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Abstract

In this paper, we prove that for any graph G, there is a domi-
nating induced subgraph which is a cograph. Two new domination
parameters s - the cographic domination number and Yged - the
global cographic domination number are defined. Some properties
including complexity aspects are discussed.
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1 Introduction

We consider only finite, simple graphs G = (V,FE) with |V| = n and
|E| =m.

Cographs - complement reducible graphs-are graphs that can be reduced
to edgeless graphs by taking complements within components.Various prop-
erties of this subclass of perfect graphs [6] are discussed in (3], [4], [5] and
[10]. Every cograph is a comparability graph [11] and the distance heredi-
tary graphs form a super class of cographs.

Cographs are recursively defined as follows:

(1) K, is a cograph
(2) If G is a cograph, so is its complement G° and
(3) If G and H are cographs, so is their disjoint union, G U H.

The join of two graphs G and H, denoted by G V H is defined as the
graph with V(GV H) = V(G)UV(H) and E(GV H) = E(G)UE(H)U{uv,
where u € V(G) and v € V(H)}. Then GV H = (G°U H®)°. Hence the
condition (3) in the definition of cographs can as well be replaced by

(3'): If G and H are cographs, so is their join.

The following characterizations for a graph G to be a cograph are well
known [10].

G does not contain an induced P, - the path on 4 vertices.

For every induced subgraph H of G, H or H* is disconnected.

G.F. Royle [13] has proved that the rank of a cograph is equal to the
number of distinct non zero rows of its adjacency matrix. F.Larrién et.al,
[9] have studied in detail the clique operator on cographs and proved that
a cograph is clique convergent if and only if it is clique Helly. A character-
ization of cographs whose clique graph is a cograph is also obtained.

In [8], a polynomial time algorithm is given for the Hamiltonian cycle
problem for cographs.
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In [12] Rao and Vijayakumar have studied two graph operators - the me-
dian and the antimedian - of a cograph. Planar and outer planar cographs
are also discussed in [12].

The following definitions are from [7]. A set S C V of vertices in a
graph G is called a dominating set if every vertex v € V is either an ele-
ment of S or is adjacent to an element of S. A dominating set S is minimal
dominating if no proper subset of S is a dominating set. The set of all
minimal dominating sets of a graph G is denoted by M DS(G). The dom-
ination number ¥(G) of a graph G is the minimal cardinality of a set in
MDS(G), or equivalently, the minimum cardinality of a dominating set in
G. The minimum cardinality of an independent dominating set of G is the
independent domination number, v;(G).

In this paper,we prove that for any graph G, there is a dominating in-
duced subgraph which is a cograph. A new domination parameter 7.4 - the
cographic domination number is defined. In general ¥(G) < 7.4(G) < %(G)
and there are graphs which satisfy the strict inequality. We prove that there
are no trees which satisfy v(G) < 7c4(G) = 7i(G). Another domination
parameter 7,4 - the global cographic domination number is introduced and
its relationship with cographic domination number for different classes of
graphs are studied. Some constructions to illustrate the existence of graphs
satisfying the inequalities among the various domination parameters and
the complexity of evaluating these parameters are also discussed.

For all graph theoretic notations and preliminaries, we follow [2].

2 The cographic domination number
In [1], the following problem is considered.

Problem : Let P be a property of vertex sets in a graph. Characterize
all graphs having a dominating set satisfying the property P.

Motivated by this, we first prove that,

Theorem 1: For any graph G, there exists a dominating induced subgraph
which is a cograph.

Proof: The proof is by induction on 7, the number of vertices of G. For
n < 3, the theorem can be easily verified. Assume that it is true for all
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graphs with at most n vertices.

Let G be a graph with n + 1 vertices. By induction hypothesis, the
graph G — v has a dominating induced subgraph H which is a cograph. If
at least one of the vertices in H is adjacent to v, then H is a dominating
induced subgraph for G. If not, H U {v} is a dominating induced subgraph
of G which is also a cograph. Therefore by induction, the theorem is true
for all graphs.

Definition 2: For a graph G, the cardinality of a minimum dominating
set whose vertices induces a cograph is called the cographic domination
number, denoted by v.4(G).

Note 3: For any graph G, 7(G) < 7.4(G) < %(G). However, there are
graphs with v(G) < 7.4(G) < 7(G). For e.g:-

o—
G:
o~ \0
o
Fig: 1
7(G) =4
Yed(G) = 5
1(G) =6

In the following, we finally prove that there are no trees which satisfy
Y(G) < 7ed(G) = %(G).

Lemma 4: If T is a tree with 7(T') < 7.4(T), then T must have the graph
G in Fig:1 as an induced subgraph.

Proof: Since ¥(T) < 7.4(T), in every dominating set D with cardinality
4(T') there exists an induced P : ujuzuguy. Since D is minimal dominating
and u; for i = 1,2,3,4 is adjacent to at least one vertex in the dominating
set, there exists at least one v; in the vertex set of T' corresponding to each
u; such that v; is adjacent only to u; in D for each i = 1,2,3,4. If for one of
these 'i’, v; is the only such neighbor of u; then we can replace u; by v; for
that i in the dominating set to remove the induced Py without changing the
cardinality. Therefore, there exists at least one induced Py in T such that
each of its vertices is adjacent to a pair of vertices. These twelve vertices
together induce the required graph.
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Corollary 5: For any graph G with less than twelve vertices, 7(G) =
Yed(G)-

Lemma 6: If T is a tree with v.4(T") < (T, then T has the following
graph as an induced subgraph.

Proof: Since v.4(T') < 7;(T), every cographic dominating set D with car-
dinality 7.4(T) will have at least one pair of adjacent vertices, say uv. Since
u and v are mutually dominating, there exist at least two vertices u; and
vy in T which are adjacent only to u and v, respectively. If these are the
only such vertices then we can replace u by u; or v by »; in T to remove
the adjacency in D without affecting the cardinality. Therefore, there exist
at least one pair of vertices in D which has at least two neighbors of their
own. These six vertices induce the required graph.

Corollary 7: For any graph G with less than six vertices,y.4(G) = 7%(G).
Theorem 8: There is no tree T which satisfies ¥(T') < v.4(T) = 7:(T).

Proof: If possible assume that there is a tree T which satisfies 7(T) <
Yed(T) = 7(T). Let D be a minimal dominating set of cardinality (T).
Since ¥(T') < 7ea(T), by lemma 4, T must contain the graph in Fig:1 as an
induced subgraph and the vertices which induce a P, in it must be present
in D. Also, none of the vertices of this P; can be replaced without affect-
ing the domination property and without increasing the cardinality of D.
To make D a cographic dominating set, only one vertex is to be replaced,
whereas to make D an independent dominating set, two of the vertices are
to be replaced. Since D is arbitrary, 7.4(T) < 7(T) which is a contradic-
tion. Hence, the theorem.

3 Global cographic domination number

Theorem 9: Given any graph G = (V, E), there exists a cographic domi-
nating set which dominates G° also.

Proof: If D is a cographic dominating set in G which dominates G¢ also,

then there is nothing to prove. Otherwise, there exists at least one vertex,
say v; which is not adjacent to any vertex of D in G°. Adjoin v; to D.
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If DU {v1} does not dominate G°, then there exist a v; which is not ad-
jacent to any vertex of DU {v,} in G°. Adjoin v; to D U {v;}. Continue
this process until we get a dominating set D' = D U {v1,vg, ..., } which
dominates G¢. The process will eventually terminate, since V' dominates
G¢. The subgraph induced by D’ in G is the join of the subgraph induced
by D in G with K, for some p. Therefore, the subgraph induced by D’
is also a cograph by the choice of D and since D C D', D' dominates G.
Therefore, D' is a cographic dominating set in G which dominates G° also.

Definition 10: Let G = (V, E) be a graph. A subset V' of V is called
a global cographic dominating set if it dominates both G and G° and the
subgraph induced by V' is a cograph. The global cographic domination
number, denoted by 7yca(G) is the minimum cardinality of a global co-
graphic dominating set.

Eg: Ygca of G in Fig-1 is 5.
Note 11: For any graph G, 7,cd(G) 2 maz{7ca(G), 74(G°)}-
Lemma 12: For any graph G, 7,.4(G) > 1.

Proof: If v,c4(G) = 1, then 7,4(G) = 1. Then G has a vertex of full
degree and so G¢ has an isolated vertex. Therefore, 7c4(G°) > 1 and so
9ed(G) < Yca(G®). This is a contradiction and hence ¥5c4(G) > 1.

Theorem 13: If G is a triangle free graph, then 7,.4(G) = 7.4(G) or
'ch(G) +1.

Proof: Let 7,ca(G) # 7ca(G). Let D be a minimum cographic dominat-
ing set. Since none of the minimum cographic dominating sets dominate
G*, at least one vertex v of G must be adjacent to all the vertices of D.
Consider D U {v}. Since the graph is triangle free, none of the neighbors
of the vertices of D are adjacent to v. Since D is dominating, every vertex
of G is either in D or is adjacent to a vertex of D. Therefore, the only
neighbors of v are those present in D. Hence, in G¢, v dominates all the
vertices outside D. Also, D U {v} induces a cograph. Thus, DU {v} is a
cographic dominating set in G as well as G°, of cardinality v.4(G) + 1.

Note 14: The converse need not be true. For example, in the graphs given
below, 'ygcd(Gl) = ’ch(Gl) =3 and 7gcd(G2) =2and ‘ycd(Gg) =1.

478



N\

o—0—o0
5 5

Corollary 15: If G is a triangle free graph with v,.4(G) # 7c4(G), then
Yed(G) = %(G).

Proof: Let D be a minimum cographic dominating set of G. Since, none of
the minimum cographic dominating sets dominate G¢, at least one vertex v
of G must be adjacent to all the vertices of D. Since, G is triangle free, no
two vertices of D are adjacent. Therefore, D is an independent dominating

set. Hence, 7.4(G) = 1:(G).

Corollary 16: Every tree T has Y,ca(T') = Yca(T') or ¥a(T)+1. Moreover,
Yged(T) = Yea(T) + 1 only if T is a rooted tree of depth two in which every
vertex (may be except the root) has at least two children.

Proof: The first statement follows from the above theorem, since trees
are triangle free. Assume that 7Y,cd(T) = Yc4(T") + 1 for a tree T. Then
as in the proof of corollary 15, there exists a minimum cographic domi-
nating set D, which is independent and has a common neighbor v. Since
D is dominating and T is a tree, v is not adjacent to any other vertex of
G. Now, every vertex of D has at least two pendant vertices attached to
it. Since, otherwise if u € D has only one pendant vertex w attached to
it, then (D — {u}) U {w} is a global dominating set of cardinality v.4(T),
which is a contradiction. Therefore, all the vertices in D have at least two
pendant vertices attached to it and so T is a rooted tree of depth two with
v as its root in which every vertex has at least two children.

Lemma 17: If G is a disconnected graph, then 7.4(G®) < 2 and 74c4(G) =
7cd(G)' :

Proof: Since G is disconnected, G¢ is connected and any two vertices
in the two different components of G dominates G°. So, 7.4(G*) < 2. Also,
in any cographic dominating set of G, there will be at least one vertex
from each component. Therefore any cographic dominating set of G is a
cographic dominating set of G° also. Hence v,c4(G) = 7.4(G):
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Note 18: This lemma holds for the domination number and the global
domination number [14] of a disconnected graph also.

Theorem 19: A cograph G without a vertex of full degree has 7,.4(G) =
7.4(G) if and only if there exists two vertices u and v such that N(u) and
N(v) partitions V(G) or V(G) — {u,v}, where N(u) and N(v) denotes the
set of all vertices which are adjacent to u and v respectively.

Proof: If N(u) and N(v) partitions V(G) or V(G) — {u, v}, the cographic
domination number of G is 2. In G¢, {u,v} itself dominates. Therefore,
'7gcd(G) =7:4(G) = 2.

Conversely, assume that v4ca(G) = 7ca(G). Since 74ca(G) > 1 and
7ed(G) < 2, we have 74ca(G) = 7ea(G) = 2. Therefore, there exist two ver-
tices u and v such that {u,v} dominates both G and G*. Since, neighbors
of u in G will not be adjacent to u in G¢, they must be adjacent to v in
G¢. Hence, no vertex in N(u) is adjacent to v in G and vice versa. Also,
since {u,v} dominates, N(u) U N(v) = V(G) or V(G) — {u,v}. Therefore,
N(u) and N(v) partitions V(G) or V(G) - {u,v}.

Theorem 20: If G is a planar graph with v.4(G) > 3, then 7,.4(G) <
Yed(G) + 2.

Proof: If possible assume that vgcq(G) > Yca(G)+2. Let uy, uz, ug be three
vertices in any ~y.q set D of G. Since 7yca(G) > 7ed(G) +2, D cannot dom-
inate G¢ and at least three more vertices are to be added to D to make it a
global dominating set. Therefore, there exist at least three vertices v1,v2,v3
which are adjacent to each other and to every vertex of D. Then the sub-
graph induced by these six vertices will be K, K¢ — {1}, K¢ — {e1, €2} or
Kg — {e1,e2,e3} where e;,e3,e3 € E(G) and are adjacent to each other.
Each of the above graph contains K33 as a subgraph, which is a contra-
diction to the planarity of G. Hence the theorem.

Note 21: The bound 7,cd(G) < 7ed(G) + 2 is strict.
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For example, the above plane graph has 7.4 = 3 and 7,c4 = 5.

4 Two constructions

Theorem 22: Given three positive integers a, b and c satisfying a< b <
¢, there is a graph G such that v(G) = a, 7.4(G) = b, %(G) =c.

Proof: We shall prove the theorem by constructing the required graph and
by analyzing the following cases.

Casel:a=b=c
Let G = P, or C,, where n = 3a. Then, ¥(G) = 7.4(G) = 7:(G) = a.

Case2:a=b<c

Let G be the graph P, where n = 3(a - 1) together with (c - a + 1) pen-
dant vertices each attached to an end vertex of P, and its neighbor. Then,
¥(G) = 7.4(G) = a and %4(G) = c.

Cased:a<b=c

Let G be P, : v1v2v3....v,, where n = 3a - 7 together with p=b - a + 2
vertices, u1, 4z, ..Uip, made adjacent to each v; for i = 1,2,3 and 4 and u,;
made adjacent to us; for each j = 1,2,....,p.

Then, the vertices v;,vz,v3 and v4 dominate all u;; s and vs. To dom-
inate the remaining (3a - 12) vertices of the path, (a - 4) vertices are
required. Therefore, v(G) = a. At least one vertex among v;,vs,v3 and
v4 must be replaced to get a cographic dominating set. Remove v; and
include all the (b - a + 2) vertices. But, then v; is also not required in the
dominating set so that 7,4(G) =a-2 + b-a + 2 = b. This set is also
independent and hence v;(G) = b.

Case4:a<b<c

Let G be P, : v1v2v3....0n, where n = 3a - 7 together with (b - a) vertices
made adjacent to v, (c - a + 1) vertices made adjacent to v; and (c - a +
2) vertices each made adjacent to v; and vs and to each other.

Then, the vertices v;,v2,v3 and v4 dominate all pendant vertices at-
tached to them and vs. To dominate the remaining (3a - 12) vertices of the
path, (a - 4) vertices are required. Therefore, 4(G) = a. At least one vertex
among vy, v2, v3 and v; must be replaced to get a cographic dominating set.
If we remove vy, the (b - a) pendant vertices adjacent to it and vs are to
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be adjoined to get a cographic dominating set of cardinality a-1+b-a
+ 1 = b. If we remove v;, the (c - a + 2) pendant vertices adjacent to it
are to be adjoined. But, then v3 also can be removed from the dominating
set to get an independent dominating set of cardinality (a -2+ c-a + 2)
= ¢. Therefore, 7.4(G) = b and 7;(G) = c.

Ilustration

Casel la=b=c=20 O0—0—0 O ’o! O

Case2 |2=Db=3,
c=17

Case 3

Case 4 b=7, R R .
c=10 QZESX ./\‘ I

Theorem 23: Given two positive integers a and b satisfying a < b and
b> 1, there is a graph G such that v.4(G) = a,74cd(G) = .

Proof: We shall prove the theorem by constructing the required graph and
by analyzing the following cases.

Casel:a=b0>1

G is the graph obtained by taking any graph of order a and attaching
one pendant vertex to each of the vertices.
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Case2:ea=1anda<b.

G = K.
Case3:a=2and a <b.

G is K3 minus a perfect matching.
Case4:a>2anda<b.

The required graph G is obtained as per the following constructions
based on the figure.

b-a+1 b-a+1
vertices vertices
5 O
V1 Yo /

u»1 u2 LJ

In the figure, the vertices inside each of the circles are independent and
the vertices inside both the rectangles form complete graphs. Every vertex
v; for ¢ = 1,2,...,a is made adjacent to every vertex inside the circle to
which an edge is drawn. All the vertices of the smaller rectangle are made
adjacent to, all the vertices in the bigger rectangle, all the vertices inside
the circle to which an edge is drawn and to v,. Further, v,_; is made
adjacent to v,. The graph so obtained is G.

Now, if we choose one vertex from each of the circles, we get an inde-
pendent set of cardinality @ which has no common neighbors. Therefore,
any dominating set must contain at least a vertices and {v;,vs,...,v,} is a
cographic dominating set. So 7.4(G) = a.

The set {v1, vz, ..., } will not dominate u;s in G¢. If we remove any one
of the v;8 from this cographic dominating set, then all the b—a+ 1 vertices
in the corresponding circle must be included to retain the set as a cographic
dominating set. Therefore, the cardinality becomes a —1+b—a+1=0b.
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If we keep all the v;8, then a vertex from any of the circles, except the
one corresponding to v,—; cannot be introduced , since otherwise an in-
duced P; will be present. A vertex from the circle corresponding to v,—;
cannot dominate u;s in the complement. Also, a u; cannot dominate u;
for i # j. Therefore to get a global cographic dominating set all the u;s
must be included. Then the cardinality becomes a +b—a = b. In any case,

Ygcd(G) = b.

Illustration of case 4 : a =3, b=25.

5 Complexity aspects

In this section we discuss the complexity aspects of the newly defined pa-
rameters.

Theorem 24: Determining the cographic domination number of a graph
is NP-complete.

Proof: We prove this by reducing in polynomial time the dominating set
problem in general to the cographic dominating set problem.

Claim: Given a graph G, we can construct a graph H in polynomial time
such that G has a dominating set of size k if and only if H has a cographic
dominating set of size k + 1.

Let G = (V, E) where V = {v1,vs,...,un} be the given graph. Con-
struct H as follows:
Let V(H) = {v1,02,...,Un} U {v], %, ...,v5} U {z,y} . Make v; adjacent to
v} if v;u;eE(G) or i = j; z is adjacent to v for every j and 2 is adjacent
toyin H.

Let {v;,,vi;, ., i, } be a minimal dominating set of cardinality & in G.
Then {v},,v},,...,%},, 2} is & minimal dominating set in H. Since there is
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no induced P in this set, it is a minimal cographic dominating set in H of
cardinality & + 1.

Conversely, let {u),us,...,ux41} be a cographic dominating in H. (By
construction of H, any minimal dominating set is cographic). One of these
u}s must be z or y. Remove that u;. All other u;’s must be either vj
or v;. Keep each v; unchanged and replace each v} by vi. This new set
of cardinality k will be a minimal dominating set of G. Since H can be
computed from G in time polynomial in size of G, our claim holds.

Corollary 25: The problem of determining the cographic domination
number is NP-complete for the class of bipartite graphs.

Proof: In the proof above, the graph H constructed from G is bipar-
tite.

Theorem 26: Determining the global cographic domination number of a
graph is NP-complete.

Proof:

Claim: Given a graph G, we can construct a graph H in polynomial time
such that G has a cographic dominating set of size k if and only if H has
a global cographic dominating set of size k + 1.

Given a graph G define H = G U K). Clearly, a minimum cographic
dominating set in G' together with the isolated vertex is a minimal global
cographic dominating set in H.

Conversely, any minimal global cographic dominating set in H will con-
tain the isolated vertex and the remaining vertices is a minimal cographic
dominating set in G. Since H can be computed from G in time polynomial
in size of G, our claim holds.
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