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Abstract

Let N be a positive integer and let A = (A1, A2,...,)) be a
partition of N of length I, i.e, Yi_, A\ = N with parts A; > Ag >
.+» 2 A 2 1. Define T()) as the partition of n with parts I, A\; —
1,A2 — 1,..., A — 1, ignoring any zeros that might occur. Starting
with a partition A of N, we describe Bulgarian Solitaire by repeatedly
applying the shift operation T to obtain the sequence of partitions

AT, T2),....

We say a partition u of N is T-cyclic if T*(u) = u for some i > 1.
Brandt [2] characterized all T-cyclic partitions for Bulgarian Soli-
taire. In this paper we give an inductive proof of Brandt’s result.

1. INTRODUCTION AND STATEMENT OF RESULTS

The following game, popularized by Gardner in 1983 [4], is called Bul-
garian Solitaire.

Initially, we are given N cards disposed in several piles. A move consists
of removing exactly one card from each pile and forming a new pile. The
operation is repeated over and over.

If the number of cards N is a triangular number, i.e., N = 14+2+---+k
for some k, a remarkable fact is that, starting from any initial configuration,
after a finite number of moves the Bulgarian Solitaire will reach the stable
configuration formed by piles of sizes 1,2, ..., k. This result was proved by
J. Brandt ([2], the assertion after the proof of Theorem 4, p. 484). It was
also considered in [2] the case when the number of cards is not triangular.
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Since a deck has only finitely many layouts, the game of Bulgarian Solitaire
must cycle. Brandt characterizes and counts all cycles for any given deck
size ([2], Theorem 5).

Let us now define the game formally. Let N be a positive integer and
let A be a partition of N having ! parts written (A1, A2,...,A) in non-
increasing order; that is, N = A1 + A2 +--- + A with positive integers
A > A >...2> N > 1. Define T()) as the partition of n with parts
I,A1 — 1,3 —1,..., N — 1, ignoring any zeros that might occur. So Ti(A)
(i = 1,2,...) denotes the partition obtained by successively applying the
shift operation T to A a total of i times. Starting with a partition A, we
describe Bulgarian Solitaire by repeatedly applying the shift operation to
obtain the sequence of partitions

AT, T2, ...

We say a partition u of N is T-cyclic if T*(u) = p for some i > 1.

" I N is arbitrary, Brandt noted that repeated application of T' leads
into a cycle of partitions, since there are only a finite number of these.
Furthermore, a cycle of partitions is completely determined by the sequence
of the consecutive lengths of the partitions in the cycle. Motivated by this
fact, Brandt ([2], p. 483) defined the set My, by

) M, = {0 = (0i)icz : maxo; =n,

whereforalli, o; = |{0;]j <%,05 21— j}},
where | S| denotes the cardinality of a set S. If 0 € My, then by Proposition
2in [2), 0 € {n,n — 1} for all i € Z. As an easy consequence of this fact,
Brandt (cf. proof of Theorem 5 in [2]; also see Akin and Davis [1], Theorems

4 and 5, Griggs and Ho [5), Theorem 2.1 and Etienne [3]), characterized all
T-cyclic partitions for arbitrary N. This result is given as follows.

Theorem. Let N=1+2+:--+k+r, 0<r < k. Then a partition A of
N i3 T-cyclic if and only if X has the form
(k+6k,k—1+6k_1,...,1+61,60),

where each §; 130 or 1 and Z?:o o=r.

In particular (see the assertion after the proof of Theorem 4 in [2]), for
a triangular number N we obtain the following result quoted by Gardner
in [4]-Brandt’s Equilibrium Theorem.
Corollary. If N = 1+2+---+k, then (k,k —1,...,1) is the unique
T-cyclic partition of N.

Recall that the above theorem follows from Theorem 4 of Akin and
Davis [1] whose proof is based on Brandt’s result. Theorem § in [1] which
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is proved directly, also gives a description of all T-cyclic partitions for
arbitrary N as in above theorem. The above corollary is proved by Etienne
[3] by introducing a natural array representation of a partition A. The
idea in his proof is applied in the proof of Theorem 2.1 in [5] (the above

theorem) to general N.
In this paper we give an inductive proof of the above theorem. For the

proof we define a sequence which is analogous to the set M, given by (1).
2. PROOF OF THE THEOREM

Let N be a positive integer and let A = (A1, Ag,...,A;) be a partition
of N having ! parts with \; > A2 > ... > A\ > 1. Bulgarian Solitaire is
based on a function T defined on the partition )\ as above:

TA) =LA -1,2-1,...,0-1),

where all zeros are omitted and the parts may need to be reordered to be
non-increasing. For a partition A, we associate a sequence

seqr(A) =< 01,02,...,0p,...>,

where oy, is the number of parts in T"~1()) (T°(\) = A\, n = 1,2,...).
Then applying the shift operation T to A n times, we obtain

") = (M =n,A2=n, ..., =N, 0n,On-1—1,...,00_i—i,...01— (n-1)),

where all negative integers and zeros are omitted.
Note that, if n > N then \; —n < N —n <0, and hence

(2) T"(A) = (0n,0n-1 — 1,...,00-i —%,...,001 — (R = 1)) for all n > N,
where all negative integers and zeros are omitted.

Proposition. Let seqp()) =< 01,09,...,0,,... > be a sequence associ-
ated to the partition A = (A1, Az, ..., A1) of a positive integer N. Then for
all s € N there ezists sufficiently large ¢ € N with g > s such that

3) Om-j+12 0y forall m > gqandforall j<s.

Proof. Let N = M+ dg+-- -+ N with X3 2 A > ... > N\ > 1. We proceed
by induction on s. It follows from the definition of the shift operation T
that o < o1 + 1 for all m > 2, and hence (3) is satisfied for s = 1
assuming ¢ = 2.

Now suppose that for a fixed s € N there exists ¢ € N such that 3)
holds. If we put t =g+ N,then \i —t < N -t < 0 for all i = 1,2,...,1],
and hence (2) yields

4) T*(\) = (0n,0n-1—1,...,00— (n—1)) forall n > ¢,
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where all negative integers and zeros are omitted. It follows immediately
from (4) that

oms1 = {i:1<i<mando;—(m—i)21}
©) = [i:1<i<mandoj+i>m+1} forall m>t.

Furthermore, if for a fixed m > ¢, oi+i 2 m+1 holds for some %, then
i>m+1-0;>t+1—N=q+1. Now from this fact and (5) we have

(6) omir=|{i:g+1<i<mandoi+i>m+1} forall m >t

By the inductive hypothesis, (3) with j = s implies that

) Oi—s+1>0; forall i >qg+1.

Therefore, if for a fixed i > ¢+ 1, there holds o; +i 2 m + 1, (7) implies
Oi—s+i+120;+i2m+1,

whence we conclude that

(8) 04— + (i — 8) > m — 5 whenever i 2 ¢+1 such that oy +i>m+1.

Finally, if m > ¢, thenm—-s8>t—-g=N, and so by (2) we have

Hi-s:1<i-s<m-s—landois+i—s2>m—s}f

Om-s =
= |{i:1+s$i$m—1anda;_,+i—32m—s}|
> |{i:q+1_<_i5ma.nda,--,+i—82m-—s}|—1
(because of g > 8)
Hi:q+1<i<mando;+i>m+1} -1 (because of (8))

nwv

Om+1 — 1 (because of (6)).

Therefore, Om—s + 1 > Om41 for all m > ¢, or equivalently, opm—(s+1) +1 2
om for all m > t + 1. The last inequality and the inductive hypothesis
given by (3) imply

Om—j+120m forall m>t+1landforall j <s+1.

This concludes the proof. [ ]

Corollary (cf. [2], Lemma 1). Let N =1+2+---+k+7,0<r <k,
with the same assumptions as in the above Proposition. Then there exists
t € N such that o, € {k,k+ 1} for alln > t.

Proof of the above Corollary and the Theorem. It is easy to see that a
sequence seqp(A) =< 01,02,...,0n,... > i8 periodic, that is, there exist
p,v € N such that on4p = 0p for all n > v.
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By Proposition, there exists sufficiently large ¢ € N with ¢ > p such
that

9) Om—j +12 0p for all m > g and for all j < p.

Put ¢ = max{v,q}. Then < 0¢41,0¢43,...,0e4p > is a period of seqp.
Assume i and n such that £+ 1 < i < n < t+p. Then since n > q
and1 <n-i<p-1, by (9) we get o, < On—(n—i) +1 = 0y +1 and
0i = Oitp < Oitp—(p—(n—i)) + 1= 0n + 1. Hence, |0; — on| < 1 and thus,
On € {u,u+ 1} for some fixed u € N and all n > ¢ + 1. It remains to show
that u = k. If we choose m € N such that mp > N, then since o, < u +1
fort+1<n<mp+t—1, for such a n we have

(10) On—((mp+t+u)-n)<n+1-mp-t<0.
On the other hand, if 1 < n < ¢, then since 0; < N < mp, we obtain

(11) (On=((mp+t+u)—n)<N-mp—-t—-u+n
<Smp-mp—-t—u+t=-u<0.

In view of (10) and (11), by (4) we get

TmPHHY() = (Omptt+us Tmprtdu—1 — 1,...,

(12) Omptt+1 — (¥ = 1), Ompte — u).

Since a'mp.ft-}-u-i =u+ 6u—i With Ju—-i € {0, 1} fOl' an i = 0, 1,.- oy U, it
follows from (12) that the sum of all parts of the partition T™P*t+u()) is
equal to

u
ut(@—1)+- 14 by

=0
It is easily see that the above sum isequalto N = 1+ 2+ -+ k+ 7 if
and only if u = k and Y5 6—; = r. Hence ompyesk_i = k + 0p—; for all
t=0,1,...,k, which together with (12) yields

TmP‘H'H‘(/\) =(k+0,k—-1 + 0k-1,...,1 +61,50).

This completes both proofs. ]
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