) <Z> := # {m € Sp : Des(n) = d} .

These are known as the Eulerian numbers, and have been widely studied;
see, for example, [7, p. 267] and (3].

Bayer and Diaconis [1] showed that the probability that a particular per-
mutation of a deck of cards occurs after any number of riffle shuffles is de-
termined by the number of descents the permutation has. In [4], Viswanath
and the author began working to generalize that result to decks containing
repeated cards. At one point we had occasion to consider the number of
permutations of n letters which have d descents and begin with k. That is,

2) <Z> := # {7 € Sy, : Des(w) = d and 7(1) = k}.
k

The current work is an investigation of the numbers defined in Equation (2).

We derive a formula in terms of binary coefficients:

Theorem 1 If1 <k <n,

n fn
= (—1)°‘"( .)j"“‘(j+ )
<d> k ; d—j
where 00 is interpreted as 1

which is similar to a well-known formula for the Eulerian numbers. We use
the formula to understand how the two statistics Des(w) and 7(1) interact.

If we are constructing a permutation with d descents from left to right, and
d is small, a conservative strategy would seem to be to start with a low
number, since starting with a high number means we will use up one of
our descents near the beginning of the permutation. So in other words, we
expect that if d is small then there are more permutations with d descents
starting with low numbers than starting with high numbers. Similarly, if d
is close to n, our intuition is that that starting with a high number leaves us
more possibilities later on. This intuition turns into a surprisingly simple
result:

Theorem 3 If 7 is chosen uniformly from among those permutations of n
that have d descents, the ezpected value of (1) is d + 1 and the ezpected
value of m(n) is n —d.



And in Theorem 7 we find, as expected, that the sequence

@, (@ Ga),

is weakly decreasing when d is small and weakly increasing when d is large.
Consequently that sequence is an interpolation between its endpoints, which
are two Eulerian numbers: ("7') and (7”]). Experimental evidence (see
Section 10) suggests that it is a good interpolation, at least when d is close
to (n — 1)/2, in the sense that a normal approximation to the Eulerian
numbers also seems to provide a good approximation to the refined Eulerian
numbers. However, the normal approximation is good for neither set when
d is small or d is close to n. Theorem 7 shows that in those cases the
distribution of 7 (1) is approximately geometric.

The application which led directly to the current work is presented in Sec-
tion 5. Fulman shows in [6] that certain statistics on permutations, one of
which is descents, are approximately normally distributed. The main tool
he uses is Stein’s method, due to Charles Stein in [12]. The thrust behind
the method is to introduce a little extra randomness to a given random
variable to get a new one. If certain symmetries are present, the result is
an “exchangeable pair” of random variables, meaning, essentially, that the
Markov process which takes one to the other is reversible. Then Stein’s
theorems (and more recent refinements of them) can be applied to bound
the distance between the original variable’s distribution and the standard
normal distribution.

Fulman uses a “random to end” operation to add randomness to permuta-
tions. That is, he starts with a uniformly distributed permutation 7 and

sets
o =,I+1,...,n)r

where I is selected uniformly from {1,2,...,n}. While (7, #') is not an

exchangeable pair, it turns out that (Des(w), Des(#’)) is, and this leads to
a central limit theorem for descents, and for a whole class of statistics.

We tried a different method of adding randomness to 7, namely, following 7
by a uniformly selected transposition. That calculation (which is presented
in Section 5) led directly to Theorem 3.

The Neggers-Stanley Conjecture, now proved false in general ([2],[13]), was
that the generating function for descents among the linear extensions of
any poset has only real zeroes. Since a function with positive coefficients
can have no positive zeroes, any combinatorial generating function with all
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real zeroes can be written in the form
a(z+a)(z+c) (T +cn)

for non-negative constants a,ci,¢z,...,¢,. The implication, then, is that
if D is the number of descents in a uniformly selected linear extension of
a poset for which the Neggers-Stanley conjecture is true, then D can be
written as the sum of independent Bernoulli variables.

In Section 6 we present several generating functions for the refined Eulerian
numbers. The set of permutations of n which begin with k is the same as the
set of linear extensions of the poset defined on {1,2,...,n} by k < a for all
a other than k. So we can find the Neggers-Stanley generating function for
this poset explicitly, and we show that it does indeed have only real zeroes.
We go on to show that several similar posets also satisfy the conjecture. (All
of the posets considered were known to satisfy the conjecture by theorems
of Simion [10] and Wagner [14].)

2 Basic Properties

If m(1) = 1, then (1) is certainly less than 7(2), so all descents are among
the final n — 1 numbers. And if (1) = n, there is certain to be a descent
between 7(1) and 7(2). So we know some boundary values:

n n—-1 n n—-1
o (@) = @,-G0)
for n > 1. Also, it is immediate that

@ ) (j;)k — (1)

d

© (.= (@)

Let p € S, be the reversal permutation: p(i) = n+ 1 — 4. Then pr is the
same as 7 but with ¢ replaced by n+1—1 everywhere. As a result, p7 hasa
descent wherever = has an ascent, and an ascent wherever 7 has a descent.
So Des(pm) = n —1—Des(). Since 7 — pr is a bijection from Sy, to itself,
it follows that

® @)= (a-i-0)
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Note we could have obtained the same result from the map 7 + 7p, since
reversing m changes ascents to descents and also reflects their positions

about the center.

Let

(7) <Z>k = # {7 € Sy, : Des(m) = d and n(n) = k}.

Both transformations yield symmetric identities for the refined Eulerian

numbers. If
m(l)=k and Des(r)=4d

then

pr(l)=n+1—k and Des(pr)=n—-1-d
mp(n) =k and Des(nmp)=n—-1-d
prp(n)=n+1—k and Des(pnp)=d

from which it follows that

® (it =G

3 Recurrences

Assume n > 1. Let

Ty := {7 € Sp : (1) = k and Des(r) = d}
Ty, := {7 € Sp : (1) = k, w(2) = £, and Des(n) = d}
and let w € Tje. If £ < k, then there is a descent between (1) and 7(2),

go there must be d — 1 descents in the “tail”, 7(2), #(3),...,n(n). The tail
begins with £, which is the ¢th largest value in the tail, so we must have

n-—1
#T ke = d‘1>e

when £ < k. Likewise, if £ > k, there is no descent between 7(1) and 7(2),
so there must be d descents in the tail. This time £ is the (£ — 1)st largest

value in the tail, so
#T3 <n - 1>
ke =
d /4y
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when £ > k. Of course T} is the disjoint union of the T}, so

(@), =#m=Tama=2 (G20 + 20,

&<k

or, more succinctly,

n—1
n n-1
® (.~ % (e een)
a/ ; d-[t<k]/,
where the bracket notation follows [7]: [A4] is 1 if A is true and 0 if A is false.

(Knuth refers to this as Iverson notation in [9], and traces its origin to [8].)
Note Equation (9) fails when k < 1 or k > n, in which case (}), = 0.

Now suppose 1 < k < n—1 and 7 € Sy, begins with k. Swapping k with
k+1 in the sequence (1), 7(2),...,m(n) preserves descents for most ; the
only exception is when 7(2) = k+ 1, in which case a new descent is created.
If we eliminate that case, the swap map is a bijection from Tj \ Tk k+1 to
Tit1 \ Th41,k, as those sets are defined above. Substituting sizes for sets,
we have

I VR PR VR

Equation (10) is valid as long as k #0and k #n. (If k <0or k > n, all
terms are 0.)

A well-know recurrence for (7}) comes from considering what happens when
you insert n into an element of Sp—i:

(11) <3> =(n—d)<:;___i'>+(d+ 1)<";1>

We can get a similar recurrence for the refined Eulerian numbers by con-
sidering what happens when you insert n into an element of S,_1 which
begins with k:

(12) <Z>k = (n—d- 1)<Z: i)k +(d+ 1)("; 1>k.

In other words, one way to get an element of S, which begins with & and
has d descents is to take an element of S,—; which begins with k and has d
descents, and insert n at a descent or at the end (d+ 1 choices). The other
way is to start with an element of S,_; which begins with k and hasd -1
descents, and insert n at an ascent (n —d — 1 choices). Equation (12) fails
when k = n, since a permutation of Sp_; cannot begin with n. It is valid
for all other values of k.
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4 Formulas and Moments

There is an explicit formula for the Eulerian numbers in terms of binomial
coefficients:

(13) ()= -1 (G)a+or
j2

See for example, {7, p. 269]. [Aside: Equation (13) follows from Equa-
tion (11), which means that it is valid for all values of d, even if d < 0 or
d > n]. So we have

o (=3 e

j20

(0, )= Joor

Jj20
(15) = (" )i

320

These suggest a formula for (J),:

Theorem 1 If1 <k <n,

0 (ger( e

j20

where 0° is interpreted as 1.

Proof. Let G; count the number of ways to place balls numbered 1,2,...,n
into bins numbered 1,2,...,4, subject to the restriction that the lowest
numbered ball in bin 1 is ball k. Then the balls whose labels are less than &
have i — 1 possible destinations, and those with labels greater than k have
1 possible destinations. So

Gi = (i — 1)k~ 14k,

Each arrangement of balls in bins corresponds to a permutation with i — 1
or fewer descents, by writing the numbers of the balls in bin 1 in increasing
order, followed by the numbers of the balls in bin 2, etc. How many times
does G; count a particular permutation 7? To find a ball/bin arrangement
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which represents 7, we need to write out w(1), 7(2),...,m(n) and then place
i —1 “cuts” between the numbers. If 7 has d descents, then d of the cuts
must be placed where the descents occur, but the other i — 1 — d may
be placed anywhere except before m(1), which must be k¥ and must be in
the first bin. A standard stars and bars argument tells us that there are
(("'lz)fl(‘_';l'd)) ways to place the extra cuts, so that is the number of times

7 is counted by G;. Substituting j = d + 1 yields

i a=2 ("G,

i<i

So if we let D; := <jfl)k, we have G = MD, where G = (G1,Gs,...)T,
= (D1, Dz,...)T, and M is a lower-triangular matrix with

M= ("':j';") 1<j<i.

To invert M, we note that there is a homomorphism from the ring of formal
power series onto the ring of lower-triangular Toeplitz matrices, namely

ao
a a
(a0 + a1z +agz® +...) az a; o

Under this map, M is the matrix for
_ n—1+r\ ,
m(z) = Z ( , ):z: .
r>0

The coefficient of z™ is the number of ways to put r identical balls into n

boxes, hence .

mz) = (1+z+2%+--)" = =a=ar

M~! must represent the polynomial for
=(1-2z)" -1 "( )
e = =D

80

(M—l)ij =(-1)*7 (.,- fj)'
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Finally, D = M~1G so

n -
<d> =Dgp1 = Z (M 1)d+1_j+1 Gjis1
k §>0

= ()1 )G

j=>0

as desired. (W]

Remark 1: Finding all the ball/bin arrangements which produce a partic-
ular permutation is similar to finding all shuffles of a deck of cards which
produce that permutation (see [1]).

Remark 2: Note that the proof never assumed that d was less than n, and
Equation (16) is clearly true if d < 0. So the theorem is true for all integer
values of d.

Remark 3: We can rewrite Equation (17) as
n—l+z’—j)< n > . _ 1\k=lin—k
18 .. . =(i-1 )
(18) ) (")~
which is a k-analog of the Worpitzky identity [7).

From Equation (16) we can deduce a formula for the mth “rising moment”
of m(1) when Des() is fixed. Assume = is chosen uniformly from S, and
let

(19) ftm = EDes(M)=dg(1)™

where 2™ = z(z + 1)(z +2) -+ (x + m - 1).

Lemma 2

@0) <d>“"“”"§‘ ped(, a), :(mM)
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Figure 1: A north-east lattice path from (0,0) to (m+n —¢,£). (All edges
are either north or east.)

Proof. From Equation (16),

k -1 i kel - e
=Z.((%_1_)_!_)Z(_1)d J(dij)Jk l(]"l‘l) k

k=1 320
n-1
_if n +m\ . g\mele
=m Y (-1)¢ ’(d- .)Z(" . )J'(J+1) o
20 =

(the last by setting r = k—1). But (j +1)*~17" = YT (*) 50 So
let £ =r + s and we have

@ (gmermiger=(2) B () ()

Let ¢ be a north/east lattice path from (0,0) to (m + n — ¢,£) (see
Figure 1). The number of such paths is (™7 ™). If r is the height at which ¢
crosses the line z = m+ 4, then ¢ consists of a path from (0,0) to (m,7), a
horizontal segment, and a path from (m + 1,7) to (m +n — ¢,£). Counting
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the possibilities for the parts yields the identity

@ B0

Substituting Equation (22) into Equation (21) yields the desired result. O

Note that the last sum in Equation (20) is a truncated binomial expansion
of (j +1)™m+n,

Theorem 3 If w is chosen uniformly from among those permutations of n
that have d descents, the expected value of w(1) is d + 1 and the expected
value of m(n) is n —d.

Proof. The expected value of 7(1) is p1, and

= ser(,2 ) (1)

j20 =0
d—j . n+l _ o4l n n
=2 ( j)(o+1) i — (n - 1)57)
= d—j . n+l_ _nyd—if T “en
,2:5( 1) ( j)(.7+1) ‘_ZZO( 1) (d_i)(n+1+z)z.

The term for i =0 is 0, so let j = ¢ — 1 and combine:
=) (1) 9G + )" .)(j+1)+ " )m+i+2).
-3 d—j-1
320
The quantity in brackets simplifies to (d + 1)("‘“) s0

(D =@+ ) -0 +r(5F7) = @+n(}).

j2o

Therefore
= IED“(“)-dﬂ‘(l) d+1.

For the second part,

EPes(m)=dyr () — (Tl‘) ;k<z>’° _ ﬁ)— };k(n _1; - d>,c

= EDes(w):n—l—d,n.(l) =n—d.
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5 Application Using Stein’s Method

Charles Stein developed a method for showing that the distribution of a
random variable W which meets certain criteria is approximately standard
normal. His technique has come to be known as Stein’s method; see [12] or
[5] for more explanation than can be given here.

In its most straightforward form, Stein’s method requires finding a “com-
panion” random variable W* such that (W, W*) is an exchangeable pair,
meaning that

(23) P(W =w,W* =w") =P(W = w*,W* = w)

for all values of w and w*. If we can find such a W* and if, in addition,
there is a A between 0 and 1 such that

(24) EYW* = (1- AW

(that is, the expected value of W* when W is fixed at some value is 1 — A
times that value), then we may apply Stein’s method.

We are interested in showing that if 7 is chosen uniformly from S,, then
the random variable D = Des(w) is approximately normal. This has been
proven before, and in more generality; see [6] for references. We will demon-
strate the set-up for Stein's method—that is, finding a companion variable
and showing that it satisfies Equation (23) and Equation (24). From there,
applying the method would proceed as in [6].

Often the companion variable in Stein’s method is defined by adding a little
bit of randomness to the variable we are interested in. In this case, let 7
be selected uniformly from among the transpositions in Sy, independently
of w. Then 77 is uniformly distributed over Sy, and for any u,v € Sy,
P(r =u,7r =) =P(r = 4,7 = vu"!) = P(r = u)P(r = vu"?)
Pr=v,rr=u)=P(r=v,7= w™ ) =P(r = v)P(r = wv™?).

Both right-hand sides are (n!)‘l('z‘)_1 if vu~! is a transposition and 0
otherwise, so (r,77) is an exchangeable pair.

Let D* := Des(77). Since (w,77) is an exchangeable pair, (F(7), (7)) is
exchangeable for any function F. So (D, D*) is exchangeable. For 1 <i <
n—11let

D; = [n(s) > n(i+1)] and D} =[rm(i) > (i + 1))
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be Bernoulli random variables; then D = Y+ "' D; and D* = "' D;.

Fix 7 and 4 and let a = 7(3), b = 7(i +1). If a < b, the only ways for 7 (s)
to be bigger than 7m(¢ + 1) are if 7 swaps a with something bigger than b
(n — b ways), if 7 swaps b with something smaller than a (a — 1 ways), or
if T swaps a with b. So

]ED‘=0(D: _ D;) = IP(D: = 1|D¢ = 0) — n-+ w(z)(:)-/r(z + 1)
2

and similarly if a > b,

EP+=}(D} - D;) = ~P(D} = 0|D; = 1) = — 27 E;)l) @,

So in general
(i) —w(i+1) + 2(1-2Dy)

® no1

Summing now over ¢ causes the m(:) terms to telescope:

E® (D} - D;) =

n-1
E*(D* - D E"(D! - D; _ (1) = 7(n) 2_4_D-
( )= ; (D; - Dy) ® e
which allows us to apply Theorem 3:
. _ e EPx(1) - IED1r(n) 4D
EP(D* - D) =EPE (D*-D) = @) ~ o3
4D
n(n 1)((D+1) (n—-D))+2- —]
_2(n—-1)-4D
=——

The mean and variance of Des(r) are 4 := (n — 1)/2 and 02 := (n + 1)/12
respectively, so the variables

ng and W,:=_Des('raﬁ

have mean 0 and variance 1. Then (W, W*) is an exchangeable pair and

EW':w(W‘ - W) = ED=cw+p D* - B D - [ = lED=°"‘”+"(D“ - D)
g o o
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which is to say

An—1)—4(eW +p) _ _4,,

EY(W* -W) =
on n

So if W* is obtained using the “random transposition” method described
here, (W, W*) will be an exchangeable pair satisfying Equation (24) with
A = 4/n. One can now proceed with Stein’s method and show that W is
close to being a standard normal random variable.

6 Generating Functions

It follows from Equation (13) that

= TN d+1 1 —z)*H! in o d
onle) = D (3)e+ = 1= T

and therefore that

Az, z): = Z an(z)2"/n! = Z(l - )™t Zj"zjz"/n!

n2>1 n21 320
=(1-2)) 7Y ((1-2)2)" /nl
j20  n21
L 1 1
_ _ (1-z)z _ - _ _
=1 :z:)z:z:’(e’ 1) =@ z)(l_xe(l_x)z 1—:1:)
j20
1-z ze~(1-2)2 _ g
= 1 — ge(l-2)z = T —e—(1-2)z )

There is some disagreement in the literature about what ao should be. We
have avoided the problem by not including it in the sum.

There are various ways to define generating functions for the (J) »» depend-
ing on which variables are kept constant.

Theorem 4

v
N pdy ko |=l/ __da
(25) Z<d>kmy 2" /n! ), z—ai

n,d,k

where @ = exp {(y—ﬁf—l) z}.
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Proof. Let B(z,y, z) be the left-hand side of Equation (25). Note the sum
is over all integers n, d, and k. So

@8~ - 152 +(1-2)B =

2 [<n: 1>k+1 - <"1‘ l>k * <Z>k - <df 1>J z%y* 2" nl

n,dk

Let S(n,d, k) be the bracketed quantity. It is clearly 0 if n < 0, and if

n =0,
1 ifd=0,k=0

S(0,d,k)=¢ -1 ifd=0,k=1
0 otherwise

son = 0 contributes 1—y to the sum on the right-hand side of Equation (26).
If n > 1, then by Equation (10), S(n,d,k) isO unless k =Qork=n+1,

in which case
n+l\ _ /n
S(n,d,O)—< d >1—<d>

n+1 n
S(n,d,n+1 =—< > =—< >
( : ¢ [an d~1
Therefore

8B
-1 - = .
(-9 +(1-2)B
—1_ n\ d.n - n d,n+l n/ 1
=l—-y+ Z <d>:z:z/n! E <d_1>xy 2" /n!
n>1,d n>1,d
=1-y+z 1 A(z, 2) - yA(z, y2)

_[q _1ze~(172)2 _ g 1 ze~(1-2)vz _ p
- +z z — e—(1-2)z y(l+ z —e—(1-z)yz

—(1-z)yz 1
= (11— ye -
- (1 z) [z —e-(1-z)yz e—(l-z)z] .

Let o = y—i?f—l. Then 8, as defined in the theorem, is e®*. Dividing by
y~! — 1 and multiplying through by 8 gives

oB [ ye—(1-z)yz 1
0?3? + afB = af e e—(1-z)yz - z —e—(1-2)z

which is to say that

b7} [ e [
5; B) =« z—gv-T 2—01-1/11] .
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Differentiating the integral on the right-hand side of Equation (25),

8 [ a o 1 _ o9 1
0z )y z—t:-WW 0z |z (gy)l-l/f! 0z |z - 61—/
ab

_ oyt _ 0
Tz-v1 g-@-1y 5, 9B)-

Since B and the integral have the same derivative with respect to 2, and
they both vanish when 2z = 0, they are equal. O

Here are three more generating functions. They can all be found by plugging
in Equation (16) and switching summation signs.

e X(5) o= a-ar TG

d j20
» j + 1)" — (jy)"
o D epe ()

k

K e dtl-a

j20

We can now prove a special case of the Neggers-Stanley conjecture. Define
the descent polynomial of A C S, to be

Fa(z) = Z gPes(m),
mEA

Let P be a poset of n elements with labels 1,2,...,n. A linear extension
of P is an ordering of 1,2,...,n which preserves the ordering of P; that is,
a7 € S, which is such that if i <p j then i appears before j in the list
w(1),m(2),...,m(n). If L(P) denotes the set of linear extentions of P, then
Neggers and Stanley [11, p. 311] conjectured that for any poset, every zero
of Fz(p) is real.

The conjecture has been shown to be false in general [2],(13]. But we can
prove it is true in a certain special case.



Theorem 5 If P, i is the poset with Hasse diagram

1 2 o k=1 k41 k+2 ... n

k

then Fr(p, .y has only distinct real roots.

Proof. For u,v >0 let

. u+v+1 d_ D
=2 (TN wis ¥ s,
d

TESutut1

w(1)=u+1
Then setting u = k — 1, v = n — k yields the polynomial in question. If
v =0, cy,y counts the reversal permutation p, which has (u+v+1)-1=1u
descents. Otherwise, if v > 0, ¢, doesn’t count p but it does count the
permutation

u+1l,u,u—1,...,L,u+v+lLutv,...,u+2

which has u + v — 1 descents. So

u ifv=0
deg(cu,v) _{ u+v—-1 ifo>0.

Similarly, if u = 0, ¢, counts the identity permutation, which has no
descents. Otherwise it doesn’t count the identity but it does count

u+l,u+2,...,u+v+1,1,2,...,u

which has 1 descent. So z { cgv(2) and if u > 0, T | ¢y () but 22 4 ¢y o (z).

Now let
Cu,v

b = A gyurort

Note that cu,u(1) = # {7 € Sutv41: (1) =u+ 1} = (u+v)!, 50 ¢y, does

not have a zero at = 1. Therefore k,, has exactly the same zeroes as
Cu,v, Plus a pole at z = 1. By Equation (27),

hup(z) = Zju(j +1)¥27

j20
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-00 -1 0

( ho'o(z‘) =(1-z)"!

Dz s

Dz ( ho,1(z) =(1-2)

Dz ho2(z) = (1-2)~3(1+2)

2D ( ho,3(z) = (1-2)~*(1+4z+2%)

<D ( hy 3(x) = (1-z)5(8z+14z%+22%)

hg 3(z) = (1-z)~%(82+60z +48z°+42*)
zD (

h3 3(x) = (1-2)~7(8z+160z+3842° +160z°+82°)

Figure 2: The construction of h33(z) as described in the proof of Theo-
rem 5. The zeroes of each function are plotted on the right, using an inverse
tangent scale. Since each function is generated from the previous one by
applying either the Dz or the zD operator, Rolle’s Theorem guarantees
that the zeroes must interleave. By a counting argument, all the zeroes of
each function must be real.

If D represents differentiation with respect to z, we have
(£D)hy () = hyt1,0(z) and (Dz)hy,y(Z) = huv1(T)
and so
ho,u(z) = (Dz)"hopo(z) and hyy(z) = (2D)*hoy(2).

ho,o(z) = (1 —z)~! and ho,1(z) = (1 — z)~? both have no zeroes. Suppose

v > 1 and ho, has only distinct real zeroes. Since deg(co,v) = v — 1 and
z t co.(x), zco,n(z) and zhoy(z) have v distinct real zeroes. By Rolle’s
Theorem, (Dz)hg,, must have v—1 distinct zeroes interlaced between those
of zho,(z). Furthermore, the denominator of zho,,(z) has degree v + 1,
so zho,u(z) approaches 0 as z — oo. Therefore its graph must turn back
toward the z-axis somewhere to the left of its leftmost zero, at which place
there must be another zero of (Dz)hg,». So we have found v real zeroes of
ho,u+1, and that accounts for all its zeroes.

Applying the zD operator goes similarly. Given that h,, has d distinct
real zeroes, by Rolle’s Theorem Dh,, ,(z) has d — 1 interlaced zeroes. Since
the numerator of h,, has degree smaller than the denominator, h, , must
turn back toward the axis to the left of its leftmost zero, which accounts for
one more zero of Dhy, . Finally, (zD)h, has one more zero at 0 (which is
distinct from the others since z2 { hy,, and therefore z { Dhy ). So we have
found d+ 1 real zeroes of hy+1,, and that accounts for all of the zeroes. [J
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Corollary 6 The same can be said for the poset

k

1 2 e k-1 k+1 k+2 oo n
Proof. The result of turning a poset upside-down is to reverse all its linear
extensions, which changes ascents to descents and vice-versa. So if F(z)
is the descent polynomial of the original poset, the descent polynomial of

the new poset is z"~1F(z~!). So the roots of the new polynomial are the
inverses of the roots of the original. a

7 General Behavior

We can say in general how the sequence (7)., (3), ;- (%), behaves.

The set of numbers (Z) x» for n fixed, is very nearly unimodal if arranged
appropriately.

Theorem 7 Fizn and d. Then

(i) Ifd=o, 0=(3) —~--—<">2<<>1=1
@) Fl<d<(r-3)/2, (. < 2,,,)" y << (B

(i) Ifd=(n-2)/2, 8 < (). =

(iv) Ifd=(n-1)/2, : n - < (d)(n+1)/2 $> <:>1
(v) Ifd=n/2, (D= ( )n— <d>1

(vi) If(n+1)/2<d<n-2, <d> > (D > (th

(vii) IFd=n-1, =(2), > <">,.-1=~--=<:;>1=0

Proof. (i) follows from the fact that the identity is the only permutation
with 0 descents. (v) (vi), and (vii) follow from (iii), (ii), and (i) respectively

because <d)k n— -d n+i-k’

Let fa(2) = {|o/m) +1>n|_:t:/n |4nng® Which means that fo(nd — k) = &)y if
0<d<n-1and1<k<n Figure 3 shows the graphs of fs(z) and
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y=£fx

d=1 d=2

3844

d=2,k=5

Figure 3: The graphs of fe(z) and fr(z), where fo(nd — k) = (3),, 8s
defined in Theorem 7.
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f2(z). Each monochromatic section is a sequence of the form

(@0,

for some d. Note the graphs plateau where one sequence meets the next.
Since (), = "7 =( d-?—l)f.’ each sequence begins where the previous one
ends. The content of the theorem is that f, is basically unimodal. That is,
the sequences on the left increase, those on the right decrease, and those in
the middle behave according to (iii) through (v).

The theorem is true for small n by inspection. By Equation (9),

<n;1>k - kZ_f <df 1> Ry <Z>e _ ;i:fn(n(d-1)—e)+f: fa(nd—0).

=1 € gk =k

Let i = £+ n — k in the first sum and £ — k in the second and we have

n+1 = =
( y > = ¥ fnd-1)-(G-n+k)+ Y find— (i +K)
k' izn—k+1 i=0
n—1
=" flnd—k—i).
i=0

So imagine a caterpillar of length n crawling on the graph of y = f,(z),
as shown in the top graph of Figure 3. If his head is at z-position nd — k,
the equation above says that the sum of the heights of his segments (or
his total potential energy) is ("2‘1) &+ Lf he were to take a step forward, his
total energy would be (“jl) k1 That would be an increase in energy if
the new height of his head is higher than the current height of his tail. The
theorem now follows easily by induction. O

8 Behaviorifd<n

If d is much less than n, and = is selected at random from those permu-
tations of n letters which have d descents, then the distribution of =(1)
approaches a geometric distribution uniformly, in the following sense.

Theorem 8 Fiz an integer d > 0. Suppose m, is chosen uniformly from
those permutations of n letters which have d descents. Then for any € > 0
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there is an N such that

P(ma(l) =k

for all integers n and k withn > N and 1 < k < n, wherep= 3%-1-.

(30)

Proof. For 0 < j < d, let Pj(n) = (-1)#=3(,,). Then by Equation (16)
and Equation (13),

o (e g () ()

0<5<d

(32) <Z>=(d+l)" Y Piln+1) (;ii) .

0<j<d

Since (1 — p)p*~1 = d*~1/(d + 1)F, the left-hand side of Equation (30) is
Yo<j<a Pi(m) (}1}) (d+l)
n
Yo<jca Piln+1) (ﬁq.—l)

and since Py(n) = (§) = 1, the last term of both sums is 1. Therefore we
have

-1

Faies [P (' (882) "™ - Pin+ 1) (882)')
1+ Togsea B+ 1) (81) '
Since j/d < (j + 1)/(d + 1) when 0 < j < d, that’s bounded above by
Tosea |1 (882)" + 12+ 01 (82)]
|1+ Sogsca Prtn+ 1) (52) ] '

Now each term in each sum is a polynomial in n times a decaying exponen-
tial in n. So both sums go to 0 as n goes to infinity.

Corollary 9 The total variation distance between the distribution of mn(1)
and the geometric distribution with parameter p = T‘ approaches 0 as n
approaches infinity.



9 1If Both Ends Are Fixed

We might now ask about the number of permutations with d descents whose
first and last positions are fixed. Let

[4
<Z> = # {7 € Sn : Des(r) = d, n(1) = k, and n(n) = £}.
k

Theorem 10 Suppose 1 <k <k+m < n. Then
@, =) = ()=o)
= and = .

Proof. Let 1 € Sy, be the n-cycle (n,n—1,...,2,1). Then for any 7 € S,,

=107 41921

(Imagine a device like a car odometer, with a window and n wheels, on each
of which are painted the numbers 1 through n. 7 can be represented by
turning the ith wheel until 7 () shows through the window, for all i. If one
then rolls all the wheels backward a notch, ¥r shows through the window.
For this reason we will refer to the transformation 7 +— % as a rollback.)

If1 <i<n,let Di(n) = [m(i) > n(i + 1)]. The pair #(¢), (¢ + 1) has one
of four types:

Type Di(m) | Di(yr) | Di(y7) — Di(m)
A I<a@)<aG+D | 0 0 0
B 1<7(i+1) <m(3) 1 1 0
C l=n@)<nG+1)| o0 1 1
D 1=r(i+1)<n@)| 1 0 -1

Most pairs are of type A or B. 7 will have one pair of type C unless 7(n) = 1
and one pair of type D unless 7(1) = 1. Therefore

n—1 1 ifr(1)=1
Des(ym) — Des(m) = ) _ Di(ypm) — Di(m) = ¢ -1 ifn(n) =1
=1

0 otherwise.
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Let

P’ :={n €S, : w(1) = a and n(n) = b}
Qb= {m € Sp—1: w(n) =b}.

Consider the following sequence of bijections:

P,f""" rollback Pk——11+m rollback

_ rollback prem rollback: pm shorten, om

where “shortening” a permutation means removing n. (See Figure 4 for
an example.) The first & — 1 rollbacks all preserve Des, and the final one
increments Des. But the shortening decrements it again, since it removes
n from the front of the permutation. Therefore the net effect, across the

whole sequence, is to preserve Des. So (%):¥™ = (*71)™ for all d.

The second part of the theorem follows from the bijective sequence

Pt rollback Pk—-1+m rollback
_ rollback Plm rollback 3 shorten Om

where Q, = {n € S, : 7(1) = a}. Here the ﬁnal rollback decrements Des,
and the shortening leaves it unchanged. So ( d) o = ""1 ]

Corollary 11 If1 < k,£ < n and P} is the poset on {1,2,...,n} defined
by k < p a <p ¢ for all a other than k and ¢, then the descent polynomial
of L(P, k) has only distinct real zeroes.

Proof. 1f £ = k + m, then the polynomial in question is
n ¢ d n-—1 m d
s(@=-2(7) -

which was shown to have real distinct zeroes in Corollary 6. As in that
corollary, it follows immediately that turning the poset upside-down inverts
the roots of the polynomial, leaving them real. O
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CIFEIEIEIEIES

Figure 4: Examples of the actions of the bijections described in Theorem 10,
for n = 9. Vertical lines show the positions of descents. If (1) < m(n), as
at the top left, then the permutation is “rolled back” until n appears at the
front, and then n is removed. In each of the rollbacks but the last, one of the
internal bars moves one position to the right, to accomodate a 1 changing
to an n, but the total number of descents stays the same. Only when the
number in the first position changes from 1 to n do we gain a descent, but
it vanishes again when we remove n in the last step. The procedure is is
similar when 7(1) > m(n), as on the right, but the last rollback eliminates
a descent, and removing n leaves the number of descents unchanged.
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10 Remarks

In Section 5 we noted that if 7 is uniformly distributed over S, then the
distribution of D = Des(w) is approximately normal. Thus the normal

density function
L el l (d-_n)
V2ro P12\ ¢

with p = 251 and o = /% is a good approximation for 4(%) when d is
close to u. However, it can be off by orders of magnitude when d is very
small or very large.

Theorem 7 shows that the sequence (3),,(3),,---,(3), is an interpolation
between (") and (§}7}), so it seems a reasonable hypothesis that if d is
close to 231, then (), is well approximated by

2
(- _J 1({d+3i-%
™ P72 & ’
12

Experimental evidence for n < 200 suggests that this is in fact the case. So

while the distribution of w(1) given Des(7) is by no means normal, it does
seem to behave like a segment of the normal curve when d is near "—2'—1-

More generally, there may be some underlying curve which the Eulerian
numbers, properly normalized, can be said to approach as n grows large.
It will look like a bell curve, but not be exactly normal, since the normal
approximation is not very good when d « n. If so, it seems likely that the
refined Eulerian numbers presented in this paper can be said to approach
points on the same curve.
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