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Abstract

In this paper, we study linear codes over finite chain rings. We
relate linear cyclic codes, (1 + v*)-cyclic codes and (1 — v*)-cyclic
codes over a finite chain ring R, where ¥ is a fixed generator of the
unique maximal ideal of the finite chain ring R, and the nilpotency
index of vy is k+1. We also characterize the structure of (1+7*)-cyclic
codes and (1 — v*)-cyclic codes over finite chain rings.
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1 Introduction

Codes over finite fields have been studied for more than fifty years. They
were studied first over the binary field F, = {0, 1}, then were extended to
an arbitrary g-ary finite field IF;. A linear cyclic code of length n over a
finite field F, can be viewed as an ideal of the ring Fg[z]/(z® — 1). The
structure of a cyclic code and its dual code is well known. In [7], Hammons
et al. showed that there exists an interesting connection between nonlinear
binary codes and linear codes over Z,. Moreover, it is proved in [7] that
some non-linear codes of length n, such as the Kerdock, Preparata, and
Goethals codes can be viewed as linear codes over Z4 via the Gray map
from Zj to Z:". Following this, many papers on linear codes over finite
rings appeared in recent years.

In [16], Wolfmann studied linear negacyclic and cyclic codes over Zs,
and showed that the Gray map image of a linear negacyclic code over Z,
of length n is distance-invariant. Later in [14], some of results in [16]
were generalized to codes over Zy.. Wolfmann also determined in a later
paper [17] which linear cyclic codes over Z, of odd length have Gray images
that are linear binary codes. In [6], Greferath and Schmidt generalized the
Gray map to finite chain rings, and produced an example of a (36, 312 15)
code as the image of a 9-ary lift of the ternary Golay code. Ling and
Blackford (see [9]) generalized most of the results in [16],(14] and [17] to
the ring Zyk+1. In [9], the Gray map over Zjx+: was introduced, and it is
also shown that the Gray map over Zy+: is permutation equivalent to the
map given by Greferath and Schmidt in [6). Meanwhile, researchers are also
interested in the structural properties of codes over large families of finite
rings, and many papers on the structure of cyclic codes and constacyclic
codes over finite rings have appeared in this field.

In this paper, we shall study linear codes over finite chain rings. We
generalize some results in [9] to finite chain rings. We relate the structure
of cyclic codes and constacyclic codes over finite chain rings. We begin
with some definitions.

Throughout this paper, the rings we shall study are finite commutative
rings with identity 1 # 0. Let R be a finite ring. Let R" be the R-
module of n-tuples over R. The Hamming weight w(x) of the vector x =
(%1, y%n) € R™ is defined as the cardinality of the set of coordinates of
x that are nonzero. An R-submodule C of R" is called a linear code of
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length n over R. We assume throughout that all codes are linear.
If x,y € R™, the inner product of x,y is defined as follows:

%yl =211 + - + TpYn.

Two vectors x,y € R" are called orthogonal if [x,y] = 0. For a code C of
length n over R, its dual code C*t is defined as the set of vectors over R
that are orthogonal to all codewords of C, i.e.,

Cl = {x€R"|[x,c]=0,YceC}.

If S is an arbitrary set, we denote the cardinality of set S by |S|. In [18],
it is proved that for any linear code C over a finite Frobenius ring,

Cl-|C*] = |R[". (1)

Since a finite chain ring is a special Frobenius ring, the identity above also
holds for codes over finite chain rings.

If C C C*, then C is called self-orthogonal. Moreover, if C = C1, then
C is called self-dual.

2 Notations and Cyclic Codes over Finite Chain
Rings

In this section, we shall give some notations and basic properties of finite
chain rings, then we will give some basic concepts of cyclic codes over this
class of rings.

An ideal I of a ring R is called principal if it generated by one element.
A finite ring R is called a chain ring if all its ideals are linearly ordered by
inclusion. By the definition, we can obtain that all the ideals of the finite
chain ring R are principal, since if there exists an ideal I of R such that I
is not principal, then we can suppose the ideal I generated by at least two
elements. Since R is finite, we can assume I = (aj, a3, ,a,), and this
implies that (a:) € (a2) and (a2} € (a1), this contradicts the definition of
finite chain rings. This means that R has a unique maximal ideal.

Let R be a finite chain ring, m the unique maximal ideal of R, and let
7 be the generator of the unique maximal ideal m. Then m = () = Ry,
where Ry = (7) = {#v7|B € R}. We know that there exist numbers i such
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that (v*) = {0}, since R is finite. Let e be the minimal number such that
(v¢) = {0}. The number e is called the nilpotency indez of 7.

Let R* be the multiplicative group of all units in R. Let F = R/m =
R/{7) be the residue field of the ring R with characteristic p, where p is a
prime number, then |IF| = ¢ = p” for some integers g and r. Let F* denote
the multiplicative group of the residue field IF, we know that |F*|=p"—1.
The following two lemmas are well-known (see [11},{12], for example).

Lemma 2.1. Assume the notations given above. For any 0 # r € R there
is a unique integer i, 0 < i < e such that r = wy?, with p a unit in R. The
unit p is unique modulo v*~* only.

Lemma 2.2. Let R be a finite chain ring with mazimal ideal m = (v),
where v is a generator of m with nilpotency indexze. Let V C R be a set of
representatives for the equivalence classes of R under congruence modulo

(7). Then
(i) for all 7 € R there ezist unigque o, - ,Te—1 € V such that r =
T
(i) [V| = |Fl;

(iii) [(¥)| = |F|*~7 for0< j<e-1.

Example 1. Let R = Zg4[u]/(u? — 2}, then it is easy to check that Ris a
chain ring but not a Galois ring. The maximal ideal of R is m = (u) and
the nilpotency index of the generator v = u is 4, since 72 =2,7% =2u and
44 = 0. The residue field I of R is Z».

Let R be a finite chain ring, let
R[z] = {ao + a1z + - -- + anz" | a; € R,n 2 0}

be the polynomial ring over R. Let 0 # f(z) = ap + a1z + -+ + apz™. If
an # 0 then n is called the degree of f(x), and we denote the degree of f
by deg(f(z)) = n. If f(z) is the zero polynomial, we call its degree —oo,
and denote it by deg(0) = —oc.

Let A € R*, and let

Rlz])/(z" = N) = {f(z) + (z" — N} | f(=) € Rz]}-

It is easy to see that each coset in this quotient ring can be represented
by a unique polynomial f(z) with deg(f(z)) < n. In the following, we
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sometimes identify f(z)+(z™—\) with its unique representative polynomial
f(z), where deg(f(z)) < n. That is

Rlz]/(z" — A) = {f(z) + (z" — A) | where deg(f(z)) < n or f(z) = 0}.
We define the map P, as follows:
P,:R* — Rlz])/(z" - \),
(@0, 81, ** yan_1) = aGo+a1T+ -+ an_12™ ! + (z" — A).

In particular, if we take A = 1 then we obtain a special map P;.

Let C be an arbitrary subset of R", we denote the image of C under the
map P, by P5(C). For convenience, we use a(z) = ag+a12+ -+ - +ap_127!
to denote the image of (ag, a1, ,an-1) under the maps of both Py and

P
Let C be a linear code of length n over R and A € R*. The code C is

called e A-cyclic (or constacyclic) code over R if
(covcl"" 1cn—l) €EC= (’\cn—l:c(h ter :cn—2) eC.

Notice that if A = 1 then C is a cyclic code.
By the notations given above, we know that

P(C)={co+ ez + - +cn1z™ 1 + (2" = XY | (co,c1,°++ ,Cn1) € C}.
The following lemma, can be easily obtained.

Lemma 2.3. Assume the notations given above. A linear code C of length
n over R is a A-cyclic code if and only if PA\(C) is an ideal of R[z]/(z"— ).

In particular, we have the following corollary.

Corollary 2.4. Assume the notations given above. Then a linear code
C of length n over R is a cyclic code if and only if P,(C) is an ideal of
R[z]/{z™ - 1).

3 Gray Map and Codes over Finite Chain
Rings

In the remainder of this paper, we let R be a finite chain ring with maximal
ideal (7), where the nilpotency index of v is k + 1. Let F = F, = R/(y)
be the g-element residue field.
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Let n be a positive integer, and let x = (21, ,Zn),¥ = (%1, ** ,¥n) €
", the tensor product of vectors x and y is defined as usual, i.e.,

X®y = (zIYa"',3ny)=(xly1:"':zly'rn"',mnyla"',znyn);

and for X;,%2, -+ ,Xn € F", the tensor product of these vectors is com-
puted by expanding from right to left, i.e., the tensor product of x;,x2,:*+ ,Xn
is the following:

X1®X Q@ ®%Xp=X1 ® (X2® (- - (Xpn-1 ®Xp)-+)).

Let u, v € [F? such that u = (ag, @1, ,@g—1) lists the elements of ' with
ap = 0 and v is the all 1-vector. Let

ci=(v+diou—-v)®(vV+ii(u-—v))®: - ®(V+ii-1(u-v)),

where i = 0,--- ,k and §;; denotes the Kronecker symbol. It is easily to
check that the following vectors

k-1
st \——
Co = u®ve---Qv,
k—2
P
(J] = vVOuV®:---®v,
- k-1
P
Ck—1 = V®"'®V®u,
k
prm————
Ck = VOV®:---QV

are linear independent over IF. If we identify (F?)®* with IFqk, then these

k
vectors above generate a (k + 1)-dimensional subspace C of F? .
Recall that u = (ag, a1, -+ , 0q-1) is the vector whose coordinates are

the list of all elements of the field IF, we have that

qk—l qk—l qk—l
_ y——— - ~ ’ S y.
Co = (001"' y Q0 XYy 00 101!"‘)&9—1)”' )aq—l)y
qk—z qk—z qk—ﬁ qk-z
L pmm—— P S — P A, P —
C1 = (QD;"’»aO)"’aaq—li"'taq—la"',am"')ao»"'vaq—ls"'yaq—l);
= e
b4 2 2
Ck-1 = (&0,01,"' $aq—l‘)'a(,1aly°" 1aq—1‘"" !a(hal"" ,aq—l‘);
q q q
P g —
Ck = (1111"'71!1’11"',1)"':]41""!1‘
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It is easy to see that column vectors of the kxg* matrix with cg, ¢y, - , Cx—y
as its rows contain all the vectors of F*.

Example 2. Let ¢ = 3,k = 2, then u = (0,1,2). We have that

c = u®v=(0,0,0,1,1,1,2,22),
¢ = veu=(0,1,20,1,20,1,2),
vev=(1,1,1,1,1,1,1,1,1).

This gives that C = (¢, ¢;, c2) is a code of length 9 over F.

C2

Let G be a k x n matrix with rank(G) = k over IF. If any two columns
of G are linearly independent, then the code with generating matrix G is
called a projective code. Moreover, if k is a fixed integer and n = 9:_;11,
then the code is called a mazimal projective code. Two k x n matrices G, G’
over [F are monomial equivalent if there are a n by n permutation matrix
P and a n by n invertible diagonal matrix D such that G’ = GPD.

A linear code is called eguivweight if all of its nonzero codewords have
same Hamming weight. A linear code is called quasi-constant if it contains
the all 1-vector and its scalar multiples and all the other nonzero codewords

have the same Hamming weight.
Theorem 3.1. Assume the notations given above, we have

(i) The code C generated by co,c1,-** ,Ck 8 a quasi-constant linear
[g*,k +1,(g — 1)g*~"] code with Hamming weight enumerator

A@) = (g = Do + (" - gz V"™ 14

(i) The generating matriz of C is monomial equivalent to the following
matriz

c c) @ ... @g-1) 9
- 1 1 ... 1 1)’

where each G‘E-"') i3 a generating matriz of a mazimal projective code with
parameters [ﬂq__;ll, k,g*1].
Proof. (i) Note that the definition of quasi-constant code, and the
result can be obtained directly from [6].
(ii) Let
Co

g=| =(& & - Gu),

Ck
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where G; is the jth column of the matrix G. Let

Co

s =(é G ... G~k)
Ci—2 1 2 q ’
Ck—-1

where G; € IF* is the jth column of the matrix G. For any nonzero vector
x = (21, ,z)T € IFk, where (z;,+-+ ,zx)T denotes the transpose of
(z1,++ ,Zk), We note that the number of times that a multiple of x €
F* appears in the matrix G is g — 1, then the result follows directly by
permuting the columns of the matrix G. O

It is well-known that there exists a natural surjection p: R — F,r —
7+ (7). Let V be the set of representatives for the equivalence classes of R
under congruence modulo 4 such that 0 € V. For any a € R, we know by
Lemma 2.2 that a can be written uniquely as follows:

a=ag+ay+--+ar,

where a; € V. Let a®®) = p(a;),0 < ¢ < k, let C be the subspace generated
by co,€1, - k. The Gray map in [6] is generalized to a map over the
finite chain ring R as follows:

¢ :R - C’ (2)
a — a@¢+aMe¢; +---+aMe. ®)

It is easy to see that ¢ is a bijection.

Remark 1. We note that the definition of the Gray map ¢ is not dependent
on the choice of V, since if we have a;,a); € V such that a; = a ( mod ),
then a; = a} + 8, where s € R, hence a®) = p(a;) = p(a} + 87) = p(a]) =
al®),

We have the following Lemma.

Lemma 3.2. Let a,b € R, where a = ap+ a1y + - + ax7* and b =
bo + byy + -+ - + bxy*. Then

(i) $(ar*) = a®cx, where a® = p(ao);

(i) ¢(a £ v*b) = ¢(a) £ $(v*b);

(ii3) ¢((1 £ 7*)a) = ¢(a) + $(7*a).
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the Hamming weight for finite rings. For a finite chain R, the homogeneous
weight for an element a € R is defined as

0, ifa=0;

whom(a) = qk’ if0#a€ <7k>; (4)
(g —1)g*"!, otherwise.

Ifx = (21, ,%n) € R™, the homogeneous weight of x is defined as follows:
n
Whom(X) = Z Whom (1)
i=1
If x,y € R, the homogeneous distance of X,y is
dhom (X, ¥) = Whom(X — ¥)-

For convenience, we use dy and wy to denote the Hamming distance and
Hamming weight respectively. We have the following theorem.

Theorem 3.4. Assume the notations given :zbove. The generalized Gray
map ¢ is an isomeiry from (R™, dpom) to (F? ", dn).

Proof. We know that for any two vectors X,y of R®, dhom(X,¥y) =

Whom (X — ¥)-
If x —y =0 then

dhom(x1 Y) = 'whom(o) =0= dH(¢(x)a ¢(Y))
Ifx #y and x —y = v*c, where ¢ = (1, , ¢n), let
m=H0#¢; € R |1<] <n},

where R* is the multiplicative group of all units in R, then by Equation (4),
we get
dhom (X, ¥) = Whom (X — ¥) = ¢*m.

Since x — y = 4*c, by (ii) in Corollary 3.3, we have that
#(y) = ¢(x — 7¥c) = ¢(x) — ¢(7*c).
Hence by (i) in Corollary 3.3, we have

w($(x) — $(¥)) = wa(d(r*¢)) = ¢*m.
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This gives that
Ahom (X, y) dy (¢(x) ¢(y ))

Otherwise, let x —y = (¢1,¢2,+- - ,¢,) and let

my={0#¢; =7"d;|1<j <n}|, my=1|{c; =0]1<j <n}|.
This gives that there are n — m; — ma nonzero coordinates of x — y such
that they are in R\(y*), i.e., x -~y € R, but x — y & (v*). Hence

dhom (%, ¥) = thom (X —¥) = (n —m1 — mg)(g — 1)¢* ! + myg*.
On the other hand, if 0 # ¢; = ¢jo +¢;17 + - - + ¢ xy* then

(b(c,)—- c,,@c,,,_o VO<I<k-1&cj=cixr*

since ¢ is a bijection. This implies that if 0 # c; & (v*) then ¢(c;) # ("k) Ck.
By (i) in Theorem 3.1, we know that all nonzero codewords in C except cj
have Hamming weight (¢ — 1)g*~!. This gives that for these 0 # c; € (v*),
we have

wr(9(c;)) = (g - 1)g*~,

and
wir (B(c;7%)) = wa(chcr) =
Therefore
wy($(x) — $(¥)) = (n — mq — ma)(g — 1)g*~! + myq*.
Hence the result holds. a

4 M)-Cyclic Codes over Finite Chain Rings

In this section, we consider A-cyclic codes, where A = 1+~* or 1 —*, are
two special units in the finite chain ring R.

Recall that the finite chain ring R has unique maximal ideal {v), where
the nilpotency index of « is k + 1, the cardinality of the residue field IF is
|F| = g = p” for some r, where p is a prime. Let n be a positive integer
with ged(n,p) = 1. This implies that there exists a unique integer n’ in
{1,2,--- ,p—1} satisfying nn’ = 1 (mod p). That is, nn’ = 1+ ps for some
integer s. Let

B =1+n'y* (5)
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We know 4¥+1 = 0in R, so (1 +n'y*)(1 —n'y¥) = 1. Hence 8 is & unit
in R and f~! = (1 — n’y*). Furthermore, we have that

g

()t = 1 (1) ek ()0 ot ()
= 14in'~y.

In particular if ¢ = n then we have that

B =1+nn'v* =1+ 1 +psh* =1+7* +spy* =1+,

since by Lemma 2.1, p = py? € R for some p € R* and integer j > 1.
Since (1 +7%)(1 —4*) =1, s0

= () =1~
Let 7 be the following mapping
ng : Rlz]/(z" —1) — Rla)/(z"-F7") (6)
a(z) — a(Bz). (M

Note that 7 preserves the ring addition and multiplication. If a(z) = b(z)
in R[z]/(z™ — 1) then we have that a(z) — b(z) = ¢(z)(z" — 1) for some
g(z) € Rlz]. This implies that

nee(z) — b(z)) = nple(z)(z" - 1)) = a(Bz)((Bz)" — 1) = g(Bz)(B"z" - 1)
= B q(Bz)(z" —B") € (z" - F7").
Hence we have
np(a(z)) = 1p(b(z)).

This implies that 7g is well-defined. Let 7s-: be the following correspon-
dence.

ng-1 : Rlz}/(e" —1) — Rlz]/(z" - F") (8)

a(z) ~ a(f'a). (9)

Using an argument similar that above, we can check the definition 73-: is

well-defined and preserves the ring addition and multiplication.
The following proposition can be easily obtained.
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Proposition 4.1. Assume the notations given above. Let ged(n,p) = 1.
Then

(i) The mappings ng and ng-1 are well-defined and are both ring iso-
morphisms;

(#) I is an ideal of R[z]/(z™ — 1) if and only if ng(I) is an ideal of
Rlz)/(" - B~);

(i) I is an ideal of R[z]/(z™ — 1) if and only if ng-1(I) is an ideal of
Rlz]/(z" - B").

Let v = (vo,v1,:*+ ,¥n-1) € R", we define 7jp as the following map
7g: R* — R",
(vo,v1,+* y¥n—1) +— (vo,1B,--+ ,va—18""1).

We have that

Ponotjg(v) = Paonotis(v0,01, 1 Unet) = Poon(v0, 016, , vaotf""1)

n—1 n-1
= Y u(Bz) =n(Y_uz') = ngo Prvo,v1,- -+ ,va1) = g 0 Py(v).
=0 =0

In other words, the following diagram commutes
Pg-notg=mngoP,. (10)

Equation (10) gives the following commutative diagram

RP N R"
q [
Rz)/(z" —1) —*— Rfa]/(z" - ™).
Following the definition of 7j3, we can also define 741 as the following map
ng-1 : R* — R",
(¥0,91, yUn1) = (w0, 1870, o (B)Y).

We also have that Pgn 0 g1 = 1g-1 0 Pp.
Note that " = 1 —+* and " = 1+ v*. We have the following
theorem.
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Theorem 4.2. Assume the notations given above. Let ged(n,p) =1 and
let C be a subset of R™, then the following statements are equivalent:

(i) C is a linear cyclic code;

(i) 1i5(C) is a linear (1 — v¥)-cyclic code;

(i#4) ng-1(C) is o linear (1 +v*)-cyclic code.

Proof. This theorem is followed by Corollary 2.4, Proposition 4.1 and
Equation (10) directly.
Example 3. Let n = 7 and R = Zg[u]/{u? — 2) given in Example 1, we
have

2 -1=(@-1)®+22+z-1)(z® -22+ 2z -1).

Let g(z) = 2% + 222 + z — 1, and let C be the code generated by g(z), then
C is a cyclic code of length 7 over R. It is easy to verify that

16(9(z)) = g(Bz) = B3 (z*+287'2*+ 62— %) = B (a* + 22 +2— 1),
since 8 = 1+ 2u, 8~ = 1 - 2u. Then §(z) = 23 + 222 + = — 8~ generates
a (1 — 2u)-cyclic code.

For the remainder of this section, we focus on the structure of a special
type cyclic, (1 — v*)-cyclic and (1 + v*)-cyclic codes over the finite chain
ring R. We have the following theorem.

Theorem 4.3. Assume ged(n,p) = 1, and let z"—1 = a(z)b(z)c(z), where
a(z),b(z) and c(z) are monic pairwise relatively prime polynomials in R[z],
and let C be the cyclic code with P;(C) = (a(z)b(z),v*a(z)c(z)). Then

(i) Py(C) is generated by g(z) = a(z)(b(z) + 7*).

(ii) The cardinality of C is (p")(k+1) degc(z)+degh(z),

Proof. (i) We note that y*a(z)b(z),v*a(z)c(z) € Pi(C). Since
b(z), c(z) are relatively prime, there exist u(z), v(z) € R[z] such that

u(z)b(z) + v(z)e(z) = 1. (11)
This implies that

7*a(z)(u(2)b(z) + v(z)c(z))
u(z)(v*a()b(z)) + v(z)(v*a(z)c(z)) € P1(C).

v*a(z)

We have
9(z) = a(z)(b(z) + v*) = a(2)b(z) + v*a(z) € A (C).
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Therefore {g(z)) C P,(C).
Conversely, we note that a(z)b(r)c(z) = z” — 1 = 0 € R[z]/{z" — 1).
This implies that

7*a(z)c(z) = a(z)(b(z) +7*)e(z) = g(x)c(z) € (9(z)), (12)
On the other hand, we have v2* = 0 in R. This gives that

7*a(z)b(z) = v*(a(2)(b(z) +7*)) = v*g(z) € (9(=)). (13)
By Equation (11), (12) and (13), we have that

7*a(z)(u(2)b(z) + v(z)e(z))
u(z)(v*a(z)b(z)) + v(z)(*a(z)c(z)) € (9(z)).

7*a(z)

Hence

a(2)b(z) = g(z) — 1*a(z) € (9(2)).

This gives that P,(C) C (g(z)). Therefore P,(C) = (g(z)).
(ii) Note that |F| = p", and the result follows directly from Theorem

3.4 in [3]. m|

Example 4. Let R = Z;[u]/(u? — 2) be the chain ring given in Example 1
and let n = 7, we know the characteristic of the residue field of R is 2 and

ged(7,2) = 1, we have
27 = 1= (z - 1)(z® + 22% + = — 1)(z® — 2% + 2z — 1) = a(x)b(z)c(z).

By Hensel’s Lemma ([11), page 256, Theorem XIII.4), we can easily check
that a(z),b(z) and ¢(z) are monic pairwise rélatively prime polynomials in
R|z]. In fact, in Z2[z], we have

z@Z+r+1)+ @+ )3 +22+1) =1
In R[z], we have
(Bz-2)z®*+22% +2-1)-(Bz—-1)(z® -2+ 20— 1) = 1.
Let C be the cyclic code with

Pi(C) = {(z — 1)(z® + 222 + z — 1), 73 (z — 1)(2® - 2% + 2z — 1)),
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where v = u is the generator of the maximal ideal of R with nilpotency
index of 4. Then by Theorem 4.3, P;(C) is generated by
g(z) = (z-1)(z3 +22% +z - 1+7°).

The cardinality of C is 2(3+1)3+3 = 215,
Theorem 4.4. Assume ged(n,p) = 1, and let 2™ ~1 = a(z)b(z)c(x), where
a(z), b(z) and c(z) are monic pairwise relatively prime polynomials in R[z].
Then

(i) The ring R[z]/(z™ — (1 — ¥*)) is a principal ideal ring;

(i) Let C be a (1—v*)-cyclic code with P_+(C) = (d/ (z)V/(z),7*a! () (2)),
where
o (z) = B~ 8= (Bz), ¥(z) =18 Dp(Bz), ¢(z) = B~ B=Ne(Bz).
Then Py_.«(C) is generated by §(z) = a'(z)(¥'(z) + 7*);

(i) The cardinality of C is (p")(k+1) dea(e'(z))+deg(b'(z)),

Proof. (i) This statement follows immediately from the isomorphism
ng in Proposition 4.1 and Corollary 3.7 in [3].

(ii) We have that vy*a'(z)V/(z),v%a/(z)c/(z) € Pi_+(C). By Equa-
tion (11), we have

u(Bz)b(Bz) + v(Bz)c(Bz) =1, (14)
where u(z),v(z) € R[z]. This implies that
u(Bz) BB ENY (z) + v(Bz) BN (g) = 1. (15)

Therefore
Fd(z) = 7 (z)(u(Bz)BRENY (z) + v(Bz)BIE N (2))
= u(Bz)p2st@) (ka ()b (z)) + v(Bz) g8 N (v¥a! (z)c! (z)) € Py (C).

This implies that (§(z)) C Py_,» (©).
Conversely, since a(z)b(x)c(z) = z™ — 1, this gives that

a(Bz)b(Bz)c(Bz) = (Bz)" — 1 = f*(z" — ") = f"(=" — (1 — 7).
We know that 2 —(1—*) = 0 in R[z]/(z"—(1—7*)), i.e., a(Bz)b(Bz)c(Bz) =
0 in Rfz]/{(z™ — (1 — 4*)). Hence
v*a'(2)¢ () B~"a(Bz)b(Bz)c(fz) + v a' (z)¢ ()
ﬂ—nﬁdeg(a(c))+deg(b(:=))+deg(c(z)) a'(x)b’ (x)cl(x) + 7ka’(z)c' (:D)
a'(z)(¥'(2) + 7*)¢ (z) = §(z)e'(z) € (§(=))-
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Notice that 42* = 0 in R, this gives that
v*d' (2)b(z) = ¥*('(2)(¥'(2) + %)) =+*§(z) € (G(z)).  (16)
By Equation (15) and the discussion above, we have that

7*a' (z)(u(Bz)BBCE=NY () + v(Bz) B8/ (1))
u(Bz) 8@ (k! (2)b/(z)) + v(Bz) BN (vra! () () € (§(z)).

,/kal(z)

]

Hence
d(z)b'(z) = §(z) — 7v*a'(z) € (§(x)).

This gives that P;_+(C) C (§(z)). Therefore P,_«(C) = (§(z)).
(iii) We note that deg(c(z)) = deg(c/(z)) and deg(b(z)) = deg(t'(z)),
80 the result is easy to obtain from (iii) in Theorem 4.3. a

Example 5. Assume the notations given in Example 4. We know the
unique integer n' satisfying 7n' = 1(mod 2) is 1. Hence 8 = 1+ 43 and
B! =1-+3 We can compute

d(z) = f~ 8@ g(fr) =z - (1+7°) =z -(1~-7") =z -7},

V(z) = B~ 8CEp(Br) =2 +2(1-+°)e® + (1-29%)z - (1-4°%)
2 +222 4z -6,
and
@) = BN (fr) = 5° — (1= 4)a + 20— (1-7Y)
23— 12 4 20 - L.

Let € be a (1 —v3)-cyclic code with P;_.s(C) = (a'(z)¥(z), v3a' (z)< (z)).
Then Py_.s (C) is generated by

§(z) = (¢ - ) (=° + 22 +z - 1).
The cardinality of € is 2(3+1)3+3 — 215,
From the proof of Theorem 4.4 , we have the following theorem.

Theorem 4.5. Assume ged(n,p) =1, and let 2™ —1 = a(z)b(z)c(z), where
a(z), b(z) and c(z) are monic pairwise relatively prime polynomials in R[z].
Then
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(i) The ring R[z]/(z" - (1 + v*)) is a principal ideal ring;
() Let C be a (1++*)-cyclic code with Py 4+ (C) = (" (z)b" (), v*a" (z)c"(z)),
where

all(x) = ﬁd*("(’»a(ﬂ'lz), b”(z) = ,Bdeg("(‘))b(ﬁ’lz), cﬂ(:t) = ﬂdeg(c(z))c(ﬁ—lx)'

Then Py x (5) is generated by §(z) =a" (z)(b" () + *);
(ii) The cardinality of C is (p”)(k+1) deg(c” (z))+deg(t” ()
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