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1. INTRODUCTION

Throughout this paper all rings are commutative rings with identity.
Also, R is a finite local ring with maximal ideal M. We use Z to denote the
set of integers, N to denote the set of natural numbers and Z+ to denote
N — {0}. Following Anderson and Livingston [1] we define the zero-divisor
graph, I'(R), to be the graph whose vertices are the nonzero zero-divisors
of R, with two different vertices z and y joined by an edge in case Ty = 0.
Since we are only considering finite local rings, the set of vertices of T'(R)
is M - {0}.

Given i € ZF,

t
M= {Y my-...-myjlt € Z* and my;,...,mi; € M}.
=1

Let M; = M* — M*+! and let n; = |M;|. Let x be the minimal element in
{i € Z*|M* = {0}}. We observe that if j € {1,2,...,x}, then M7 — {0} is
the disjoint union of

Mj9 Mj+la ey Mn—la

where M* = {0}.

A simple graph is a graph with no edges connecting a vertex to itself
and at most one edge connecting two distinct vertices. The simple graph
with n vertices and all possible (7) edges is called the complete graph K,,.
The order of a finite graph is the number of vertices of the graph, so K, is
a graph of order n.

A null graph is a graph in which no two vertices are joined by an edge.
In particular, the empty graph is a null graph. A graph G is bipartite if G
is null or if there is a partition V(G) = V; U V4 of the vertices of G so that
every edge of G has one endpoint in V; and the other endpoint in V3. The
complete bipartite graph K, , is the bipartite graph of order m + n with
vertices ay, ..., am and by, ..., b, and all possible mn edges {a:, 5}
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Definition 1.1. Let B(M;, M;) be the bipartite graph with verter set M;U
M; with two vertices © and y joined by an edge if € M;, y € M;, and
zy = 0.

If S is a subset of R, we define I'(S) to be the subgraph of I'(R) whose
vertices are the nonzero zero-divisors of S with two vertices = and y joined
by an edge in case zy = 0. The functorial properties of I are discussed in
DeMeyer, Schneider, McKenzie [3].

Theorem 1.2. Leti € Z+. The graph T'(M;) =~ Ky, if and only if 2i 2 k.

Proof. Assume 2i > k. Let = and y be elements of M;. Then zy is in M2,
Since 2i > &, M2 = {0}, so zy = 0. Thus, I'(M;) = Kn,.
To prove the converse, let z1,Z3,...,2t € M; generate M. Then the set

{zszr]l <8<t 18T <}
generates M%. Since I'(M;) is complete,
zszr =0, Vr,s € {1,2,...,t}.
Hence, M?% = {0} and 2i > &. 5

Example 1.3. If R = Z,2 then M? = {0}, so T'(R) is a complete graph of
order p— 1.

Theorem 1.4. Let i,j € Zt with i # j. The graph B(M;, M;) ~ Kp n;
ifand only ifi 4+ j > &.

Proof. Supposei+j > k. Let € My and y € M;. Then zy is in M+,
Since i + j > &, M**J = {0}. Hence xy =0 and B(M;, M;) = K, n,.
Conversely, let
L1,%2,--4 Ty € Mi
generate M*® and let
Y1,Y2,- Yty € M;
generate M7 . Then the set

{zowrll <8<, 1 <7 <o}
generates M*+7. Since
B(M;, M;) =~ Kp, n;,

z,yr =0foralls € {1,2,...,t1} and r € {1,2,...,t2}. Hence, M = {0}
andi+j 2 k.
0
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Using Theorem 1.2, Theorem 1.4, and the decomposition of M* — {0} as
the disjoint union of
Mi) MI'+1: veey Mn-l,
where M* = {0}, we arrive at the following result.

Corollary 1.5. Let i be an integer with £/2 < i < &, then I(M?) is a
complete graph.

2. FINITE PRINCIPAL RINGS

In this section, we study finite local rings with principal maximal ideals.
If M is a principal ideal generated by z, denoted M = (z), then M* = (z%).
Recall that we defined & to be the smallest positive integer for which M* =
{0}. Hence, & is the smallest positive integer for which z* = 0. We make
use of the fact that if M = (2) and [R/M| = g, where q is a prime power,
then |M?| = ¢*~* whenever i € {1,2,...,&}. Further
ng = IMtl = lMsl _ |M:’+1| = qn—i - qu—i-—l_

Theorem 2.1. Assume M is a principal ideal generated by z. Ifi € Z+,
then I'(M;) ~ K,,, or T'(M;) is a null graph.

Proof. Suppose I'(M;) is not null. Since z is a generator for M, 2* generates
M. Further, there exist r,s € R — M such that

rzt, 82 € M* — Mit!
with 0 = (rz')(s2z’) = (rs)z%. Since r and s are units, rs is a unit, so
z% = 0. Hence, M% = (2%)) = {0}. By Theorem 1.2 and since | M| = g~—*
it follows that I'(M;) is a complete graph of order n; = ¢*—* — g*=—i-1, g
Combining Theorems 1.2 and 2.1 yields the following result.

Corollary 2.2. Ifi € Z* and M is a principal ideal generated by z, then
T'(M;) is a null graph if and only if i < k/2.

Theorem 2.3. Assume M is a principal ideal generated by z. Ifi,j € Z+
and i # j, then B(M;, M;) =~ Ky, n; or B(M;, M;) is a null graph.

Proof. Suppose B(M;, M;) is not null. Since 2* generates M* and 27 gen-
erates M7, there exist r,s € R — M such that rz* € M — M*! and
szl € M3 — MI*! with 0 = (rz')(sz?) = (rs)2*+i. Since r and s are
units, rs is a unit, so z**7 = 0. Hence, M*+J = (2*+J) = {0}. By The-
orem 1.4 it follows that B(M;, M;) is a complete bipartite graph of order
(@ = g*" ) + (¢* 7 = ¢=7Y), O

The following corollary follows from Theorem 1.4 and Theorem 2.3.

Corollary 2.4. Leti,j € Z* withi # j. If M is a principal ideal generated
by z, then B(M;, M;) is a null graph if and only if i + j < &.
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Theorem 2.5. Assume M is a principal ideal generated by z. If i is an
integer with 1 < i < /2, then T(M — M**1) is a null graph.

Proof. To prove the contrapositive, assume there exist z,y € M — M**!
with zy = 0. Then there exist r,s € R — M and j,k € {1,2,...,4} with
¢ =rzd and y = szF. Now 0 = (rz9)(sz*) = (rs)z** and r,s € R—- M
implies that zi+* = 0. Thus j+k > x and j > x/2 or k > /2. Hence,
i2Kk/2. O

Given a positive real number w, the ceiling of w, [w] is the smallest
integer that is greater than or equal to w. Similarly, the floor of w, lw] iss
the greatest integer that is less than or equal to w. Recall that the vertex
set of [(R) is M — {0}. We can partition this vertex set into the disjoint
subsets, M — MT#/21 and MT%/21 — {0}. In the case where M is principal,
we can draw two conclusions from this observation. From Theorem 2.5 we
have I'(M — M%/21) is a null graph. Thus, any maximal complete subgraph
of T'(R) contains at most one element from M — M1*/21. :

The second conclusion gives bounds for the clique number of I'(R). The
clique number of a graph is the order its largest complete subgraph. It
follows from Corollary 1.5 that [(MT%/21 —{0}) is a complete graph. Hence,
the clique number of I'(R) is bounded below by |M*/21| — 1. Since at most
one vertex of M — M [%/2 can be included in any complete subgraph of I'( R),
it follows that the clique number of I'(R) is bounded above by |M </21].

Theorem 2.6. Assume M is a principal ideal generated by z and let
|R/M| = g, where q is a prime power. Then the clique number of T'(R)
is ¢"/2 — 1 if K is even and g(*~1)/2 if k is odd.

Proof. Since |M /21| = g#~[%/2] = ¢lx/2], then the order of this complete
graph is gl*/2} — 1.

In the case where /2 is even, let z be an element of M./, and let y be
an element of M — M*/2, Then z = rz™/? and y = 527 wherer,se R— M
and j < 5/2. Now zy = (rz*/2)(sz%) = (rs)2{*/?*3. Since rs € R~ M and
(k/2) + j < K, then zy # 0. Thus, the clique number of ['(R) is ¢*/2 — 1.

In the case where x/2 is odd, let = be any element of M(._1)/2. Then
¢ = rz(s~1)/2 where r € R — M. Now let y € M(~+1)/2 — {0}, Then
y = sz* where s € R— M and i > (x + 1)/2. Now zy = (rz2(*=1)/%)(s2*) =
(rs)zl(+=1/2+% Since [(x —1)/2] 4+ i > &, then zy = 0. Thus, the clique

number of I'(R) is ¢*~1)/2,
O

3. Book EMBEDDINGS

In an article published in 1979, Bernhart and Kainen (2] laid the ground-
work for further study of book embeddings of graphs. They defined an
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n-book as a line L in 3-space, called the spine, and n half-planes, called
pages, with L as their common boundary. A book embedding of a graph
G is an embedding of G in a book with the vertices of G on the spine and
each edge of G within a single page so that no two edges cross. The book
thickness bt(G) or page number pg(G) of a graph G is the smallest n so
that G has an n-book embedding. An optimal book embedding is one that
has bt(G) pages.

The book-embedding problem is difficult since both the ordering of the
vertices along the spine and the assignment of edges to pages must be
considered. However, for certain families of graphs, the book thickness is
known. The following theorem gives the book thickness of K.

Theorem 3.1. Ifn > 4, then bt(K,) = [n/2].

Proof. See Bernhart and Kainen [2]. 0
Y Y
y 4
v, v,

FIGURE 1. Two-page book embedding of K.

Figure 1 depicts a two-page book embedding of K. The vertices are
lined up on the spine. The half-plane above the spine forms one page of
the book and the half-plane below the spine forms the second page of the
book. By Theorem 3.1, this is the least number of pages possible.

A graph is planar if it can be drawn in the plane so that no two edges
cross. It is immediately clear that any two-page embeddable graph must
be planar with the two pages forming a plane. However, not every planar
graph has a two-page embedding. There are simple examples of planar
graphs that require three pages [2]. Yannakakis [4] proves that every planar
graph can be embedded in a book with four pages or less.

We now combine the theory of zero divisor graphs with the theory of
book embeddings.

Definition 3.2. A graded ordering of the vertices of I'(R) along the spine
of @ book is an ordering such that if t € M; and y € M; end i < j, then
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x lies to the left of y on the spine. A graded book embedding of I'(R) is a
book embedding of T(R) using any graded ordering of the vertices.

Note that graded orderings are not unique since there are no restrictions
on the ordering of the vertices within a particular M;. .

Example 3.3. Consider R = Zg. In this case, My = {2,6,10,14}, My =
{4,12}, and M3 = {8}. In a graded book embedding of I'(R), the vertices
can be arranged in 412! different ways. Two of these ways are

2610144128

and
1061421248.

In the case where M is principal and « is even, ['(R) contains a complete
subgraph of order : = ¢*/2 — 1, where ¢ = |R/M|, by Theorem 2.6. Now
by Theorem 3.1, if ¢ > 4, then bt(T'(R)) > bt(K.) = [¢/2], giving a lower
bound for bt(C(R)). We will show that every graded ordering can be used
to obtain an optimal book embedding of I'(R) in a book with [+/2] pages.
First, we need the following definition.

Definition 3.4. Let G be a graph embedded in a book. And let = be a
vertez of G. We say that = is obstructed on page i if there ezist vertices
zr,zRr € V(G) such that z1 lies to the left of z, zr lies to the right of =
and there ezists an edge on page i connecting 1 and zp. Otherwise, we
say that x is unobstructed on page i.

Now we revisit the proof that when n > 4, bt(K,) = [n/2]. In Bernhart
and Kainen’s proof, they provide a method to embed K, in [n/2] pages.
We offer an alternate assignment of edges to pages that also achieves the
optimal bound, but has a different set of unobstructed vertices.

Theorem 3.5. Let K, n € Z, be the complete graph on the n vertices
Z1,22y..+,Tn.

Then there erists a book embedding of K, such that
(1) if i < j, then z; lies to the right of z; on the spine;
(2) the book contains [n/2] pages;
(8) for 1 < < [n/2], vertex ; is unobstructed on page i.

Proof. We may assume that n is even since Kn_, is a subgraph of K. Let
n = 2t, where t € Z*. Place the vertices on the spine from left to right in
the order o, T2t—1,- .. Tty Tt—1,..-,22, Z1.

For 1 < i < t, we assign edges to page i as follows. Page ¢ will contain
the set of non-intersecting edges

(Tiy Tewi)s - -+ (Tiy T2e),



(zir 1), -+ oy (@5 i),
(Tetir Tiv1)s -« oy (Beariy Tegion)-

Note that each of ¢ pages contains exactly ¢ edges of the form (z;, z;) and
t — 1 additional edges of the form (z:+i,z;). Since each of these edges are
distinct, the t-page embedding will contain all t[t+ (t—1)] = (r/2)(n—1) =
(3) edges of K.

We also note that since the edges of the form (z:+4,z;) can be placed
below the edges of the form (z;, z;) on page i, the vertex z; is unobstructed

on page i.
a

Theorem 3.6. Let R be a finite local ring with a principal mazimal ideal
M and k even. Then bt(I'(R)) = [¢/2], where . = ¢"/2 -1 and ¢ = |R/M]|.

Proof. Clearly bt(T'(R)) 2 bt(K,) = [+/2], since T'(R) contains a complete
subgraph of order ¢ with vertex set M*/2 — {0}.

To show bt(I'(R)) < [¢/2], we make the observation that since ¢ > 2,
[Mys2| > ¢/2. That is, at least half of the vertices of this complete subgraph
come from M, /2. So, by Theorem 3.5, this complete graph can be embedded
with a graded ordering in an [:/2] page book so that remaining vertices of
M(*/2+1 _ {0} each appear unobstructed on a page of the embedding.

Using a graded ordering of the vertices along the spine, there are no
connections between the vertices of the set M — M*/2 since by Theorem
2.5, I'(M — M*/2) i a null graph. Also, there are no connections between
vertices of M./, and M — M */2 gince, by Corollary 2.4, B(M;, M;j) is a null
graph when i + j < &.

Now we embed the complete graph with vertex set M*/2—(0} in an [/ 2]
page book using a graded ordering so that the vertices of M(*/2+1 _ {0}
each appear unobstructed on a page of the embedding. The only edges left
to embed are those connecting vertices of M — M*/2 and M(=/2+1 _ {0},
These vertices can be placed in this book without requiring any additional
pages in the following way. Let z be & vertex of M(*/2+1 _ {0}, It is
unobstructed on at least one page of the book. Now all edges from z to
vertices of M — M*/2 can be placed on this page without creating any cross-
ings. We repeat this process for each vertex of M(s/2)+1 _ {0}, obtaining

an embedding of I'(R) in a book with [¢/2] pages.
0O

Next we consider an example. Let R = Zg,. Then
M ={0,2,4,...,60,62},
M; = {2,6,10,...,58,62},
M; = {4,12,20,28, 36, 44, 52, 60},
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Ms = {8, 24,40, 56},
M, = {16,48},

and
M; = {32}.

Since M® = {0} we have k = 6 and + = 7. Furthermore, I'(M — M?3)
is a null graph and (M3 — {0}) is a complete graph of order 7. Hence, a
4-page book embedding of I'(R) is optimal.

2 6 10 14 18 22 26 30 34 3B 42 46 50 54 58 62 4

e o L]
10 14 18 22 26 30 34 38 42 12 20 28 36 4 51 60 8

L J 1 J 1 11 U
M M M M: Ms

FIGURE 2. Four-page graded book embedding of I'(Zga).

Figure 2 depicts a 4-page graded book embedding of I'(R). The edges
above the first copy of the spine lie on page one, the edges below the first
copy of the spine lie on page two, the edges above the second copy of the
spine lie on page three, and the edges below the second copy of the spine
lie on the fourth page.

We conclude this paper by considering which book embeddings corre-
spond to graded book embeddings of zero divisor graphs of finite local
principal rings. Let G be a finite simple graph with vertex set V(G). We
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can define an equivalence relation on V(G) as follows. The degree of a
vertex z is the number of distinct vertices which are connected to z by an
edge. Two vertices are equivalent if they have the same degree.

This induces a partition of the vertices

V(G) =WV u...uV,.

We further assume that if z € V; and y € V; and 4 < j, then the degree of z
is less than the degree of y. We use this notation in the following theorem.

Theorem 3.7. Let G be a finite simple graph with vertez set V(G) =
ViU...UV,, embedded in a book. The embedding of G is a graded book
embedding of I'(R) where R is a finite local principal ring if and only if the
following hold:
(1) For all z,y € V(G) if = lies to the left of y on the spine, then the
degree of T is less than or equal to the degree of y.
(2) There is a prime power q such that |V;| = ¢*=**1 — gt~i for all {
withl<i<t.
(8) For all z,y € V(G) withz € Vi, y € V;, and z # vy, there is an
edge between z and y in the graph if and only ifi +j > t + 1.

Proof. Suppose G is a finite graph embedded in a book such that conditions
(1), (2), and (3) hold. Let F, be the finite field with ¢ elements and let
R = Fy[z]/(z**!). One checks that any graded book embedding of I'(R) is
isomorphic to the given book embedding of G.

To prove the converse, we consider any graded book embedding of a finite
local principal ring R. Let V; = M;. Condition (1) follows from Definition
3.2. Condition (2) follows from the fact that

M| = | M) — | M) = g — gemi?
where ¢ = k — 1. Condition (3) follows from Theorems 2.1 and 2.3. ]
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