# On the Existence of Simple 3-(30, 7, 15) and 3-(26, 12, 55) Designs \*

### Weixia Li †‡

† Department of Mathematics, Shanghai Jiao Tong University
Shanghai 200240, China

‡ School of Mathematical Sciences, Qingdao University
Qingdao 266071, China
E-mail: lwxlnk@situ.edu.cn

#### Abstract

For each of the parameter sets (30, 7, 15) and (26, 12, 55), a simple 3-design is given. They have PSL(2,29) and PSL(2,25) as their automorphism group, respectively. Each of the two simple 3-designs is the first one ever known with the parameter set given and  $\lambda$  in each of the two parameter sets is minimal for the given v and k.

Keywords: 3-design; linear fraction; projective special linear group

#### 1 Introduction

A 3- $(v, k, \lambda)$  design is a pair  $(X, \mathcal{B})$  where X is a v-element set of points and  $\mathcal{B}$  is a collection of k-element subsets of X (blocks) with the property that every 3-element subset of X is contained in exactly  $\lambda$  blocks. A 3- $(v, k, \lambda)$  design is simple if no two blocks are identical.

Let G denote a subgroup of  $\operatorname{Sym}(X)$ , the full symmetric group on X. G acts on the subsets of X in a natural way: If  $g \in G$  and  $S \subseteq$ 

<sup>\*</sup>Research supported by National Natural Science Foundation of China under Grant 10471093

X, then  $g(S) = \{g(x) : x \in S\}$ . G is called an automorphism group of the 3-design  $(X, \mathcal{B})$  if  $g(S) \in \mathcal{B}$  for all  $g \in G$  and  $S \in \mathcal{B}$ . For  $S \subseteq X$ , let

$$G(S) = \{g(S): g \in G\}$$

$$G_S = \{g \in G : g(S) = S\},$$

G(S) is called the *orbit* of S and  $G_S$  is called the *stabilizer* of S. It is well known that  $|G| = |G_S||G(S)|$  (see [2]). It follows that G is an automorphism group of the 3-design  $(X, \mathcal{B})$  if and only if  $\mathcal{B}$  is a union of orbits of k-subsets of X under G(see [1]).

Let q be a prime power and  $X = GF(q) \bigcup {\infty}$ . We define

$$a/0 = \infty, a/\infty = 0, \infty + a = a + \infty = \infty, a\infty = \infty = \infty$$

and

$$\frac{a\infty + b}{c\infty + d} = \frac{a}{c},$$

where  $a, b, c, d \in GF(q)$  and  $\begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0$ . X is called the projective line. For any  $a, b, c, d \in GF(q)$ , if  $ad - bc \neq 0$ , we define a function  $f: X \longrightarrow X$  where

$$f(x) = \frac{ax+b}{cx+d},$$

f is called a *linear fraction*. The determinant of f is

$$det f = \left| \begin{array}{cc} a & b \\ c & d \end{array} \right| = ad - bc.$$

The set of all linear fractions whose determinants are non-zero squares forms a group, called the *linear fractional* group LF(2, q), which is isomorphic to the *projective special linear group* PSL(2, q)(see [2]). Let  $\mathcal{G}$  denote PSL(2, q) with  $q = p^n \equiv 1 \pmod{4}$  in this paper. It is well known that

$$|\mathcal{G}| = (q+1)q(q-1)/2.$$

In the next section of this paper, two simple 3-designs with PSL(2, 29) and PSL(2, 25) as their automorphism group, respectively, will be given. Each of these 3-designs is the first one ever known with that parameter set according to [3] and [5].

## 2 Two simple 3-designs

In this section, we give two simple 3-designs mentioned above. The following two lemmas show some of the fundamental properties of the elements contained in  $\mathcal{G}$ . Let  $\chi(g)$  denote the number of elements of X fixed by  $g \in \mathcal{G}$  in both lemmas.

**Lemma 2.1.** [4] Suppose  $g \in \mathcal{G}$  and |g| = m > 1. Then  $\chi(g) = 1$  if m = p,  $\chi(g) = 2$  if  $m | \frac{q-1}{2}$ ,  $\chi(g) = 0$  if  $m | \frac{q+1}{2}$ .

**Lemma 2.2.** [6] If  $g \in \mathcal{G}$  of order m > 1, then g has  $a = \chi(g) \le 2$  fixed points and b = (q + 1 - a)/m m-cycles.

Remark of Lemma 2.2: We can see from Lemma 2.2, that a k-subset S can be fixed by an element  $g \in \mathcal{G}$  with order m if and only if S consists of q m-cycles and r fixed points of g, where k = mq + r,  $0 \le r < m$ .

Lemma 2.3. [7] There are exactly two orbits of triples,

$$\Delta_1 = \mathcal{G}(\{0,1,\infty\})$$
 and  $\Delta_2 = \mathcal{G}(\{0,\gamma,\infty\})$ ,

each of which contains half of the triples, where  $\gamma$  is a primitive root in GF(q).

We denote the number of k-subsets of an orbit  $\Gamma$  that contains a special triple of  $\Delta_i$  by  $\lambda_{\Gamma}^i (i=1,2)$ .

**Lemma 2.4** [7] Let  $\gamma$  be a primitive root in GF(q). If  $\Gamma$  is any orbit of subsets of X, then  $\gamma\Gamma$  is also an orbit.

**Lemma 2.5** Let  $\Gamma = \mathcal{G}(B)$  be an orbit of k-subsets. Then  $\lambda_{\Gamma}^1 = \lambda_{\gamma\Gamma}^2, \lambda_{\gamma\Gamma}^1 = \lambda_{\Gamma}^2$  and  $(X, \gamma\Gamma \cup \Gamma)$  is a  $3 - (q+1, k, \lambda)$  design with

$$\lambda = \lambda_{\Gamma}^1 + \lambda_{\gamma\Gamma}^1 = \lambda_{\Gamma}^2 + \lambda_{\gamma\Gamma}^2 = \frac{k(k-1)(k-2)}{|\mathcal{G}_B|},$$

where  $\gamma$  is a primitive root of GF(q).

**Proof.** Firstly, we prove that  $\lambda_{\Gamma}^1 = \lambda_{\gamma\Gamma}^2$ . If there exists a k-subset  $A \in \Gamma$  such that  $\{0, 1, \infty\} \subseteq A$ , then

$$\{0, \gamma, \infty\} = \gamma\{0, 1, \infty\} \subseteq \gamma A \in \gamma \Gamma.$$

Conversely, suppose there exists  $\gamma A \in \gamma \Gamma$  containing  $\{0, \gamma, \infty\}$ , where  $A \in \Gamma$ , then

$$\{0,1,\infty\} = \gamma^{-1}\{0,\gamma,\infty\} \subseteq \gamma^{-1}(\gamma A) = A \in \Gamma.$$

So  $\lambda_{\Gamma}^1 = \lambda_{\gamma\Gamma}^2$ .

Secondly, we prove that  $\lambda_{\gamma\Gamma}^1 = \lambda_{\Gamma}^2$ . If there exists  $A \in \gamma\Gamma$  containing  $\{0, 1, \infty\}$ , then

$$\{0, \gamma, \infty\} = \gamma\{0, 1, \infty\} \subseteq \gamma A \in \gamma^2 \Gamma = \Gamma$$

since  $\gamma^2$  is a square. Conversely, suppose there exists  $A \in \Gamma$  containing  $\{0, \gamma, \infty\}$ , then

$$\{0,1,\infty\} = \gamma^{-1}\{0,\gamma,\infty\} \subseteq \gamma^{-1}A \in \gamma^{-1}\Gamma = \gamma^{q-2}\Gamma = \gamma^2 \cdot \gamma^{q-2}\Gamma = \gamma\Gamma.$$
 So  $\lambda^1_{\gamma\Gamma} = \lambda^2_{\Gamma}.$ 

By the above arguments, we have  $\lambda_{\Gamma}^1 + \lambda_{\gamma\Gamma}^1 = \lambda_{\Gamma}^2 + \lambda_{\gamma\Gamma}^2$ . So  $(X, \gamma\Gamma \cup \Gamma)$  is a 3- $(q+1, k, \lambda)$  design with

$$\lambda = \lambda_{\Gamma}^1 + \lambda_{\gamma\Gamma}^1 = \lambda_{\Gamma}^2 + \lambda_{\gamma\Gamma}^2.$$

Since the total number of blocks is

$$b = 2|\Gamma| = 2|\mathcal{G}(B)| = 2\frac{|\mathcal{G}|}{|\mathcal{G}_B|},$$

so

$$\lambda = \frac{k(k-1)(k-2)}{|\mathcal{G}_B|}.$$

**Theorem 2.1.** Let  $B_1 = \{1, \gamma_1^4, \gamma_1^8, \dots, \gamma_1^{24}\}$  be the subgroup of  $GF^*(29)$  with order 7, where  $\gamma_1$  is a primitive root of GF(29). Let  $X_1 = GF(29) \cup \{\infty\}$ ,  $\mathcal{G}_1 = \operatorname{PSL}(2, 29)$  and  $\Gamma_1 = \mathcal{G}_1(B_1)$ . Then  $(X_1, \gamma_1 \Gamma_1 \cup \Gamma_1)$  is a simple 3-(30, 7, 15) design.

**Proof.** By Lemma 2.5,  $(X_1, \gamma_1 \Gamma_1 \cup \Gamma_1)$  is a 3-(30, 7,  $\lambda_1$ ) design with

$$\lambda_1 = \frac{7 \times 6 \times 5}{|\mathcal{G}_{1B_1}|}. (1)$$

Since  $3|\frac{29+1}{2}$  and  $5|\frac{29+1}{2}$ , by Lemma 2.1, an element contained in  $\mathcal{G}_1$  with order 3 or 5 has no fixed points. So an element of order 3 or 5 can not be contained in the stabilizer of a 7-subset by Remark of Lemma 2.2. So  $3/|\mathcal{G}_{1B_1}|$  and  $5/|\mathcal{G}_{1B_1}|$ . Then  $|\mathcal{G}_{1B_1}|$  | 14 by (1). Obviously,

 $f_1(x) = \gamma_1^4 x \in \mathcal{G}_{1B_1}, \ h(x) = \frac{1}{x} \in \mathcal{G}_{1B_1} \text{ and } \langle h(x), f_1(x) \rangle \subseteq \mathcal{G}_{1B_1} \text{ is a dihedron of order 14. So } |\mathcal{G}_{1B_1}| = 14, \ \lambda = 15 \text{ and } (X_1, \gamma_1 \Gamma_1 \cup \Gamma_1) \text{ is a 3-(30,7,15) design. To prove } (X_1, \gamma_1 \Gamma_1 \cup \Gamma_1) \text{ is simple, we need only to show } \Gamma_1 \neq \gamma_1 \Gamma_1. \text{ If } \Gamma_1 = \gamma_1 \Gamma_1, \text{ then}$ 

$$\lambda_1 = \lambda_{\Gamma_1}^1 + \lambda_{\gamma_1\Gamma_1}^1 = 2\lambda_{\Gamma_1}^1$$

must be an even number, which is a contradiction to  $\lambda_1 = 15$ . So  $(X_1, \gamma_1 \Gamma_1 \cup \Gamma_1)$  is a simple 3-(30, 7, 15) design.

Theorem 2.2. Let  $B_2 = \{1, \gamma_2^2, \gamma_2^4, \dots, \gamma_2^{22}\}$  be the subgroup of  $GF^*(25)$  with order 12, where  $\gamma_2$  is a primitive root of GF(25). Let  $X_2 = GF(25) \cup \{\infty\}$ ,  $\mathcal{G}_2 = PSL(2, 25)$  and  $\Gamma_2 = \mathcal{G}_2(B_2)$ . Then  $(X_2, \Gamma_2 \cup \gamma_2 \Gamma_2)$  is a simple 3-(26, 12, 55) design.

**Proof.** By Lemma 2.5,  $(X_2, \Gamma_2 \cup \gamma_2 \Gamma_2)$  is a 3-(26, 12,  $\lambda_2$ ) design with

$$\lambda_2 = \frac{12 \times 11 \times 10}{|\mathcal{G}_{2R_2}|}. (2)$$

Since  $11 \not | |\mathcal{G}_2|$ , then  $11 \not | |\mathcal{G}_{2B_2}| | |\mathcal{G}_2|$ . By Lemma 2.1, an element of order 5 has exactly one fixed point, so  $\mathcal{G}_{2B_2}$  contains no elements of order 5 by Remark of Lemma 2.2. So  $5 \not | |\mathcal{G}_{2B_2}|$ . Then  $|\mathcal{G}_{2B_2}| | | |24$ . Obviously  $f_2(x) = \gamma_2^2 x \in \mathcal{G}_{2B_2}$ ,  $h(x) = \frac{1}{x} \in \mathcal{G}_{2B_2}$  and  $\langle f_2(x), h(x) \rangle$  is a dihedron of order 24. So  $|\mathcal{G}_{2B_2}| = 24$  and  $(X_2, \Gamma_2 \cup \gamma_2 \Gamma_2)$  is a 3-(26, 12, 55) design. It is simple since 55 is odd.

Acknowledgement. The author would like to express her sincere thanks to the referees for valuable comments and suggestions.

# References

- [1] T.Beth, D. Jungnickel, and H. Lenz, Design theory, Cambridge University Press, Cambridge, England, 1993.
- [2] N.L.Biggs and A. T. White, Permutation groups and combinatoral structures, Cambridge University Press 1979.
- [3] Charles J.Colbourn, Jeffrey H.Dinitz, The CRC handbook of combinatorial designs, CRC press, Boca Raton, New York, London, Tokyo, 1996, 48-52

- [4] L.E.Dickson, Linear groups, with an introduction to the Galois field theory, Dover Publications, New York, 1958, 260-265
- [5] Home Page for Jeff Dinitz (http://www.cems.uvm.edu/dinitz/newresults.html)
- [6] M.S.Keranen and D.L.Kreher, 3-designs from  $PSL(2, 2^n)$ , with block sizes 4 and 5, J. Combin. Des. 12(2004), 103-111.
- [7] M.S.Keranen, D.L.Kreher, and P.J.S.Shiue, The quadruple systems of the projective special linear group PSL(2,q), J. Combin. Des. 11(2003), 339-351.