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Abstract

Let G be a graph with n vertices. The mean integrity of G is defined
as follows: J(G) = minpcy, {|P|+ m(G - P)} , where (G - P) =
#=IFT Lvevg_p v and ny is the size of the component containing v.
The main result of this article is a formula for the mean integrity of
a path P, of n vertices. A corollary of this formula establishes the
mean integrity of a cycle C, of n vertices.

1 Introduction

Graphs are often used to model real-world problems (2], such as problems
in a computer network. In such a network, for example, it is not desirable
to have all communication disrupted when only one station is not working.
Instead, a single station’s failure should have as little effect as possible on
communication among the rest of the network. Ideally, in order to minimize
the disruption of communication, every station should have a direct con-
nection to every other station; however, the cost of these connections would
be high, making that solution impractical in the real world. Some balance
must be achieved between connectedness and cost, but fewer connections
increase the network’s vulnerability. This problem inspired the study of the
integrity of graphs, first introduced by Barefoot, Entringer and Swart [3).

Let G be a graph with n vertices. The integrity of G is defined as follows:

I(G) = minpcv,{|P|+ m(G — P)} , where |P| is the size of P and
m(G — P) is the size of the largest component of the graph G — P.

In graph G, any set P whose removal achieves this minimumi is called an
I-set. In terms of computer networking, the I-set is the set of failed stations,
and m(G — P) is the size of the largest remaining group that retains mutual
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communication. All possible combinations of failed stations are examined,
as well as the largest group whose communication is left unhindered by the
given set of failures. Finding the integrity means finding the “smallest” set
that is the most destructive to the entire network’s communication.

The integrities of some special families of graphs are listed below and
can be found in (3, 4]:

I(G) =
n, if G = K,,, the complete graph on n vertices
[2/n+1] —2, if G= P,, apath of n vertices
[2y/n] -1, if G = Ch, a cycle of n vertices
14+ min{m,n}, if G = Km na, the complete bipartite graph

Two significant variations of integrity are edge-integrity, denoted I'(G),
and mean integrity, denoted J(G). Edge-integrity was also introduced by
Barefoot, Entringer and Swart [3], and is defined as follows:

I'(G) = mingcEes {|Q]+m(G—Q)} , where m(G — Q) remains the size
of the largest component of graph G — Q.

The edge-lntegnt.les of some special families of graphs are listed below
and can be found in [1]:

n, if G = K,,, the complete graph on n vertices
IG) = [2y/n] =1, if G = Py, a path of n vertices
) [24/7], if G = C,, a cycle of n vertices, n > 4
m+ n, if G = Km n, the complete bipartite graph

Mean integrity is very similar to integrity in that vertices are deleted.
However instead of looking only at the size of the largest remaining com-
ponent, mean integrity takes into account the sizes of all remaining compo-
nents, replacing the size of the largest component with the weighted average
of all components. Mean integrity, then, is a finer measure of vulnerabil-
ity. Introduced by Chartrand, Kapoor, McKee and Oellermann [5], mean
integrity for a graph G with n vertices is defined as follows:

J(G) = minpcye {|P|+m(G - P},

where (G — P) = "_ Zueva . and n, is the size of the compo-

nent containing v. Note that J(G) € Q, whereas I(G) € N.
The mean integrities of some special families of graphs are listed below

and can be found in [5]:

J(G) =
n, if G = K,,, the complete graph on n vertices
1 +min{m,n}, if G = K, the complete bipartite graph

For almost all graphs the three integrities take on different values. This
difference already occurs for very simple graphs, for example if G = C7 a
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cycle of seven vertices, then I(C7) = 5, I'(C7) = 6 and J(C7) = 9/2. In
general we have the relationship J(G) < I(G) < I'(G), see [1].

None of the three integrities is easy to calculate, and they are only known
for very special graphs [1]. In fact the only algorithms to calculate these
integrities that can be used on any graph work by an exhaustive procedure
that searches through all subsets of the set of vertices (or edges for I'). If
such a program is run on a desktop computer, the running time becomes
prohibitive for graphs with more than 40 vertices.

Out of the three integrities the mean integrity is the most difficult to
compute since one has to keep track of all different sizes of components
created by deleting vertices. This can also be seen in that the list of graph
families for which the mean integrity is known is the shortest. Missing from
this list is the mean integrity of a path P, of n vertices. Calculation of the
mean integrity of a path is the main result of this paper.

2 Mean Integrity of a Path
The following is the main theorem of this article.

Theorem 1 Fork e N, k> 2,

2k -1, ifn=k+k-1

IR = k4 o1 fr=k+k-1+41<t <k
2k, if n=k(k+2)
ko EHEELEOE = k(k+2)+1,1SE Sk

Remarks

1. Theorem 1 allows for the computation of the mean integrity of any
path. For example, if n = 82, then k = 8,¢ = 2, and k(k+2)+¢ = 8(10)+2.
From Theorem 1, J(Ps3) = k + t(k“f;"_‘f:_t:'t)kz. Here, J(Ps2) = $& »~
16.24. Note that I(Psp) = [2v/82+1] - 2 = 17.

2. The result in Theorem 1 is not surprising in the following sense. The
integrity or mean integrity of the path P, is achieved when approximately
v/n — 1 vertices are deleted and the remaining approximately /% compo-
nents all have approximately equal size of approximately /n—1. This gives
an integrity (or mean integrity) of about \/n =1+ /n—1= 2/ ~2. The
exact formula for the integrity of P, now only needs the addition of the
greatest integer function. For the mean integrity one has to exactly count
how many components of a given size there are in G — P. In more detail
the following pattern emerges:

If n = k(k + 2), then remove k evenly spaced vertices from P, to cut
the path into k + 1 pieces of size k. This results into I(P,) = J(P,) = 2k.
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When n increases by one, n = k(k + 2) + 1, there will be one component
of size k + 1 and k components of size k. As n grows larger there will be
more and more components of size k + 1 until all components in P, — P
areof size k+1. Nown=k(k+2)+k+1=(k+1)>+ (k+1) — 1. The
integrity now is I(P,) = J(Pa) = 2k+1 = 2(k +1) — 1. However the same
integrity can be obtained by removing k + 1 evenly spaced vertices from P,
to cut the path into k + 2 pieces of size k. Using this way of obtaining the
integrity when n increases by one to n = (k + 1)? + (k + 1) there will be
one component of size k + 1 and k + 1 components of size k. As n grows
larger there will be more and more components of size k + 1 until all £ + 2
components in P, — P are of size k+1. Now n = (k+1)(k+3) = k'(k' +2)
for ¥ = k + 1 and the pattern starts all over again. Figure 1 shows one
such cycle.

n k| form o}
2| kk+2)| 4 —o—@—o—o—@0—o—o
9 | 2lkk+2)+1] 3177 —o—@—o—o—@Qo—0o—0
10 | 2 [kike2w2] 1974 | 0@ 0—0—0—@-0—0—¢
-0-0-@—0—0—0—@ 000
1 | 3] ket | 5 | o-@——@-0-0—@—o—e
12 | 3] sk [ 163 | S0 @—e0-@-0-0—Qeee
13 | 3] ieske1] 285 | -0-@—0-0-G-00e-Qoee
14 | 3] Keke2 6a11] O-0-G-0e-0-G-000@oeee
15| 3] kke2)| 6 00000000000 Qoo

Figure 1: The different mean integrities of paths cycling through the dif-
ferent cases of Theorem 1 from n = k(k + 2) to n = (k + 1)(k + 3) for
k=2

The following are Corollaries of Theorem 1.

Corollary 2 The following three conditions are equivalent for a path Py:
(i) J(Ps) €N,
(1) J(Pn) = I(Pn)
(i) n = k(k + 2) orn = k? + k — 1 for some non negative integer k.
Proof: (i) (=) (iii)
Assume n=k®+ k+1+4¢, for 1 <t < k and show that J(P,) ¢ N.
By Theorem 1,

Lt (k+1-t)(k—-1)2 tk
J(Po)=k+ o1+t —k+k—1+m.
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1<t<k1mphestha.tk<tk<k’,soO<p——,<1
Therefore, 2k — 1 < J(Pn) < 2k, s0 J(Py) ¢ N.
Similarly if n = k(k + 2) +¢, for 1 <t < k then by Theorem 1,

o, e+ D)+ (k1)K th+t
J(Pn) =k + k24 k+t '2k+k2+k+t'

1<t <k implies that tk+t < k* +t < k*+ k+1, s0 that 0 < fiHts < 1.

Therefore, 2k < J(Pn) < 2k + 1, so J(P,) ¢ N. Thus J(P,) € Nif and
onlyif n=k(k+2)or n = k%+ k — 1 for some k € N.

(i) (=) (i)

Assume n = k(k +2) then I(P,) = [2v/n+1] -2 = [2vk2 + 2k + 1] -
2 =2k = J(P,).

Ifn=k>+k—1 then I(P,.)— [2vn+1]-2=[2vVk2+ k] -2

Unfortunately, v/k% + k is not an integer, however I (Pa) =

[2VEE+ k] -2< [2/kZ+k+1/d| -2=[2(k+1/2)] -2 =2 -1.
Furthermore I(P,) = [2Vk% + k]| =2 > 2k—2. So I(P,) = 2k—1 = J(P,).

(ii) (=) (i) This is obvious.

This last case completes the proof of the Corollary 2. O

Corollary 3 The size of the J-set is unique if and only ifn # k2 + k-1
for some k € N.

_ Proof: The proof of Theorem 1 establishes the J-set size for all values of
n, which is k when'n = k(k +2), n = k*+k—-1+t andn= k(k+2) +1.

For n = k? + k — 1, there is a J-set of size k and also a J-set of size k + 1.

The preceding corollary directly follows. a

Corollary 4 Forn > 2, J(Cp) = J(Pa-1) + 1.

Proof: A path of length n—1 can be obtained from a cycle C,, by removing
any vertex. Therefore, at most, the mean integrity of the cycle is one more
than the mean integrity of P,_1, 50 J(Cyn) < 1+ J(Pa-1).

Similarly, adding one vertex v to a path of length n — 1, along with two
edges, one joining v to each endpoint of P, creates a cycle C, of length
n. Therefore, at most, the mean integrity of the path P,_, is one less than
the mean integrity of the cycle J(Cy) described, so J(Pn-1) < J(Cy) — 1.

Therefore, J(Cp) = J(Pn-1) +1. 0

3 Proof of Theorem 1

J(G) = minpcy, {s+ -2}, where A = Z,__l n;2, n; is the size of the
ith component of G — s = |P|, and Sp is the number of components
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of G — P. In graph G, any set P whose removal achieves this minimum
is called a J-set. The mean integrity is not difficult to calculate once a
J-set has been found; however, finding such a set is not an easy task, as
it can be accomplished only through an exhaustive search of all possible
subsets of vertices. For ease of notation m these calculations, let J,(G) =
minpcvg {8 + 745}, where 4 = Y0P ni2 , s = |P|, Sp is the number of
components of G — P, and P is any subset of Vg, not necessarily a J-set.
Let I,(G) be similarly defined as I,(G) = minpgvg {s + m(G — P)}. The
proof of Theorem 1 is split into several lemmas.

Lemma 5 Let n,s,n; be whole numbers, for 1 < it < s+ 1, such that
foll nj=n—s Letp=2"2 and A= Z:fll n;2. Then A is minimized
when |n; —p|<1foralll1<i<s+1.

Proof: One needs to minimize A = E::ll n;2 subject to the constraint

Z:fll n; = n — 5. Clearly A is minimized when all n; are the same size,
that is, n; = 278 = p for 1 < i < s+ 1. However, for the mean integrity,
n; is the size o the ith component and must be an integer, which means
that achieving this absolute minimum A is not always possible.

Assume there exists some n; such that n; — g > 1. Since 2,_1 n; =
n — s, there exists some n; # n; such that n; < p. Without loss of
generality, assume ny — g > 1 and n; < p. Let 4, = Z’fll n;? and
Ag = (ny —1)2 + (n2 + 1)2 + %3 n;%. Then A; — Ay = 2(ny — ng — 1).

—p>1and ny < g imply that ny — ny > 1. Therefore, A2 < A;. The
case when there exists some n; such that u —n; > 1 is dealt with similarly.
Therefore, A is minimized when |n; —p| < 1,forall{,1<i<s+1. O

Corollary 6 For a given n,s € N, where s = |P| and 2L is not an

integer, the number of components in P, — P of size | +1]' or Rf”"]’ is
n+1-— ([,“'I)(s + 1), and the number of components of size I-s+1J’ or
Rl%ﬁl' is(s+ (271 +1)—-n-1

Proof: Removing s vertices from P, leaves s + 1 components By Lemma

5, each of these components must be of size [251] or of size |33 ].

Let RrﬁT‘] =Y.
Then Rln-.J =s+1-y.
Yit! n; = n — s implies that (2D + (s +1=-9) (553 =n—s

Let z = [254]. Then 2 — 1 = | 23}]. The above equation becomes

zy+(s+l-y)(z—-1)=n-s.
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Solving this equation for y yields
y=n+l-z(s+1)

or equivalently

Using this formula one obtains:

The next lemma addresses how large a J-set can be.

‘o

Lemma 7 The size of any J-set of path P, must be within one of u = %—1-,

where s* = =14+/n+1.

Proof By Lemma 5, A is minimized when all components are of equal size
p= 35 and

i) _ o, ) ,?;.', n-s
J(Pn) 28+ g ST
Let s* € R such that s* minimizes g(s) =s+ ';;f for a given n € N,
1y —8t)—(r=-8) . —(n+1)
gE=1+——rr — =Gy
_2(n+1) 50

g'(s) = 11

g"” > 0 implies a minimum exists at s* such that g '(s*) = 0. Then
n+ 1= (s8* + 1)? which implies that s* = —1+ \/n + 1. Since s must be
nonnegative, let s* = -1+ +/n+1 The equatlon n+l= (s + 1)% can
be changed into the equation s* = 2.
occurs at g(s*) = 2s°.

Call the minimum of g(8) J,» = s* + % 2s*. As previously stated,
this s* may not be an mteger Now suppose some real number & is added
to this “ideal set size” s* to make it into an mteger The minimum possible
mean integrity with s = s* + bis Jyeqp = 8" + b+ "—',be_,_— Compare J,» to
Js+ 45 by defining f(b) as follows.

f(b) Ja’+b — Jse.
Substituting n = (s*)? + 2s* yields

b2

F(b) = Jseqo— Jye = 'b-l-Ti-_l'
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f(b) measures how far this J,« 4 is from the ideal J;., and the goal is to
minimize this difference.

bb + 2(s* + 1)]
G+e +1)2

So f'(b) = 0 when b =0 or b = —2(s* + 1). However, since b+ s* > 0, the
latter never occurs. Additionally, f/(b) < 0 when b < 0, and f’(b) > 0 when
0 < b. Therefore, minimizing the difference between J;. 4 and the absolute
minimum requires staying as close as possible to b = 0. In other words, the

—’.

J-set must be as close as possible in size to s* = 2=%-. Exactly s* vertices
s* 41 \
can be removed only when s* is a whole number; otherwise, s = | 25| or

s= [% , whichever yields a smaller value for Jy« 5. a

Now all of the necessary tools are in place to prove the main theorem.
The proof is split into four cases. Cases (i) and (ii) explore what happens
when n = k2 + k — 1 and n = k(k + 2), respectively. Case (ii) examines
what happens for n between k% + k — 1 and k(k + 2). Similarly, Case (iv)
addresses the situation for n between k(k +2) and (k+ 1)2+ (k+1)— 1.

Proof of Case (i). Assume n = k(k +2).

By Lemma 7, s* = =1+ /n+1 = k. Since s* €N, s = s* =k, that
is, k vertices must be removed to achieve the mean integrity. By Lemma
5, all component sizes must be within 1 of p = 333 = -’ig—'}"—ikT"i =k, so all
components must be size k. Removing k vertices leaves k + 1 components
of size k, so J(P,) =k + !%'71,_),%‘: = 2k.

Proof of Case (if). Assume n=k?+k - 1.

By Lemma 7, s* = -1+ +vn+1 = -1+ vk2+k. The following
inequality =1+ VEZ < =1+ VE2 + k < ~1+Vk? + 2k + | implies k— 1 <
s* <k

Since s* ¢ N,s = |s*] = k — 1 or s = [s*] = k, whichever yields the
lowest value for J,(P,). For s; = k — 1, Lemma 5 implies all component

2
sizes must be less than one away from y = :‘;ﬁ =k +(l;=:11;£i;-l) =k,soall

components must be size k. Removing k — 1 vertices leaves k£ components
of size k, 80 Ju, (Pa) = k—1+ 552 = 2k — 1. Now check J, if s = k vertices
are removed. For s; = k, Lemma 5 implies all component sizes must be
less than one away from p = 2=f2 = "’—‘t,"i'—l'ﬁ =k — 1, so all components

s3+1 +1
must be size k¥ — 1. Removing’ Tc vertices leaves k + 1 components of size

k—=1,80 J,,(Pa) =k + ﬁ'—"%_&;—lﬁ =k+ %‘%}5‘(’%}3;- = 2k — 1. Therefore

for n = k% + k — 1, J,(P,) is minimized by two values for s, that is s =
ands=k— 1.

Proof of Case (iii). Assume n =k?+k—1+1¢, where 1<t < k.

)=
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$* =-1+4++vn+1=-1++kZ+k+t. The following inequality —1 +
VE2 < 14+ VE T E+ i< —1+VEZ + 2k + 1 implies that k-1 < s* < k.

Here s* ¢ N,so s = k—1or s = k, that is, the mean integrity is achieved
by removing either a set of k — 1 vertices or a set of k vertices, whichever
removal yields the smaller value for J,. Let s; = k and sp = k — 1.

—_p n—3; _ k3-14t __ _t
Forsl_k’mll_k_+l+_"k_l+k+l

0 <t <k implies that 0 < 33 < 1,80 [2=8| = k—1and [2=2] = k.
By Corollary 6,

Recy=(k+1)(k+1)— (K2 +k—-14+t)-1=k+1-1t,

and

Re=k+k—-14t+1—k(k+1)=t.
When k vertices are removed, (k + 1 —t) components of size k — 1 and ¢
components of size k remain, so

— th3+(k+1-t)(k-1)?
Jn=k+ k3-14t :

For sy = k—1, 2582 = kobkolptobdl = f 4 £
0 <t < kimpliesthat 0 < § < 1. If £ = 1, then t = k, and all
components are size k+ 1. If t # k, then 0 < £ < 1 and [:‘ﬁﬂ = k and

[:',;.:ﬂ =k + 1. By Corollary 6,

Re=k(k+2)—(FP+k=-1+t)-1=k-t,

and
Rk+1=k2+k—1+t+1—(k+1)k=t.

In either case, when k — 1 vertices are removed, (k —t) components of size
k and t components of size k + 1 remain, so

- k=t)k3+t(k+1)?
J,, =k-1+ (_%.#__L

Here,
k—t)k? +t(k2+2k+1)

Jg, = k—1+(

k?+1t
_ k+tk2+k3—2k2+k+k2—2k+1—tk2+2tk—t
- k2—1+t¢ ’
and
o, (BB —k+2k)— (K2 —1+41) tk
T =kt o1+t =%t
Now assume J,, < J,,. Then J,, — J;, < 0. That is,
kt +1 tk
2k_l+k—2:-t'_[2k_1+P——1+—t]SO’
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or equivalently
12 4 th? — (t + tk) <0

(R2+t)(k2—-1418) =

Since (k?+t)(k?—1+t) > 0, t2+tk?—(t+tk) < 0. Thisis a contradiction
because for k > 2, k < k2. Also, t > 1, s0 k2 +1 > k + 1, which implies

that tk? +t2 — (tk +1) > 0, s0 J,, £ Js,. Therefore, J,, > J,,, and s is a

2 - - 2
J-set, 80 J(Pp) = Js, = k+ L +U;¢t-1-1-t+)t(k i

Proof of Case (iv). Assume n =k(k+2)+t,for 1<t <k

s =-14++vn+1=-1+Vk?+2k+t+1 The following inequality
“14+VE2+2%k+1< -14Vk2+2k+t+1< —-1+4+Vk?+4k+4, implies
that k < s* <k + 1.

Here s* is not a whole number, so s = k or s = k + 1, that is, the mean
integrity is achieved by removing either a set of k vertices or a set of k + 1
vertices, whichever removal yields the smaller value for J,. Let s; = k and
s = k + 1. A similar argument to case (iii) can now be carried out.

For s, = k, ﬁ=k+k‘?.

0 <t < kimplies that 0 < gty < 1,50 [35% | =kand [254] =k + 1.

By Corollary 6,

Re=(k+1)(k+2)— (K +2k+t)—1=k+1-1t,

and
Rej1 =k +2%k+t+1—(k+1)2 =t

When k vertices are removed, (k 4+ 1 —t) components of size k and ¢
components of size !c +1 remaz,in, so
_ t(k+1)°+(k+1-t)k? _ k34k342tk
Jo,=k+ )k’+(k+t 0E = e Sre e
Forss = k+1, ';—;,—-f—f:k—1+ﬂi2.
0 <t < kimplies that 0 < 5 < 1,50 (2582 | = k—1and [252] = k.
By Corollary 6,

Reci=(k+2)(k+1)— (K2 +2k+t)-1=k+1-14,

and
Re=k>4+2k+t+1—-k(k+2)=t+1.

When k + 1 vertices are removed, (k + 1 — t) components of size k — 1 and
t + 1 components of size k remain, so

- k+1-t)(k=1)2+(t+1)k> _ k34k2
Jy, =+ 1+ PN < gyt
Now assume J,, < J,,. Then J,, — J;; <0. That is,

k3 + k2 + 2tk _ B34+ k24 2tk +1t
R+k+t-1 K24+k+t =

508



This inequality is equivalent to

k3 + k% +tk+t — (k% +12)
(k24 k+t—1)(k2+k+1)

Since (k2+k+t—1)(k2+k+1t) > 0, k3+k?+tk+t— (k% +12) < 0. This
is a contradiction because 0 < ¢ < k implies that k3 + k2 +tk+t > k%t +1¢2,
80 k3 + k> +tk+t— (k% +1%) > 0and J,, £ J,,. Therefore, J,, > Jj,,
51 is a J-set, and J(Pn) = J,, = k + HERUHEH-OR mpie completes the
proof of case (iv) and also completes the proof of Theorem 1..

<0.
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