Linked reduction systems for permutations
by John Ginsburg

ABSTRACT For any n > 2 we let S, be the set of permutations of the
set {1,2,...,n}. A reduction f on S, is a set of functions {f; : 1 <i <n}
such that f, is the identity function on {1,2,...,n — 1} and for i < n, f;
is a bijection from the set {1,2,...,n} — {i} to the set {1,2,..,n — 1}.
The ith reduction of a permutation p = z,25...z, (With respect to f)
is the permutation p | i obtained by deleting ¢ from p and then apply-
ing the function f; to each of the remaining elements of p in place. The
set R(p) = {qg € Sp-1 : ¢ = p | i for some i < n} is called the set
of reductions of p. The simple reduction on S, is the one for which
fi(z) = f g; f :La.nd z#n for all i < n—1. We say that f is faith-
ful if p # ¢ — R(p) # R(q). A reduction system is a set {f, : n > ng}
where f,, is a reduction on S, for all n > ng. The system is said to be faith-
ful if £, is faithful for all n > ng. Such a system is said to be linked if there
is a integer-valued function ¢(n), defined for n > ng, such that ¢(n) < n
for all n > ng, and for whichp | ¢(n) li=p |i | n—1for all n > ng, for
all i <n—1 and for all p € S,. And the system is said to be amenable
if for every n > ng there is an integer k¥ < n such that, for all p € S,,
pln|ln—1=p]lk|n—1. The purpose of this paper is to study faithful
reductions and linked reduction systems. We characterize amenable, linked
reduction systems by means of two types of liftings by which a reduction
on Sp4 can be formed from one on S,,. And we obtain conditions for a
reduction system to be faithful. One interesting consequence is that any
amenable, linked reduction system which begins with a simple reduction is
faithful.

Key words and phrases: permutation, reduction, set of reductions, re-
duction system, faithful, linked, amenable
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1. Introduction

For any positive integer n > 2, we let S, denote the set of all permuta-
tions of the set {1,2,...,n}. We think of a permutation just as an ordered
list, and a permutation p is displayed simply by listing its entries in order,
sometimes with commas between them for clarity. Thus, for p € S,, we
write p = p1,P2,...,pn. For any integer i < n, the expression p — {i} de-
notes the n— 1 permutation obtained by deleting i from p, leaving the other
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elements in their given order. In other words, if k is the integer for which
Pk = i then p- {Z} = P1,DP2y s Pk=1yPk+1; 41 Pn Deleting one entry ¢,
in all possible ways, from a permutation on {1,2,...,n} , to create various
n— 1 permutations, is of course a very commonly used idea. Recent papers
in coding theory (7] and permutation graphs [4], [5] use these one-element
deletions. In some instances, it is either useful or necessary to represent
these one-element deletions as n — 1 permutations on the “standard n — 1-
element set” {1,2,...,n—1}, that is, as elements of S,—_;. Once this is done,
one then has a direct way to inductively “lift” properties and constructions
from S,—; to S.. Representing the one-element deletions p — {i} of an
arbitrary permutation p in S, by elements of S, will be referred to as a
reduction on S,,. How this is done will, of course, depend on the applica-
tion that one has in mind. For any such reduction, we will use the notation
p | i to denote the permutation on {1,2, ...,n — 1} which represents p— {i};
we will refer to it as the ith reduction of p.

As one basic example, let us describe what we will refer to as the sim-
ple reduction on S,,. For any i < n, let p | i be the permutation on the
set {1,2,...,n — 1} obtained from p as follows: delete ¢ from p and then, in
the resulting » — 1 permutation, change n to i. For i = n, we take p | n to
be p — {n}. To illustrate, let n = 5 and let p = 25413. We then have
pl1=2143, p| 2=12413, p| 3=12341, p | 4=2413, p| 5 =2413.

A second natural example will be referred to as the regular reduction
on S,. Let n > 2, and let p € S,,. For any i < n, let p | i be the permuta-
tion on the set {1,2,...,n — 1} obtained from p as follows: delete i from p
and then subtract 1 in place from each of the remaining entries of p which
are larger than i. To illustrate, again let » = 5 and p = 25413. We then
have
pl1=1432, p|2=4312, p| 3=2431, p | 4=2413, p| 5 =2413.
This form of reduction is employed in [11], pages 85-86, in an inductive
description of the Schensted correspondence. ~

If we are given a reduction on Sy, then, for any p € S,, we can form
the set of reductions of p: the set R(p) = {q € Sn-1 : ¢=p | i for some
i < n}. Referring to the above examples, where p = 25413, we see that, with
respect to the simple reduction we have R(p) = {2143, 2341, 2413}, and with
respect to the regular reduction we have R(p) = {1432, 2413, 2431, 4312}.

Being able to determine any permutation from its set of reductions
would clearly be a desireable property of a reduction. A reduction with
this property will be called faithful. This notion is related to various
kinds of reconstruction problems, in which one attempts to reconstruct an
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object from its one-element deleted sub-objects. For information on recon-
struction problems for graphs and ordered sets we refer the reader to [1]
and [10]. Interesting recent work on reconstructing sequences from subse-
quences can be found in [2], [6] and [8]. We also direct the reader to the
work in [9] on the reconstruction of subsets of the plane; this paper contains
many references to recent work involving reconstructing codes, sets of real
numbers, sequences and geometries.

The problem of determining a permutation from its set of reductions
has been considered in (3], where it is shown that the regular reduction on
Sy, is faithful for n > 5. The inductive argument in [3] makes use of the
following three properties of the regular reduction which are proven there:
- for any positive integer ¢ < n,wehavep | n |i=p|i|n—1.
-plnln-1=pln-1|n-1
— the position of n in p can be determined from the set R(p).

The simple reduction on S,, is also faithful, for n > 5. One can establish
a similar set of properties for the simple reduction:

— for any positive integer i <n,wehavep {n—1]i=p|i|n—1.
-plnln-1=pln-1|ln-1
— the position of n — 1 in p can be determined from the set R(p).

Having established these properties, it is a simple matter to modify the
inductive proof in [3] to show that the simple reduction is faithful.

In this paper we will consider permutation reductions in general. What
kinds of reductions satisfy conditions similar to those satisfied by the sim-
ple and regular reductions? Can one describe a broad variety of faithful
reductions? Is there a useful way to characterize various kinds of unfaithful
reductions? It is to these matters that we will turn our attention. Before
doing so, we must first give a precise definition of the concept of reduction.

Definition 1.1 Let n be a positive integer such that n > 2, and let S,
be the set of permutations of the set {1,2, ...,n}. A reduction f on 8, is
a set of functions {f; : 1 < i < n} such that

(i) For all ¢ < m, f; is a bijection from the set {1,2,...,n} — {i} to the set
{1,2,..,n -1}, and
(i) fa is the identity function on {1,2,...,n — 1}.
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Definition 1.2 Let n be a positive integer such that n > 2 and let
F={fi: 1 <i < n} be a reduction on S. For any permutation
p = p1p2-++Pn in Sy, and for any i < n, we define the ith reduction
of p, denoted by p | i as follows: Let k be the integer for which px = i.
Then

pli = filp)fi(p2) - filPr-1)fi(pr+1) -+~ filpn)
The set of reductions of p is the set
R(p) ={q € Sn—1 : g=p | i for some i < n}.

Another way to express Definition 1.2 is that, to reduce a permutation
p by an entry i, we delete i from p and then rename the remaining elements
in place, using the function f;. It is clear that the result, p | %, is a permu-
tation of the set {1,2,...,n — 1}, that is, an element of Sn_,.

We also note that, because of condition (ii) in Definition 1, p | n is just
equal to p — {n}, the result of simply deleting the entry n from p.

We will let ,, and P, respectively denote the simple and regular reduc-
tions on S,. Note that the simple reduction @, is given by the bijections

{o? : 1 < i < n} defined as follows: for i # n, o7’ (z) = :: ig;?__&: and z 7

T fz<i

I N winy
The regular reduction ,, is given by the bijections p} (=)= { 1 ifz>i

Notation: (i) To indicate that an element has been deleted from an or-
dered list, we will place a “hat” above that element. Thus, if z1,22,...,Zm
is a given list, and if ¢ < m, the notation zi, z3, weey By ory T denotes the
following list of length m — 1:  Z1,Z2, ..., Ti~2, Ti=1, Ti41, Ti+2y +es Tm-

(i) Let 2,22, ..., Zm be an ordered list of elements and let f be a function
whose domain includes these elements. We will use the expression
f:[z1,22,...,Tm] to denote the ordered list f(z1), F(Z2)y ooor F(Tm)-

In this context we may also place square brackets around the latter list.

(iii) The identity permutation in S, will be denoted by e,,. Thus we have
en = 123...1.

(iv) For any permutation p we will let p°”? denote the permutation obtained

by writing the entries of p in reverse order. Thus if p = p1,P2,......,Pn
then p°”? = pn,Pn-1,.- P2, P1. For any set of permutations S, we let

SorP = {p°PP : p € S}.

(v) Compositions of functions are applied from right to left:
fog(=) = f(9(2))-
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Applying this notation, the ith reduction in Definition 1.2 above can be
written as

p l i= fi : [plym: "-’p‘kv '"1pn]°
The reader can easily verify the following useful facts.

Lemma 1.1 Letn > 2 and let f = {f; : 1 < i < n} be a reduction on
Sn. Then for any p € S, we have

(i) P li=(pli)°’", and

(ii) R(p°PP) = R(p)°P.

_]_)eﬁnition 1.3 Let n be a positive integer such that n > 2 and let
f = {fi: 1 <i < n} be a reduction on S,. This reduction is said to
be faithful if for any p,q € S, p # ¢ — R(p) # R(q).

Another way to express Definition 1.3 is this: a reduction on S, is faith-
ful if, for any p in S, the set R(p) determines p. This is the point of view
in (3], where the main argument(for the regular reduction) leads directly to
an algorithm for reconstructing p from the set R(p).

Next let us describe a few more examples of reductions.

Example 1.1 (i) Let n > 2. There is an obvious way to generalize the
regular reduction on S,,. Let zy,z2,...,Z, be any ordering of the integers
1,2,...,n such that z, = n. For any i < n, we define

foul@) = zj if z = z; for some j < i
YT mj1 if 2 =z for some 5 >4
The reduction {fz, : 1 < i < n} will be referred to as a reduction of

regular type on S,,.
This reduction is faithful for n > 5, as follows isomorphically from the

result in [3].
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(ii) Let » > 3 and let a be an integer with 1 < a < n. Let 21,2, ...y Tpn—1
be any ordering of the set {1,2,...,n} — {a} such that z,_; = n. We define

fa(m)z{ z g:j;‘“‘d”*" andfori <n-—1,

a ifr=a
feu(z) =< z; if £ = z; for some j < i
zj-1 if z =x; for some j > ¢

The integer a will be referred to as a simple element for this reduction,
and by analogy with Example (i), we say that this reduction is the sum of a
reduction of regular type and one simple element. Such a reduction
is faithful for n > 5; this will follow from our work in the Section 3, so we

will not verify it here.

(iii) Let n > 4 and let a and b be distinct integers such that 1 < e <n and
1< b < n. Let 71,3, ..., Tn—2 be any ordering of the set {1,2, ...,n} —{a, b}
such that z,—2 = n. We define

if z#aand z # _ [z ifz#bandz#n
fa(w)={z foon " f"(“’)‘{b foon

a ifr=a

ifz=0
z; if z=x; for some j <<
zj—1 if z =z; for some j > 1

andfori<n-2, fglx)=

Using the same terminology as in Example (ii), we say that this reduction
is the sum of a reduction of regular type and two simple elements.
This reduction is not faithful. To show this, we exhibit two different per-
mutations with the same set of reductions.

Let p = 21, %2, ..., Zn-2,0,b and let ¢ = 21,73, veey T2, b, a. We will show
that R(p) = R(g). To see this, we first note that p | a = ¢ |l a =
T1,%2, ., Tn-3,0,band p | b=gq | b= 21,72,...,Tn-3,b,a. Fori <n -2,
we have p | z; = z1,%2,...,%n-3,0,b and ¢ | z; = 71, T2, ey Tn—-3,b,a. Let
U = T1,%2,...,Ln-3,0,0 and let v = Z1, 22, .., Tn-3,b,a. Thus R(p) and
R(q) are the same two-element set: R(p) = R(q) = {u,v}.

(iv) Let n > 5 and let a,b and c be distinct integers such that 1 < a < n,
1<b<nand1l<c<n. Let z,%s,...,Tn-3 be any ordering of the set
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{1,2,...,n} — {a, b,c} such that z,_3 = n. We define

z ifz ¢ {n,a,bc} z ifz ¢ {n,a,b,c}
a ifz=n b ifz=n
fa(z) = b ifz=c folz) = a ifz=c
c ifz=b ¢ ifz=a
z ifz ¢ {n,a,b,c}
c ifz=n
fe(z) = a ifz=b
b frz=a

z if z € {a,b,c}
andfori<n-3, fr(z)={ z; if £ = x; for some j < i
zj—1 ifz=z; for some j > i

This reduction is not faithful. To see this, let p = z,, 25, ..., £n—3, a, b, ¢ and

let ¢ = 21,%3,...,Z0-3,a,¢,b. We find that p | a = z1,73,...,Zn-4,0,¢,b
andp | b=z1,72,....,Tn—4,b,c,a and p|c=1x,22,...,Tn-4,¢,b,a.

For any i < n — 3 we have p | z; = 1,29,...,Tpn-4,0, b, c.

Similarly we find ¢ | a = 2, %3,...,%n-4,8,b,¢c and q | b = 21,22, ..., Zn-4, b, ¢, 0
and ¢ | ¢ = z1,%9,...,Zn-¢,¢,b,a. And for any i < n — 3 we have

q |l i = 71,%2,...,Tn_y4,a,¢,b. Thus p and ¢ have the same set of four
reductions. O

Our main interest here lies not just in reductions, but in reduction sys-
tems, wherein, for some positive integer ng, we are given a reduction on S,
for every integer n > ng. So we extend our definitions as follows.

Definition 1.4 (i) A reduction system for permutations is a set of
functions {f:n > no,1 < ¢ < n}, where ng is a positive integer such that
no 2 2, such that {f* : 1 < i < n} is a reduction on S, for all n > ng.

The reduction {f]* : 1 < i < ng} is referred to as the beginning reduction.

(ii) Let {f* : n > no,1 < i < n} be a reduction system. Suppose there is
a function ¢(n), defined for n > ng, with positive integer values, such that
#¢(n) < n for all n > ng, and having the property that
plé(n)li=pliln—1foralln > ng, foralli <n—1 and for all
P € Sp. Such a reduction system is called a linked reduction system.

The function ¢ is called the linking function.

(iii) A reduction system {f7 : n > no,1 < i < n} is said to be faithful if,
for every n > ng, {f* : 1 <i < n} is a faithful reduction on Sp,.
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Remarks: For a reduction system {f* : n > ng,1 <1 < n}, we will often
denote the reduction {f* : 1 < i < n} by 7. In this notation, a reduction
system is thus equivalently given by a sequence {f.:n > no} where f, is
a reduction on S, for every n 2 no.

A “finite-length” version of Definition 1.4 can also be formulated, in
which one has a set of functions {f* : nop < n < n;,1 < i < n} where
n, is a given integer such that n; > no. The modifications required are
obvious. All of the concepts we will be discussing for reduction systems ap-
ply equally well to their finite-length versions. In particular, we may have
ny = ng + 1, in which case such a reduction system (of length 2) consists
of two reductions, one on Sp, and one on Spy+1. To say that such a length
2 system is linked simply means that there is a positive integer j < no + 1
such that p L j L i =p | i | no for all i < no and for all p € Spo+1. In this
case we will say that the two reductions are linked by j.

Looking back at the simple and regular reductions on Sy, defined for
n > 2, we observe that both are linked reduction systems: the linking func-
tion is ¢(n) = n for the regular reduction, and #(n) = n —1 for the simple
reduction. If we consider these for n > 5, both are faithful. (Neither is
faithful for n = 4; two permutations with the same regular reduction set
are 3142 and 2413, and two with the same simple reduction set are 1243
and 2143.)

Although it will not be treated here, we note that there is a weaker form
of “faithfulness” for reductions that one can consider. Instead of forming
the set of reductions of a permutation p, we can form the multiset consist-
ing of these same reductions, in which each reduction p | ¢ occurs as many
times as there are integers j for which p | j = p | i. Let R'(p) denote
this multiset. We then say that the reduction is weakly faithful if, for
any permuations p and g, p # ¢ — R'(p) # R'(q). A similar term can
be applied to reduction sytems. Clearly any faithful reduction is weakly
faithful.

One can also consider a somewhat more general linking condition than
the one described above in part (ii) of Definition 1.4. One might replace
the integer n — 1 in condition (ii) by an integer ¥(n) < n for which
plén)li=plilyn)foralli<n—1landforallp€ 5,0

The two technical conditions in our next definition are also motivated by
the properties of the two natural reduction systems described above, The
regular and simple reduction systems both satisfy these conditions. The
first holds with k = n — 1 in both cases and it is easy to check. The second
condition requires a substantial argument for both reductions. We refer the
reader to [3] for the regular reduction; a similar kind of argument can be
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formulated for simple reductions.

Definition 1.5 Let {f* : n > no,1 < i < n} be a linked reduction system
with linking function ¢.

(i) The reduction system is said to be amenable if for every n > ng there
is an integer k < n such that, forallp€ S, pln|n—-1=plk|n-1.

(ii) The reduction system is said to have property P if for any n > ng and
for any p € Sy, the position of the entry ¢(n) in p is determined by the set
R(p). That is, if p and q are any permutations in S,, for which R(p) = R(q),
then #(n) has the same position in p as it does in q.

Generalizing the argument in [3] for regular reductions, we can establish
the following theorem.

Theorem 1.2 Any linked reduction system which is amena.ble, has prop-
erty P, and which begins with a faithful reduction, is faithful.

Proof: Let {fI* : n > no,1 < i < n} be a linked reduction system with
linking function @, which is amenable and which satisfies condition P, and
for which {f* : 1 < i < np} is faithful. We show that {ff:1<i<n}
is faithful for all n > ng by induction. Assuming that {f?:1 < i < n}
is faithful, let p and ¢ be any elements of S, for which R(p) = R(q).
Now, forall i < nwehavep | ¢(n+1) | i =p | i | n and, since the
system is amenable, for some k <n,pln+1]ln=p| k| n It follows
that R(p | ¢(n+ 1)) = {r — {n} : r € R(p)}, and similarly for q. Since
R(p) = R(g), it follows that R(p | ¢(n + 1)) = R(g | ¢(n + 1)). Since the
reduction is faithful on Sy, we deduce that p | ¢(n +1) = ¢ | ¢(n + 1).
Therefore the n-permutations p — {¢(n + 1)} and ¢ — {¢(n + 1)} must be
identical. Moreover, property P implies that ¢(n) has the same position in
p as it does in g. It follows that p=¢q. O

A closer look at the proof of Theorem 1.2 shows that property P can
actually be replaced by a slightly weaker condition as follows.

Corollary 1.3 Let F = {f: n > no,1 < i < n} be an amenable linked
reduction system with linking function ¢, and assume that the beginning
reduction{f'° : 1 < i < no} is faithful. Then F is faithful if the following
condition holds for all n > ng:

for any p,q € Sn, if p— {¢(n)} = ¢ — {¢(n)} and R(p) = R(g) then p = q.

Proof: The proof of Theorem 1.2 applies verbatim since, in the induction
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step, once we have deduced that p | ¢(n+1) =g | ¢(n + 1), this implies
that p— {¢(n+ 1)} =q—{¢(n+1)}. O

It will be convenient to denote the condition in Corollary 1.3 by P;.
Thus P; is the following statement: for any n > no and for any p,q € Sn,
if p— {$(n)} = g — {$(n)} and R(p) = R(g) thenp =g.

With obvious modifications, we also speak of the properties P and Py
for reduction systems of finite length. It is clear that Theorem 1.2 and
Corollary 1.3 hold for finite length systems as well.

With a view of applying Theorem 1.2 and Corollary 1.3 to obtain faith-
ful reductions, we now set out to investigate linked reduction systems in
general.

2. Linked Reduction Systems

Lemma 2.1 Let no > 4 and let {f* : n > no,1 < ¢ < n} be a linked
reduction system with linking function ¢. Then for all n > no and for all
i < n such that i # ¢(n) we have fl}(¢(n)) =n—1.

Proof: For contradiction, suppose we have a counterexample n and 4. Let
j = ¢(n). So we have f'(j) # n — 1. Now, let r be the unique integer for
which f2(§) = f~! o f}(r), and choose any

integer z < n such that fI'(z) # ¢ and such that z is not equal to any of
i,j or r. Let p be the permutation in S, whose first two entries are j, z,
followed by all the other elements of the set {1,2,...,n} in their natural
order. The first entry of p | i | n—11is f1*(j), and the first entry of p | j | ¢
is ff~! o fP(z). These two first entries are different because of our choice
of z. But, since the system is linked, we must havep | jli=p ¢ |n—-1
for every p in S,,. This is a contradiction. O

Our next lemma shows that, for any amenable linked reduction system,
the possible values for the linking function are extremely restricted.

Lemma 2.2 Let ng > 4 and let {fP* : n > ng,1 < i < n} be an amenable
linked reduction system with linking function ¢, Then, for all n > no, we
have either ¢(n) =nor¢(n)=n-1,andp|ln|n-1 =pln—-1|{n-1
for all p € Sp.

Proof: Let n > ng. Let j = ¢(n). Since the system is amenable, there is a
positive integer k <n -1 suchthatplnln—-1=p|l k| n—1foral
p € Sp. There is a unique integer 7 < n for which f(r) = k. We of course
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have r # j. We consider two cases.

Case 1: Suppose j < 7. Now,wehavep |n|n-1=p|k|n~1=
plj |l k. Applying this to the identity permutation p = e,,, we note that

plilk=f"tof:(1,2,.sd,0s ] andp | n | n—1=128...n—2.

It follows that f7 o f(z) =z forz < j, i lofMz) =z—1forj<z<r,
and ff 1o f}z) =z —2for z > r. Now, if there is any integer z # n — 1
for which either j <z < ror r < £ < n -2, let p be the permutation in
Sn, beginning with z and followed by all the other integers in their natural
order. The first element of p | j | k is fi'~! o fP(z), which is either z — 1
or z — 2. however, the first entry of p | n | n — 1 is clearly z. There-
fore no such z can exist. It follows that the possible values for (r, j) are
(n—2,n-3),(n—1,n—2),(n,n—1) and (n,n — 2). Let us see which of
these possibilities we can rule out.
Suppose we have (r,j) = (n,n — 2). As above, we know that o
n-2(z) =z for z <n -3, and f} “lo fn o(n—1) =n — 2. Consider the
permutation g =n—1,1,2,3,..,n—2,n. Thefirstentryof g [ n—2 | k is
2 Yo fo_o(n — 1) = n — 2. However, the first entryof g [ n | n —1 (just
delete n and n — 1) is 1. Since wemust haveg | n—2 | k=g |n |n—-1,
this is impossible. A similar argument, using ¢ =n,1,2,...,n — 1, rules out
(n—2,n—38) and (n—1,n — 2) as possibilities for (7, j). Therefore we must
have j=n—-1landr=n.

Next we turn to the value of k. We will prove that k = n — 1. We
argue by contradiction. Suppose k < n — 1. Now, we can apply the re-
lationp | n | n—1=p | k | n—1 to the identity p = e,. Since
J =mn-1, by Lemma 2.1, we have ff(n — 1) = n — 1. It follows that
plkln—1=fp:[1,2,..,k ...,n—1,n] Sincep | n | n—1=123..n—2,
it follows that

T ifr<k
fR@)=< z-1 ifk<z<n-1
n—-2 ifz=n

Now, let us apply therelationp | n | n—1=p | k | n—1 top =nl23..n-1.
The first entry of p | n | n—1is 1. By Lemma 2.1, we have ffMn-1)=n-1,
and so the first entry of p | k¥ | n— 1 is ff*(n). But this latter element is
n — 2, as shown above. Therefore we must have k = n — 1, which gives the
desired result for Case 1.

Case 2: Suppose j > r. The argument is entirely similar to that for
Case 1, and we deduce that r =n - 1,7 =n and k = n — 1. We omit the
details. O
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Lemma 2.2 shows the significant impact that amenability has for a linked
reduction system. An explanation is in order as to why it is natural to re-
quire this condition: the main idea of the proof of Theorem 1.2 is that a set
of reductions R(p) of a permutation p in S, is to be converted into another
set of reductions R(p | ¢(n)) (at the next level down) by deleting the entry
n— 1 from each of the elements of R(p). Since this set of deletions includes
p | n | n—1, this has to be accounted for as one of the elements p | o(n) | k
of the set R(p | #(n)), for some k < n — 1. Since, in a linked system we
havep | ¢(n) | k =p | k | n— 1, we are led directly to the amenability
condition. As Lemma 2.2 shows, for any linked reduction system satisfying
this condition, the value of k must in fact be n — 1 for every n > no. It is
a simple matter to describe exactly when this will occur, as follows.

Lemma 2.3 Let ng > 4 and let F = {fI* : n > no,1 < i < n} be a linked
reduction system. The following statements for this system are equivalent:

(i) F is amenable

" . T fr<n-1
() For every n > no, -y s given by 71 ={ =1 f2 <7
Proof: Suppose the system is amenable. Let n > no. By Lemma 2.2, we
havep |n | n—1=p|n—1|n—1forallp € Sp. Now, let k be the integer
for which f2_,(k) = n — 1. We claim that k = n. Suppose this is not the
case. Then k < n—1. Applying therelationp [nln—1=p|n—-1|n-1
to p = e, = 123...n, we find (as in the proof of Lemma 2.2) that

z ifze<k
z—-1 ifk<z<n-—-1

n-1@) =3 n_1 ifz=k

n—-2 ifz=n
Now, let p =n123...n — 1. The first entry of p | » | n —1 (wherein we just
delete n and then n — 1) is 1. However the first entryof p [n—-1{n -1
is clearly f7_;(n) = n — 2. Therefore we must have k = n. Looking again
at the result of applying the relationp | nln—-1=p|ln-1]n—-1to

P = ey, we see that (ii) holds.
Conversely, assume that the formula in (ii) holds for every n > no. Let
n > ng and let p € Sp. The reduction p | n — 1 is found by deleting n -~ 1
from p and then applying the function f7_; in place to each of the other
entries. When we do so, by (ii), all entries are unchanged except n, which is
changed to n—1. We then deleten—1fromp | n—1to getp ln-1]n-1.
The result is clearly the same as simply deleting » and n — 1 from p, and
soplnln-1=p|n—1|n—1. Therefore the system is amenable. 0O
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We next consider the extent to which the reduction at one level of a
linked reduction system determines the reduction at the next level. To do
s0, we first describe two ways in which any reduction can be “lifted” to a
reduction at the next level.

Definition 2.1 Letn>2andlet f = {fi : 1 <£i < n} be a reduction on
Sh. :

(i) Let g = {g: : 1 < i < n+1} be the reduction on S,; defined as follows:
filz) fz<nandz#i

gn+1(z) =z forz < n and, fori < n, gi(z) ={ " frontl

We say that g is obtained from f by a lifting of type 1 and we write
7= Li(f).

(ii) Let B = {h; : 1 < i < n + 1} be the reduction on Sp;; defined as
follows:

hati(z) =z forallz <n and h,.(z)={z ifz<n

n ife=n+1

filz) fz<nandz#i

and for all i < n, hi(zy)=¢ n ifz=n
filn) fz=n+1

We say that % is obtained from f by a lifting of type 2 and we write
R = Lo(F).

It is clear that § and h are indeed reductions in Definition 2.1. We also
note that, if @, and 5, respectively denote the simple and regular reduc-
tions on Sy,. then we have Gpn41 = L2(Gp) and 5,,; = L1(5,).

Lemma 2.4 (i) Let f = {fi : 1 < i < n} be a reduction on S, and let
g = L,(f). Then, with respect to these two reductions, we have
pln+lli=pliln forallp€ Sy and for all i < n, and
pln+lln=pln|n forallp€ Spyu.

(i) Let f = {fi : 1 <4 < n} be areduction on S, and let & = Ly(f). Then,
with respect to these two reductions, we have

plnli=pliln forall p€ Spy and for all i < n, and
plrn+lln=pln)ln forallpé€ Sas.

Proof: Since f, is the identity function on {1,2,...,n — 1}, the function
9n(z) is given by exactly the same formula as h,(z). As shown in the
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proof that (ii) implies (i) in Lemma 2.3, this implies, in both cases, that
pln+lln=plnln forallp€ Snsi. Asfor the linking conditions, we
give the argument for (ii); part (i) is done in the same way. So, let us show,
for fand h,that pln |i=p | il n forall p € Spy1 and for all i < 7.
This is trivial for i = n, so we assume that ¢ < n. Let p = p1,p2,...,Pn+1
be any permutation in Sn41. Let 7, s and ¢ respectively be the integers for
which p, = i,p, = n and p; = n + 1. In our argument we will assume that
r < 8 <t It is easy to see that the same kind of argument will work no
matter what the relative order of r, s and t. So, suppose that r < s < t. To
obtain the reduction p | n, we delete n from p and then apply the function
R, to the other elements in place. Since, by definition, k. fixes every ele-
ment except 7 + 1, which is changed to n, the result is

p l T = P1,P2s s Pry -y Ps—1:Ps+1, vesy Dt=1,T4 Ptt1y +e0y Prt1-

Now, to get p | n | i, we delete i from p | n and then apply the function
f; in place to the other entries. The result is fi(p1), fi (p2), -
very fi(pr—l)’ fi(Pr+1): eery fi(Pa—l)a fi(p&-{-l)) seey .fi(pt—l)) fi(n)s fi(Pt-l-l)’ eoey fi(Pn

On the other hand, to obtain p | %, we delete i from p and then apply the
function k; in place to the other entries. By definition, the value of h;(z)

is the same as f;(z), except for z = n, where it is n, and for n + 1, where

it is fi(n). Thus p | i is equal to fi(m), fi(p2), ---

s Fi@re1)y Fi(Prg1)s oor FiPam1)s s fi(Pot1)s s Fi(Pe-1)s fi(n), fi(Pra)s ooy fil

To obtain p | ¢ | n, we just delete n from p | i. We get fi(m), fi(p2), -
ooy i (Dre1), FilPra1)s ooy Fi(Pam1), Fi(Pat1)s ooy filPe-1), £i(n), FilDe41), s filPn

This is identical top  n ] 2. O

Another way to state the conclusions in Lemma 2.4 is as follows.
In (i), f and § form an amenable reduction system of length 2 which is
linked by n + 1, and in (ii), f and % form an amenable reduction system of
length 2 which is linked by n.

Using the two types of liftings described in Definition 2.1, we can now
give a complete characterization of amenable linked reduction systems.
Begging the reader’s indulgence, we will employ one more piece of nota-
tion. We will denote a reduction system {f : n 2 no,1 < i < n} bya
script letter such as F, and correspondingly, for n > ng, denote the reduc-
tion {fI* : 1 < i < n} on S, by Fu.



n} be a
}. Then

Theorem 2.5 Letng > 4dandlet F = {f*:n >np,1 <4
reduction system, and for any n > no, let F, = {fF:1<i <
the following are equivalent:

<
n

(i) F is an amenable linked reduction system
(ii) For every n > nq, either F,, = L1(Fn—1) or F, = La(Fp-1)

Proof: We can deduce the implication (ii) — (i) directly from Lemma 2.4.
Assuming (i), we define ¢(n) = n if F = L;(Fn_1) and ¢(n) = n— 1 if
Fn = Ly(Fn-1). The first parts of statements (i) and (ii) in Lemma 2.4
imply that ¢ is a linking function for the system. The second parts of (i)
and (ii) imply that the system is amenable.

In the other direction, let F be any amenable linked reduction system
with linking function ¢. By Lemma 2.2, for all n > ng, we have either
¢(n) = n or $(n) = n—1, and by Lemma 2.3, for every n > ng the function

T fr<n—-1

n—1 i8 given by f ,(z) = n—1 ifz=n

Let n > ng. We show that if ¢(n) = n then F, = L;(F,_1), and if
¢(n) =n—1 then F, = La(Fn-1). The two cases are done similarly, so we
will only present the argument for the second. So, let n > ng and suppose
we have ¢(n) =n — 1. Thismeansthat p [ n~1|i=p|i|n—1 forall
i <n—1and for all p € S,. Let ¢ be any integer with 1 <i < n—1, and
let p=e, =1,2,38,...,n. The formula for f?_,(z) implies that
pln-1=f3,:(1,2,3,.,n-1,n] = [1,2,3,..,n—1] and so
pln—-11i=fr"1:[1,2,...,9,.,n-1]

On the other hand, p | i = f : [1,2,.00y 8.0y 7t — 1,n]. Now, by Lemma
2.1, we know that f*(¢(n)) = n — 1, that is, f*(n — 1) = n — 1. Since
p | i | n—1 results by simply deleting n — 1 from p | i, we get
pliln—1=fr:[1,2,. 0. ,ni=1,n) = f1:[1,2,.03.,n — 2,n].
Comparing the two lists for p | i | n—1 and p | n— 1 | i, we see that
we must have f7'(z) = fP~!(z) for all z # i, except for z = n, for which
fMn) = ff'(n — 1). This is exactly what is needed to conclude that
Fn = La(Fn-1) O.

Theorem 2.5 says that, on the one hand, to construct an amenable linked
reduction system, we can choose (for any ng > 4) any beginning reduction
on Sp,. We then iteratively form reductions on S, for n > ng by lifting
the reduction from S,,_, using either a type 1 or type 2 lifting. The choice
of lifting, type 1 or type 2, is arbitrary at each step. Furthermore, every
amenable linked reduction system is constuctible in this way.
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We note that the regular reduction system, for n > ng, results by start-
ing with the regular reduction on Sn, and then applying liftings of type 1
repeatedly. The simple reduction system results by starting with the simple
reduction on Sy, and then applying liftings of type 2 repeatedly.

3. Faithfulness

We now turn to the goal of obtaining faithful reduction systems. By
Corollary 1.3, an amenable linked reduction system will be faithful if it
begins with a faithful reduction and if it satisties property P1. In light of
Theorem 2.5, we should now determine whether (beginning with a faithful
reduction) property Py results by applying a sequence of type 1 or type 2
liftings, and to what extent the beginning reduction plays a role.

To do so, we will first establish three lemmas which give much sharper
focus to property Pj.

Lemma 3.1 Let n > 3 and let f = {fi : 1 < i < n} be a reduction on
S, and assume that f,—1(n) = n — 1. Suppose a is either equal to n or
n — 1, and that we have fi(a) = n —1 for all ¢ < n such that i # a. Let
P = Z1,%2, ..., Tn—1 be & permutation of the set {1,2,...,n} —{a}. Let j and
k be integers such that 1 < j < j+1 < k < n. Let p; be the permutation
on the set {1,2,...,n} obtained by inserting a into p so that it occupies
position j: 1 = T1,Z2, sy Tj=1, By Tj Tjt1, -y Tn—1. Let p2 be obtained by
inserting a into p so that it occupies position k. Then R(p1) # R(p2).

Proof: Let us first assume that @ = n. Let s be the integer for which
z, = n — 1. We of course have p2 = Z1,%2,...; Zk—1, 8 Tk, Tk+1; -y Tn—1.
(Our notation for p; and p; is modified in the obvious way if j=1o0r
k =n.) Let us define sets Z(p1) and Z(pz) as follows:

Z(p) = {r : there is a permutation ¢ € R(p1) such that n — 1 occupies
position r in g}

Z(p3) = {r : there is a permutation ¢ € R(p2) such that n — 1 occupies
position = in ¢}

We will show that Z(p;) # Z(p2) from which our conclusion follows.

Case 1: s < j. In this case we note that, in the reduction p; | =,
where we simply delete n, the entry n — 1 occurs in position s. If ¢ is any
one of the integers z,,%3,...,zj—1 then, in the reduction p; | i, we delete
i and then apply f;. Under this function, because of our assumption in
the statement of the lemma, a becomes n — 1. Therefore n — 1 occupies
position j — 1 in p; | i. In a similar way we see that, if ¢ is any of the
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integers z;, 3, ..., Zn—1, then n — 1 occupies position j in »m | i It fol-
lows that Z(p1) = {s,j — 1,j}. Because j < k, it similarly follows that
Z(p2) = {s,k — 1,k} if k <n and Z(pz) = {s,k — 1} if k = n. Since s < j
and j+1 < k, the integer j does not belong to the set Z(p;). Since j does
belong to Z(p;), we conclude that Z(p,) # Z(p2).

Case 2: j < s < k. As in Case 1, in this case we again have
Z(p2) = {s,k—1,k} if k < n and Z(p;) = {s,k— 1} if k = n. And
similarly we have Z(p;) = {j — 1,4,8} if i > 1 and Z(p;) = {j,8} if j = 1.
Now j—1 is smaller than all of the integers s, k—1, k, so j—1 does not belong
to the set Z(pz). So the only possible way we could have Z(p;) = Z(p,) is
if Z(p1) = {4, s} where j =1, that is Z(p1) = {1, s}. The smallest element
of the set Z(p2) is s, and so if Z(p;) = Z(p2) we would have s = 1. But this
would imply that Z(p;) = {1}; this set clearly cannot be equal to Z(p;).

Case 3: k < s. In this case, we again note that Z(p;) = {s,k—1, k}.
Since j+1 < k < s, the integer j does not belong to the set Z(p;). However
Jj does belong to Z(p;). Therefore Z(p1) # Z(ps).

The same kind of argument gives the result when a = n—1. We let s be
the integer for which z, = n. We reverse the roles of n and n — 1 from the
first half of the proof, and again consider three cases. Let us just include
the details for one of these, say when s < j: this implies that the position
of n —1in p; | nis j — 1. The same position for n — 1 occurs in p; | i for
any of the other integers ¢ among 2, Z, ..., 21, because f;(n—1) = n—1.
Since fn—1(n) = n~1, in the reduction p; | n—1 it is position s whichn—1
occupies. If 7 is equal to any of z;,%;41,...,2n—1 then n — 1 has position
Jinp; | i. We thus have Z(p,) = {s,5 — 1,5}. In a similar way we find
that Z(pz) = {s,k — 1,k} if k < n and Z(p;) = {s,k — 1} if k = n. But j
does not belong to the set {s,k—1,k}, since j+1 < kand j > s. So Z(p2)
cannot be equal to Z(p;) D.

Lemma 3.2 Letn >3 and let f = {f; : 1 < i < n} be a reduction on
Sy and assume that fu._1(n) = n — 1. Suppose a is either equal to n or
n — 1, and that we have fi(a) = n — 1 for all i < n such that i # a. Let
p = Z1,%2,...,Tn—1 be a permutation of the set {1,2,...,n} - {a}. Let j and
k be integers such that 1 < j < k < n. Let p; be the permutation on the
set {1,2,...,n} obtained by inserting a into p so that it occupies position j
and let p; be obtained by inserting a into p so that it occupies position .

If {5k} # {1,2} snd {j, k} # {n— 1,n} then R(p:) # R(py).

Proof: We suppose a = n; the details are similar when ¢ = n — 1. By
Lemma 3.1, it is enough to consider the case when 2 < ji<n-2and
k = j+ 1. Let s be the integer for which z, = n — 1, and define Z(p1)
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and Z(pz) as in the proof of Lemma 3.1. As in that argument, we find that
Z(p1) = {s,j—1,7} and Z(pz) = {s,4,5+1}. These two sets are distinct. D

Lemma 3.3 Letn >3 andlet f = {fi;:1 <i<n}beareductionon S,
and assume that f,—;(n) =n — 1. Suppose a is either equal to n or n — 1,
and that we have f;(a) = n — 1 for all ¢ < n such that i # a. Suppose p;
and py are two different permutations in S, such that py — {a} = p2 — {a}

and R(p1) = R(p2)-

(i) If a = n, there is an integer r < n— 1 and a permutation 2, Z2, ..., Tn-3
of the set {1,2,...,n} — {n,n — 1,7} such that either

PL = 1,32, Tn-3, 7 — 1,7, and p2 = 11,22, ..., Tn-3,n—1,n,7 O
p=n,m,n—1,21,22,..,Zn—3 and p2 =7,n,n —1,%1,22,...; Tn-3

(i) If a = n—1, there is an integer 7 < n—1 and a permutation zy, 22, ..., Tn-3
of the set {1,2,...,n} — {n,n — 1,7} such that either

D1 = 1,22,y ey Tn-3, %y Ty — 1 and po = 1,%2,...,Tn-3,m,n — 1,7 oOF

p1=n-1,7,n,1,%2,...,Tn-3 and pz =nn—1,n,21,%2,...;Zn-3

Proof: We will do (i) and leave (ii) for the reader. So, suppose that a = n.
By the preceding lemma, we know that the positions of n in p; and ps are
consecutive and are either {1, 2} or {n—1,n}. These two cases are opposites.
We will show that the first pair of equations holds for p; and p; in the case
of {n—1,n}. The opposite case then follows directly from this using Lemma
1.1. So we then suppose that n is last in p; and second last in p2. So we have
Pl =T1,T2y ey Tn=3; Tn—-2,Tn-1,N and P2 = 1,22y .-y Tn—-3,Tn-2,N, Tn-1 .
What we need to show is that z,_2 = n — 1. To do so, let s be the integer
for which z, = n — 1. With Z(p;) and Z(p2) defined as above, we have
Z(py) = {s,n— 1} and Z(p2) = {n — 2,n — 1,}. Since R(p1) = R(pz), we
also have Z(p1) = Z(pz). This implies that n — 2 = s, as desired. O

The relevance of the preceding lemmas to the condition P, is clear: if Fn
is the nth reduction in an amenable linked system then, by Lemmas 2.2 and
2.3, T, satisfies the conditions on f stated in Lemma 3.3, with a = ¢(n).
Therefore, in attempting to determine whether condition P; holds for Fs
all we have to do is consider whether it is possible that R(p;) = R(p2) for
two permutations p; and p2 given by the equations in (i) or (ii) in Lemma
3.3, depending on whether f,, has been obtained from f,_, by a type 1
or type 2 lifting. As we will see next, these possibilities can be explicitly
characterized.
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Lemma 84 Letn > 3. Let f = {fi: 1 <4 < n— 1} be a faithful
reduction on S,_; and let g be a reduction on S,, which has been obtained
from f by applying a lifting of type 1 or 2. Then g does not satisfy property
P, if and only if the following condition holds:

there is an integer r < n — 1 and an ordering z;, z,, ey T3, Tn—2 of the
set {1,2,...,n — 1} — {r} such that z,_2 = n — 1 and such that

f,.(z)={ z g:f;i”f““”‘l and, for all i <n -2,

r ifz=r
fz(x) =4 z; if z = z; for some j < z
zj—1 ifz =z; for some j > i

Proof: Notice that these equations entirely define the reduction f. We
recognize the description for f from Example 1.1(ii) in Section 1 above.
Using the terminology of that example, we can paraphrase this lemma as
follows: if f is faithful and if either Ly(f) or Lo(¥) is not faithful, then f
is a reduction of regular type plus one simple element.

Let us do type 2 liftings first. We apply Lemma 3.3 to § = Ly(F) with
a = ¢(n) = n—1. We need to show that, if there are permutations p,
and p; given by either of the pairs of equations in (ii) of Lemma 3.3, and
if R(p1) = R(p2), then f must be given by the above equations. It will
become clear that both pairs of equations lead to the same description for
7, so we will only need to give the details for one of these. So let us suppose
that we have an integer r < n — 1 such that

P1=1T1,T2,..,Zpn-3,n,",n—1 and p; =2z,29,...,Zn-3,n,n— 1,7

and for which R(p;) = R(pz). We observe that the set R(pz) has only one
element whose last entry is n — 1, namely ps | r. Since p1 | nis such an
element in R(p,), it follows that po | 7 =py | n = 21,23, ..., Zpn-3,7,n — 1.
Since py | r = g, : [21,2Z2, ..., Zn—3, 7, 7 — 1], the latter equality implies that

gr(z) = { :: :tf,: z ; and z # n Now, by definition of the type 2

fr(z) fzr<n—landz#r

lifting, we have g.(z)=¢ n-—-1 ifz=n-1
fr(n—1) ifz=n

From this it is clear that f. is given by the formula stated in the lemma.

Now, for any i < n — 3, the last entry of the reduction p; | z; is n — 1.
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Since, as already observed, R(p2) has only one element whose last element
is n — 1, all of these reductions p; | z; must be equal to
p1 |l n=121,%2,...,Tn-3,7, 7 — 1. But we have

p | %i = gz, ¢ [21, %2y ey £iy ooy Tns, M, 7, — 1]. Therefore we get

z; if z = z; for some j <1

zj—y if x = z; for some j > i
gz,(z) ={ ZTn-3z ifz=n

T ifz=r

n-1 fe=n-1

But again, by definition of the type 2 lifting, we have

fzi(2) ifr<n—1land z #z
gz‘($)= n-—1 fz=n-1
fz,(n—1) ifz=n

From this it follows that f, is given by the formula stated in the lemma.

In the other direction, if the functions fz, and f, are given by the formu-
las stated in the lemma, then g, and g, are also given as above. Looking
back at Example 1.1(jii) in Section 1 we see that g is a regular reduction
plus 2 simple elements, namely r and n—1. As verified in that example, the
permutations py = 1,22, ..., Tn-2,T N — 1 and p2 = z1,%2, ...; Tn-2,0— 1,7
have the same set of reductions, and so property P fails for g.

An obvious modification of the preceding argument shows that we are
led to exactly the same description for the functions f;, and f, if the sec-
ond pair of equations in lemma 3.3 applies; we just consider the elements
of the reduction sets whose first entry is n — 1, rather than those whose last
element is n — 1.

The argument is similar for type 1 liftings. Let § = L1(f) and suppose
g does not satisfy property Py. As in the proof for type 2 liftings, we will
only consider one of the pairs of equations in part (i) of Lemma 3.3, the
other leading to the same set of equations. We thus assume that we have
an integer r < n — 1 and permutations p; = 71,2, ..., Zn-3, 7 — 1,r,n and
P2 = T1,T2, .y Tn-3,7 — 1,n,7 for which R(p1) = R(p2). We observe that
n—1 is last in every one of the reductions of p; except for p; | n. So R(p1)
has exactly one member in which n — 1 is not last. So the same must be
true for ps. It follows that p2 | z; =p2 | n—1=p2 1 n =p; | n. Denote
n —1 by zn—2. Now we have

p2 l n—1=gn-1: [xlyzZs eeey :1:,,_3,n,r] =p1 l n= [31,222, vy Tn—3, n"'l) ‘l’]

90



z ifztn—landz#n

From this we deduce that g,_;(z) = { n-1 ifz=mn

We also note that R(p2) has exactly one member for which n — 1 is the last
entry, namely p2 | r. So the same must be true for the set R(p;). Since
P71 | n—1 is a member of R(p;) which ends with n — 1, we must have
p1ln—1=ps | r. Thus we have

On—1:[Z1,22, .., Tn-3,7, 0] = gr : [T1,T2, 0, T3, — 1,n).

Since the former is equal to [z, 2, ..., Zn-3,7,n — 1], we deduce that
z ifr#nandz#n-1

gr(z) =

r fr=n-1
n—1 ifz=n

Similarly, since R(p;) only has one member, p; | n where n — 1 is not last,

we must have
P2l zi =p1 | n for all £ < n — 3. From this we get

9z, : [wlym% m)“ﬁ% vy Tn-3,n —1,m, 1‘] = [.‘31,.’132, o0y -3, N — -1,7‘]

z; if z = z; for some j < i
z;.y ifz =z, for some j > i
and so we find g, (z) = .,-J ' if:z:=7’J !

n-1 ifz=n

Now, because this is a type 1 lifting, we have, for all t < n,

n—-1 ifz=n
formulas for f. Conversely, we can easily show that if the conditions on Fi
hold, then g does not have property Py: the two permutations p; and p,
described in the proof have the same reduction set. O

gt(z) = { filz) z#tandz#n Therefore we can deduce the stated

Using the terminology of Example 1.1(ii) in Section 1, we can express
the conclusion of Lemma 3.4 in an equivalent way as follows.

Corollary 3.5 Letn >3andlet f={f;:1<i< n-1} be a faithful
reduction on S,_;. If f is not the sum of & reduction of regular type plus
one simple element, then both liftings L1 (f) and Lo(f) are faithful.

Now, let us conclude by applying these results to reduction systems.
Suppose we generate an amenable linked reduction system by choosing a
faithful starting reduction F,, on Sy, and then applying a sequence of type
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1 and type 2 liftings. In order to use our results to deduce that the system
is faithful, we need to know that none of the reductions generated is the
sum of a regular reduction plus one simple element. It is not sufficient to
assume this for Fy,. For example, if we take F,, to be the (canonical)
regular reduction on Fp, then La(Fy,) is equal to the sum of a reduction
of regular type plus one simple element, the simple element being no. If
we apply a second type 2 lifting, we obtain one of the reductions discussed
in Example 1.1(iii) of Section 1, with two simple elements, which is not
faithful. We can formulate a condition to avoid this type of problem. We
need one more result.

Lemma 3.6 Let n > 3 and let f be a reduction on S,,. Then
(i) L2(¥) is not a reduction of regular type.

(ii) If L2(F) is the sum of a reduction of regular type plus a simple element,
then the simple element must be n and f is a reduction of regular type.

(i) L1(F) is not equal to the sum of a reduction of regular type plus one
simple element.

(iv) If L, (F) is & reduction of regular type so is f.

(v) Let no > 4 and let {F,, : n > no} be a linked amenable reduction sytem.
If F,, is not equal to a reduction of regular type or the sum of a reduction
of regular type plus one simple element, then the same is true for F, for
all n > no.

Proof: Suppose welet f = {fi:1<i<n}andweletg={g:i:1<¢<
n+ 1} denote the lifting L2(f) in (i) and (i), and Ly(f) in (iii) and (iv).
To prove (i), we note that in the reduction Lo (F), there is an element a = n
having the property that fo(n + 1) = a and for all = # a, fz(a) = a. A
reduction of regular type has no such element.

For (iii) we note that a simple element a would have the property that

_fz ifr#aandz#n+l
ga(z)—{ a fz=n+1
under a type 1 lifting, all the functions g, for t # n+1, map n+1 to n,
so no such element a can exist.

For statements (ii) and (iv), the assumption gives us explicit formulas
for all of the functions which comprise g. By directly applying the def-
inition of type 1 or 2 lifting as appropriate, we immediately get explicit
formulas for all of the functions comprising f. The conclusions are then
made directly. We include the details for (iv). If § is a reduction of regular
type there is an ordering z1, 2, ..., Tn4+1 Of the set {1,2,...,n+1} such that

and g:(a) = a for any ¢ # a. But,
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zj if z = x; for some j < ¢

Znt1 =n+1 and such that g;,(z) = { zj~1 if z =z; for some j > i

By definition of L), we have gn41(z) = z for all < n and, for all £ < n,

_f fi(z) fz<nandz#t
gt(x)—{ n  ifz=n+1

z;  if x =z; for some j < i

It follows that z,, = n and that f,,(z) = { Tj_1 if = z; for some § > i
- R ]

and so f is a reduction of regular type with respect to the ordering z;, 2, ...,

For (v), we recall that each reduction in a linked system can be obtained
from the previous one by applying a lifting of type 1 or 2. So (v) follows
by induction using statements (i) through (iv). O

Corollary 3.5 and part (v) of Lemma 3.6 imply the following theorem.

Theorem 3.7 Let no > 4 and let {F, : n > ng} be an amenable linked
reduction sytem. Suppose F,, is faithful and is not equal to a reduction
of regular type or the sum of a reduction of regular type plus one simple
element. Then F, is faithful for all n > ng.

Corollary 3.8 Let ng > 5 and let {F, : n > ng} be an amenable linked
reduction sytem which begins with the simple reduction on S,,. Then F,
is faithful for all n > ng.

One can construct other suitable starting reductions in an ad hoc man-
ner, by deliberately avoiding the structure of simple types, regular types
and regular types plus a simple element. In such a case, we would also need
to obtain and verify the faithfulness of that particular reduction.

It is also worth noting what happens if the beginning reduction is reg-
ular. It is easy to see that a type 1 lifting of a reduction of regular type
is again of regular type. Using this fact together with the above results, it
can be seen that, if we begin with a regular reduction and do not apply two
type 2 liftings in succession, the resulting reduction system will be faithful.
If two liftings of type 2 are ever applied in succession then the reduction
obtained at that point will not be faithful.
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4. Some directions for future work

As was mentioned in the remarks following Definition 1.4, one can also
consider the notion of weakly faithful reductions, in which one considers
the multiset of reductions R'(p) for a permutation p: a reduction is weakly
faithful if p # ¢ — R'(p) # R'(q). To what extent can the above results
be extended to weakly faithful reductions? How significant is the difference
between faithfulness and weak faithfulness for permutation reductions?

We would like to suggest two other possible directions for further study.
One was briefly hinted at in the remarks following Definition 1.4. It involves
looking at a somewhat more general “linking condition” in the definition of
a linked reduction system. Specifically, the condition that
p1¢(n)1i=p1iln—lforalliSn—lmightbereplacedbythe
condition p | ¢(n) }i=p il ¥(n)foralli < n—1, where ¥(n) can be an
arbitrary integer-valued function with 1 < ¢(r) < n—1 for all n. To what
extent can our results on linked systems and faithfulness be generalized?
How can one construct interesting classes of examples, and for what types
of functions ¥(n)?

Finally, it would be interesting to have additional constructive infor-
mation with which to recognize unfaithful reductions. Is there a small
collection of particular kinds of unfaithful reductions (including examples
such as Example 1.1(iii) and (iv) above), having the property that any un-
faithful reduction must obtain a copy of one of these? Can this at least be
done for a broad class of reductions?
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