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Abstract

Let D be an acyclic digraph. The competition graph of D is a graph
which has the same vertex set as D and has an edge between x and y if and
only if there exists a vertex v in D such that (z, v) and (y, v) are arcs of D.
For any graph G, G together with sufficiently many isolated vertices is the
competition graph of some acyclic digraph. The competition number &(G)
of G is the smallest number of such isolated vertices,

A hole of a graph is a cycle of length at least 4 as an induced subgraph.
In 2005, Kim [5] conjectured that the competition number of a graph with h
holes is at most i + 1. Though Li and Chang [8] and Kim er al. [7] showed
that her conjecture is true when the holes do not overlap much, it still remains
open for the case where the holes share edges in an arbitrary way. In order to
share an edge, a graph must have at least two holes and so it is natural to start
with a graph with exactly two holes. In this paper, the conjecture is proved
true for such a graph.
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1 Introduction

Suppose D is an acyclic digraph (for all undefined graph-theoretical terms, see (1]
and [13]). The competition graph of D, denoted by C(D), has the same vertex set
as D and has an edge between vertices z and y if and only if there exists a vertex v
in D such that (z, v) and (y, v) are arcs of D. Roberts [12] observed that, for any
graph G, G together with sufficiently many isolated vertices is the competition
graph of an acyclic digraph. Then he defined the competition number k(G) of a
graph G to be the smallest number k such that G together with k isolated vertices
added is the competition graph of an acyclic digraph.

The notion of competition graph was introduced by Cohen [3] as a means of
determining the smallest dimension of ecological phase space. Since then, various
variations have been defined and studied by many authors (see [4, 9] for surveys).
Besides an application to ecology, the concept of competition graph can be applied
to a variety of fields, as summarized in [11].

Roberts [12] observed that characterization of competition graphs is equiva-
lent to computation of competition number. It does not seem to be easy in general
to compute k(G) for a graph G, as Opsut [10] showed that the computation of the
competition number of a graph is an NP-hard problem (see [4, 6] for graphs whose
competition numbers are known). It has been one of the important research prob-
lems in the study of competition graphs to determine the competition numbers
that are possible for various graph classes. A cycle of length at least 4 of a graph
as an induced subgraph is called a hole of the graph and a graph without holes is
called a chordal graph. As Roberts [12] showed that the competition number ofa
chordal graph is at most 1, the competition number of a graph with O holes is at
most 1. Cho and Kim [2] and Kim [5] studied the competition number of a graph
with exactly one hole. Cho and Kim [2] showed that the competition number ofa
graph with exactly 1 hole is at most 2.

Theorem 1.1 (Cho and Kim [2]). Let G be a graph with exactly one hole. Then
the competition number of G is at most 2.

Kim [5] conjectured that the competition number of a graph with h holes is at
most h + 1 from these results. Recently, Li and Chang [8] showed that her con-
jecture is true for a huge family of graphs. In a graph G, a hole C is independent
if the following two conditions hold for any other hole C’ of G,

(1) C and C’ have at most two common vertices.

(2) If C and C' have two common vertices, then they have one common edge
and C is of length at least 5.

Theorem 1.2 (Li and Chang [8]). Suppose that G is a graph with exactly h holes,
all of which are independent. Then k(G) < h + 1.



After then, Kim, Lee, and Sano [7] generalized the above theorem to the fol-
lowing theorem.

Theorem 1.3 (Kim et al. [7]). Let Cy, ..., C}, be the holes of a graph G. Suppose
that

(1) each pair among C\, ..., C, share at most one edge, and
(2) if C; and C; share an edge, then both C; and C; have length at least 5.

Thenk(G) < h + 1.

Thus, it is natural to ask if the bound holds when the holes share arbitrarily
many edges. In this paper, we show that the answer is yes for a graph G with
exactly two holes. Our main theorem is as follows.

Theorem 1.4. Let G be a graph with exactly two holes. Then the competition
number of G is at most 3.

This paper is organized as follows. In Section 2, we investigate some proper-
ties of graphs with holes. In Section 3, we give a proof of Theorem 1.4.

2 Preliminaries

A set S of vertices of a graph G is called a cligue of G if the subgraph of G
induced by S is a complete graph. A set S of vertices of a graph G is called a
vertex cut of G if the number of connected components of G — S is greater than
that of G.

Cho and Kim [2] showed that for a chordal graph G, we can construct an
acyclic digraph D with as many vertices of indegree 0 as there are vertices in a
clique so that the competition graph of D is G with one more isolated vertex:

Lemma 2.1 ([2]). If X is a clique of a chordal graph G, then there exists an
acyclic digraph D such that C(D) = G U {i} where i is an isolated vertex, and
the vertices of X have only outgoing arcs in D.

Theorem 2.2. Let G be a graph and k be a non-negative integer. Suppose that
G has a subgraph G, with k(G1) < k and a chordal subgraph G5 such that
E(G1) U E(G2) = E(G) and X := V(G1) N V(Gy) is a clique of G2. Then
kG)<k+1

Proof. Since k(G1) < k, there exists an acyclic digraph D; such that C(Dy) =
G1 U I}, where I, is a set of k isolated vertices with I;, N V(G) = 0. Since X
is a clique of a chordal graph Gy, there exists an acyclic digraph D such that
C(D;) = G2 U {a} where a is an isolated vertex not in V(G) U I} and that the
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vertices in X have only outgoing arcs in D, by Lemma 2.1. Now we define a
digraph D as follows: V(D) = V(D,) UV(D;) and A(D) = A(D,) U A(D).

Suppose that there is an edge in E(C(D)) but not in E(C(D,)) U E(C(Dz)).
Then there exist an arc (#,z) in D; and an arc (v, z) in D; for some z € X.
However, this is impossible since every vertex in X has indegree 0 in D,. Thus
E(C(D)) € E(C(D1))UE(C(Dy)). Itis obvious that E(C(D)) 2 E(C(D1))V
E(C(Dy)) since E(C(D)) 2 E(C(D;)) fori =1,2. Thus

E(C(D)) = E(C(D1)) U E(C(D2)) = E(G1) U E(Gz) = E(G)-

Hence C(D) = G U I U {a}. Moreover, since D; and D, are acyclic, V(G1) N
V(G:) = X, and each vertex in X has only outgoing arcs in Do, it follows that
D is also acyclic. Hence k(G) < k + 1. |

Lemma 2.3 ([7]). Let G be a graph and C be a hole of G. Suppose that v is a
vertex not on C that is adjacent to two non-adjacent vertices = and y of C. Then
exactly one of the following is true:

(1) v is adjacent to all the vertices of C;

(2) v is on a hole C* different from C such that there are at least two common
edges of C and C* and all the common edges are contained in exactly one
of the (z, y)-sections of C.

For a graph G and a hole C of G, we denote by X¢ the set of vertices which
are adjacent to all vertices of C. Note that V(C) N X¢ = @. Given a walk W
of a graph G, we denote by W1 the walk represented by the reverse of vertex
sequence of W. For a graph G and a hole C of G, we call a walk (resp. path) W
a C-avoiding walk (resp. C-avoiding path) if one of the following holds:

e |E(W)] > 2 and none of the internal vertices of W are in V(C) U Xc;
e |E(W)| = 1 and one of the two vertices of W is not in V(C)u Xc.
The following lemma immediately follows from Lemma 2.3.

Lemma 2.4. Let G be a graph and C be a hole of G. Suppose that there exists a
vertex v such that v is adjacent to consecutive vertices v; and vi4.1 of C, and that
v is not on X¢ and not on any hole of G. Then, if there is a C-avoiding path P
from v to a vertex in V(C) \ {vi,Vi41}, then P has length at least 2.

Proof. Let P be a C-avoiding path from v to a vertex w in V(C) \ {vi, vit1}. If
|E(P)| = 1, then v is adjacent to two non-adjacent vertices of C since {v;, vi41, w}
does not induce a triangle. Then v satisfies the hypothesis of Lemma 2.3 while it
does not satisfy none of (1) and (2) in Lemma 2.3, which is a contradiction. Thus,

|E(P)| 2 2. ]
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3 Proof of Theorem 1.4

In this section, we shall show that the competition number of a graph with exactly
two holes cannot exceed 3.

Let G be a graph with exactly two holes C; and C,. We denote the holes of G
by

C1:vov1** Um_1t0, C2:wWow; - Why—yw,

where m and m' are the lengths of the holes C) and C,, respectively. In the
following, we assume that all subscripts of vertices on a cycle are considered
modulo the length of the cycle. Without loss of generality, we may assume that
m 2>m' > 4. Fort € {1,2}, let

Xt = XC; = {:B € V(G) I v € E(G) forallv e V(Cg)}.

In the following, we deal with the case that the two holes have a common edge
since Theorem 1.3 covers the case that the two holes are edge disjoint.

Lemma 3.1. Ifa graph G has exactly two holes Cy and Cs, then both X, and X,
are cliques.

Proof. Suppose that two distinct vertices z; and z; in X are not adjacent. Then
Z1v0Z2v2Z) and z)v1T2vaz; are two holes other than C;. That is, G has at least
three holes, which is a contradiction. O

Lemma 3.2. Let G be a graph having exactly two holes Cy and Cs,. IfC, and
C3 have a common edge, then the subgraph of G induced by E(Cy) N E(C,) isa
path.

Proof. Suppose that G[E(C1) N E(C3)] is not a path. Without loss of generality,
we may assume that vov, is a common edge but v v, is not common. Let v; be the
first vertex on C after v; common to C and Cs. Theni € {2,.. ., m—2}. Letw
be the vertex on C; that is adjacent to v; and that is not vo. Let Z be the (w, v;)-
section of Cp which does not contain vg. Now, consider the (w, vm—1)-walk
W := Zviy1 - vm_1. Let P be a shortest (w, vy,—1)-path among (w, Um—1)-
paths such that V(P) C V(W). We shall claim that C := vgv; Py is a hole,
Since neither vo nor v, is on W, none of vg, v; is on P. Thus C is a cycle. By
the definition of P, there is no chord between any pair of non-consecutive vertices
on P. Since C} is a hole, v is not adjacent to any of v;y1, ..., Um—2. Since
{vo} UV(Z) c V(C,), o is not adjacent to any vertex on Z. Thus vp is not
adjacent to any vertex on P. By a similar argument, we can show that v, is not
adjacent to any vertex in V (P)\{w}. Hence C isahole of G. Since v,v; & E(C),
we have C # C and so C = C,.

If v; is adjacent to a vertex v on Z for some j € {i +1,...,m — 1}, then v;v
is shorter than any (v, v;)-path containing v; in G{W] and so P does not contain
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v;. Therefore v; € V(C), and so C # Ca, which is a contradiction. Thus, v;
is not adjacent to any vertex on Z for any j € {i +1,...,m — 1}. Hence v,
isnoton Z forany j € {i + 1,...,m — 1}. This implies that no vertex on
W repeats and that no two non-consecutive vertices in W are adjacent. Thus
W = P. Then G[E(C1) N E(C2)] = vivi41 - Ym—-1vo¥1 is a path and we reach
a contradiction. (]

Lemma 3.3. Let G be a graph having exactly two holes Cy and Cs. If |[E(Cy) N
E(C5)| 2 2, then X, = Xa.

Proof. By Lemma 3.2, we have G[E(C1) N E(C;)] = wiwi+, - - - w; where |j —
i| > 2. We take any vertex ¢ € X;. If z € V(C3), then C; has a chord zw;4,
which is a contradiction. Therefore z ¢ V(C2). Then = must be contained in
X by the Lemma 2.3 since z is adjacent to non-adjacent vertices w; and w; in
V(C3). Thus, X; C Xj. Similarly, it can be shown that X2 C X;. a

Lemma 3.4. Let G be a graph having exactly two holes Cy and Ca. If there is no
C,-avoiding (u,v)-path for consecutive vertices u, v on C for t € {1,2}, then
G — uv has at most one hole.

Proof. First, we consider the case where uwv ¢ E(C1) N E(C3). We may assume
that uv is an edge of C;. Suppose that G — uv has at least two holes. Let C* be a
hole of G — uv different from Co. Then C* + uv contains two cycles C; and c!
sharing exactly one edge uv. Note that C' # C since uv does not belong to Ca.
If [E(C’)| = 4, then C’ is a hole, which is a contradiction. Thus it follows that
C' — wv is a path of length 2. Let z be the internal vertex of C' — uv. Since there
is no C;-avoiding (u, v)-path, it holds that = € X. However, this implies that C*
has a chord joining z and every vertex in V' (C1) \ {u, v}, which is a contradiction.

Second, we consider the case where uv € E(C;) N E(Cg). Then G — uv
contains neither C; nor Cp. If there exists a vertex z € X; \ X2 (resp. z €
X5\ X1), uzv is a Ca-avoiding (resp. Cy-avoiding) path, which is a contradiction.
Thus we can let X = X; = Xa. Suppose that G — uv contains a hole C*. Since
C* is not a hole of G, uv is a chord of C* in G. In fact, uv is the unique chord
of C* in G. Let Z} and Z§ be the two (u,v)-sections of C*. If |[E(Z])| =
|E(Z3)| = 2, then the internal vertices z; and z2 of the (u,v)-paths Z} and Z3,
respectively, are contained in X since there is no hole-avoiding (u,v)-path in G.
So z; and z are adjacent by Lemma 3.1, which contradicts the assumption that
C* is a hole of G — wv. If |E(Z})| = 2 and |E(Z})| 2 8 where {i,j} = {1,2},
then the internal vertex z; of Z! is in X and Z7 is one of C; —uvand Cz — wv
since Z; + wv is a hole of G. This implies that the vertex z; is adjacent to all the
internal vertices of Z;, which also contradicts the assumption that C* is a hole of
G —uv. Hence, |E(Z})| = 3 and |E(Z3)| > 3. This implies that C* is composed
of C; — uv and Cz — uv and s0 G — uv has at most one hole. 0
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Lemma 3.5. Let G be a graph with exactly two holes C, and C» sharing at
least one edge. Suppose that there exists a Cy-avoiding (v;, v;41)-path for each
i € {0,1,...,m — 1}. Then G has a subgraph G, which has exactly one hole
and an induced subgraph G which is chordal such that E(G1) U E(G3) = E(G)
and V(G1) N V(GQ) =X U {vj,vj+1}forsomej € {0, 1,...,m— 1}.

Proof. By Lemma 3.2, G[E(C,) N E(C2)] is a path. Without loss of generality,
we may assume that G[E(C;) N E(C2)] = vov; ... v = wow; ... wy for some
integer k > 1. We let

je { 2 ifk=1;

0 ifk>2

Then {’Uj, ’Uj+1} - V(Cl)\V(Cz) ifk=1,and {v_,~,v,-+1} - V(C]_)HV(CQ) if
k > 2. Let L be a shortest C;-avoiding (vj, v;41)-path. If |[E(L)| > 3, then L +
v;j+1v; is a hole of G sharing exactly one edge with C;, which is a contradiction.
Thus |E(L)| = 2 and so L = vjvw;y, for some v € V(G) \ V(C;). Now
we show that v & V(Cy) by contradiction. Suppose that v € V(C2). We first
consider the case k = 1. If v = wg4y, then v is adjacent to two non-adjacent
vertices v (= v;) and v;41(= v3) in V(C}). By Lemma 2.3, v is in X; or G has
two holes which have at least two common edges, and we reach a contradiction.
Therefore v # wg.1. Then v; is adjacent to two non-adjacent vertices v, and v
in V(C3), which is also a contradiction. Thus v & V(Cy) in either case.

Now we will show that X; U {v;,vj41} is a vertex cut by contradiction. Sup-
pose that v is connected to a vertex in V/(C1) \ {v;, v;41} by a C;-avoiding path.
Let v, be the first vertex on the (vj41,v;)-path C; — vjv;41 such that there is
a Cy-avoiding (v, ve)-path, and let P be a shortest C)-avoiding (v, v¢)-path. By
Lemma 2.4, | E(P)| 2 2. In the following, we will show that v;,.; is adjacent to
every internal vertex on P. Let Q be the (v;41, ve)-section of C; which does not
contain v;. Then v;1 PQ~! is a cycle of length at least 4 different from C;. Note
that v;.1 € V(vj+1PQ'1) while v € V(C3) if k = 1, and that v; € V(Ca)
while v; & V(v;41PQ~1) if k > 2. Therefore v;., PQ is also different from
C». Thus v;,.,PQ~! cannot be a hole and so it has a chord. By the choice of
Vg, no internal vertex of Q is adjacent to any internal vertex of P. Since Pis a
shortest path, any two non-consecutive vertices of P are not adjacent. In addition,
since Q) is a part of a hole, any two non-consecutive vertices are not adjacent. Thus
;41 is adjacent to an internal vertex of P. Let z be the first internal vertex on P
adjacent to v;. and let P’ be the (v, z)-section of P. Then v;41P'vj41 is a hole
or a triangle. However, if k = 1, then vj4.1 P4 is different from C) and v;4,
is not on any hole other than C. If k > 2, then v; € V(C;) N V(C,) but v; is not
contained in v;4) P'v; ;. Therefore v;1P'vj4, cannot be a hole whether k = 1
or k > 2. Thus vj4+1P'vjy is a triangle and so = immediately follows v on P.
Now consider the cycle consisting of v;.1, the (z, ve)-section of P, and Q—1. If
this cycle is a triangle, then we are done. Otherwise, we apply the same argument
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to conclude that v;4 is adjacent to the vertex immediately following = on P. By
repeating this argument, we can show that v;.; is adjacent to every internal vertex
on P. Then the cycle C' consisting of v;41, the vertex immediately proceeding
vg on P, Q1 is either a hole or a triangle. If k = 1, then v;4, is not on any hole
other than C;. However, C’ # C; and so C’ cannot be a hole. If k > 2, then v;
is not on C’ while it is on both C; and Co, and so C’ cannot be a hole. Thus C’
must be triangle and so £ = j 4 2.

Let y be the last vertex on P that is adjacent to v;. Such y exists since v is
adjacent to v;. Let P” be the (y, v;42)-section of P and C" be the cycle resulting
from deleting v;4, from C; and then adding path P”. Then |E(C")| 2 4. If
k = 1, then it holds that C” # C, since v;4+1 € V(C") and that C” # C, since
vj € V(C") and v; & V(C). If k > 2, then C" is different from both C, and
C; since v;j4+1 € V(C"). Thus C” cannot be a hole in either case and so C” has
a chord. Recall that any two non-consecutive vertices on P cannot be adjacent
and that any two non-consecutive vertices in V(C’) N\ V(C1) = V(C1) \ {vj+1}
cannot be adjacent. Thus a vertex u on P” must be adjacent to a vertex v, on
C"” to form a chord if & = 1 while a vertex « on P"” must be adjacent to a
vertex v, € V(C1) \ {vj1} if & > 2. Obviously r # j + 2. Moreover, by
the choice of u, 7 # j. Then u is adjacent to two nonconsecutive vertices vj41
and v, on C;. If k = 1, then, by Lemma 2.3, z € X or G contains two holes
which have at least two common edges, either of which is a contradiction. Now
suppose that k > 2. Since u ¢ X, by Lemma 2.3, u is on C and all the edges
common to C; and Cs are contained in exactly one of the (v;4.1,r)-section of
C,. However, edges v;v;41 and v;41v;42 belong to distinct (vj41, vy )-sections
of C; even though they are shared by C; and C? by the hypothesis. Thus we have
reached a contraction. Consequently, there is no C;-avoiding path between v and
avertex in V(C1) \ {vj,vj+1}. This implies that X; U {v;, v;41} is a vertex cut.

Now we define the subgraphs G; and G of the graph G as follows. Let Q be
the component of G — (X3 U {v;,v;4+1}) that contains V/(C1) \ {vj,vj41}. Let
G, be the subgraph of G induced by the vertex set V(G) \ V(Q). Then, since
o (resp. v2) is a vertex in V(Cy) N V(C2) N V(Q) for k = 1 (resp. k22,
C, is not contained in G2 and so Gy is chordal. Let G} be the subgraph induced
by V(Q) U X U {vj,vj41}. Then G} contains no Cy-avoiding (v;, vj+1)-path.
Therefore the subgraph G; := G} — v;v;41 has exactly one hole by Lemma 3.4.
By the definitions of G, and G2, we can check that E(G1) U E(G32) = E(G) and
V(G1) NV(G2) = X1 U {vj,v;41}. Hence the lemma holds. O

Now, we are ready to complete the proof of the main theorem.

Proof of Theorem 1.4. If Cy and C; do not share an edge, then k(G) < 3 by
Theorem 1.3. Thus we may assume that C; and C; share at least one edge. By
Lemma 3.2, G[E(C1) N E(C2)) is a path. Suppose that there is no Cy-avoiding
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(s, i41)-path for some i € {0,...,m —1}. Then G := G — v;v;4, has at most
one hole by Lemma 3.4 and so k(G;) < 2 by Theorem 1.1. Let G := v;v;41.
Then G; is chordal, E(G1)U E(Gz) = E(G), and V(G,)NV(G2) = {vi,vis1}
is a clique of G2. By Theorem 2.2, we have k(G) < 3.

Now we suppose that there is a C;-avoiding (v;, v;41)-path for any i € {0,1,
.«.ym—1}. By Lemma 3.5, G has a subgraph G, which has exactly one hole and
an induced subgraph G which is chordal such that E(G,) U E(G;) = E(G) and
V(Gl) NV(Gy) = XU {vj,vj...l} for some j € {0, 1,....m- 1}. Note that
X1 U {v;,v541} is a clique of G2. By Theorem 1.1, we have k(G;) < 2. Hence
k(G) < 3 by Theorem 2.2. O
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