Walk Regular Digraphs *

Wen Liu^a Jing Lin^b

a. Math. & Inf. College, Hebei Normal University, Shijiazhuang, 050016, China
 b. Beijing Daxing No.5 High School, Beijing, 102600, China

Abstract

A strongly connected digraph Γ is said to be walk regular if for any nonnegative integer l and any vertex u of Γ , the number of circuits of length l containing u depends only on l. This family of digraphs is a directed version of walk regular graphs. In this paper, we discuss some basic properties of walk regular digraphs.

1 Introduction

Let $\Gamma=(V,E)$ be a digraph with the vertex set V and the arc set E. If $(u,v)\in E$, we say that u dominates v. The set of vertices of Γ dominated by u is said to be the out-neighbors of u, denoted by $\Gamma_+(u)$. The set of vertices of Γ dominating u is said to be the in-neighbors of u, denoted by $\Gamma_-(u)$. A digraph Γ is said to be regular of valency k if $|\Gamma_+(u)| = |\Gamma_-(u)| = k$ for any vertex u of Γ . A walk of length l in Γ is a sequence $(u_0, u_1, ..., u_l)$ of vertices such that $(u_{i-1}, u_i) \in E$, i = 1, 2, ..., l. If u_l dominates u_0 , the walk $(u_0, u_1, ..., u_l)$ is said to be a circuit. The girth of Γ is the length of a shortest circuit. If a digraph contains an edge, its girth is 2. The number of arcs traversed in a shortest walk from u to v is called the distance from u to v in Γ , denoted by $\partial(u,v)$. The maximum value of the distance function in Γ is called the diameter of Γ . A digraph is said to be strongly connected if, for any two distinct vertices u and v, there is a walk from u to v.

Definition 1.1 A digraph is said to be walk regular if for any given non-negative integer l and any vertex u of Γ , the number of circuits of length l containing u depends only on l.

^{*}Research supported by National Natural Science Fund of China(10771051), Natural Science Fund of Hebei Province(A2008000128), Science Foundation of Hebei Education Department(2009134) and Youth Science Foundation of Hebei Normal University(L2008Q01)

Let Γ be a digraph with diameter D. For $0 \le k \le D$, the distance-k matrix A_k , is defined by

$$(A_k)_{uv} := \left\{ egin{array}{ll} 1 & ext{if } \partial(u,v) = k, \\ 0 & ext{otherwise.} \end{array}
ight.$$

In particular, $A_0 = I$, and $A_1 = A$, which is the adjacency matrix of Γ . If $AA^T = A^TA$, then Γ is said to be normal. About normal matrices, there are the following properties:

Proposition 1.1 ([1]) Let A be an $n \times n$ complex matrix with eigenvalues $\lambda_0, \lambda_1, \ldots, \lambda_{n-1}$. Then A is normal if and only if any of the following assertions holds:

- (a) $U^*AU = D$ for some matrix U such that $UU^* = I$, and $D = \operatorname{diag}(\lambda_0, \lambda_1, \ldots)$
- (b) $A^* = p(A)$ for some polynomial $p \in \mathbb{C}[x]$.
- (c) $tr(AA^*) = \sum_{i=0}^{n-1} |\lambda_i|^2$.

Let A be a normal matrix with d+1 distinct eigenvalues $\lambda_0, \lambda_1, \ldots, \lambda_d$ with multiplicities m_0, m_1, \cdots, m_d and $m(x) = (x - \lambda_0)(x - \lambda_1) \cdots (x - \lambda_d)$ is the minimal polynomial of A. Let $A(\Gamma)$ be the adjacency algebra of Γ . It is known that $\{I, A, \cdots, A^d\}$ is a basis of $A(\Gamma)$ and $d \geq D$ since the powers I, A, A^2, \cdots, A^D are linearly independent. From Proposition 1.1(a), we know that the eigenvectors of a normal $n \times n$ square matrix constitute an orthogonal basis of the vector space \mathbb{C}^n , with inner product $\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^* \mathbf{v}$. For each polynomial $p \in \mathbb{C}[x]$ we define p operates on the vector $\mathbf{v} \in \mathbb{C}^n$ by $p\mathbf{v} = p(A)\mathbf{v}$. For each λ_i , let U_i be the matrix whose columns form an orthonormal basis of the eigenspace $V_i := Ker(A - \lambda_i I)$. Then the orthogonal projection onto V_i is represented by the matrix $E_i = U_i U_i^*$, or alternatively, $E_i = \frac{1}{\phi_i} \prod_{j=0, j \neq i}^d (A - \lambda_j I)$, where $\phi_i = \prod_{j=0, j \neq i}^d (\lambda_i - \lambda_j)$. These matrices are called the principal idempotents of A and satisfy the following properties: $E_i E_j = \delta_{ij} E_i$, $AE_i = \lambda_i E_i$. Also $\{E_0, E_1, \cdots, E_d\}$ is a basis of $A(\Gamma)$.

Then we can give the orthogonal decomposition of the unitary vector \mathbf{e}_u of \mathbb{C}^n , represented vertex u as follow:

$$\mathbf{e}_{u} = \mathbf{z}_{u}^{0} + \mathbf{z}_{u}^{1} + \ldots + \mathbf{z}_{u}^{d},\tag{1}$$

where $\mathbf{z}_{u}^{i} = E_{i}\mathbf{e}_{u}, i = 0, 1, ..., d$.

From the decomposition (1), we call Γ spectrally regular if $m_u(\lambda_i) := (E_i)_{uu}$ does not depend on u, where the notion $m_u(\lambda_i)$, is analogous to that of u-local multiplicity of eigenvalue λ_i , introduced by Fiol, Garriga and Yebra[7] for undirected graphs. It is easy to see that $\sum_{u \in V} m_u(\lambda_i) = m_i, 0 \le i \le d$ and $\sum_{i=0}^d m_u(\lambda_i) = 1$.

In this paper, we first discover the relationship between walk regular digraphs and spectrally regular digraphs, then discuss some properties of normal walk regular digraphs. Finally, we prove a special class of walk regular digraphs is distance-regular.

2 Main Results

Lemma 2.1 If A is normal, then

$$m_u(\lambda_i) = \|\mathbf{z}_u^i\|^2.$$

Proof. Since $E_i^* = (U_i U_i^*)^* = U_i U_i^* = E_i$, then

$$\begin{aligned} \|\mathbf{z}_{u}^{i}\|^{2} &= \langle \mathbf{z}_{u}^{i}, \mathbf{z}_{u}^{i} \rangle = (\mathbf{z}_{u}^{i})^{*} \mathbf{z}_{u}^{i} \\ &= (E_{i} \mathbf{e}_{u})^{*} E_{i} \mathbf{e}_{u} = \mathbf{e}_{u}^{T} E_{i}^{*} E_{i} \mathbf{e}_{u} \\ &= \mathbf{e}_{u}^{T} E_{i} \mathbf{e}_{u} = (E_{i})_{uu}. \quad \Box \end{aligned}$$

Let Γ be a walk regular digraph. Then for each nonnegative integer l, $(A^l)_{uu}$ is the number of circuits of length l containing u. The following result is a natural extension of the corresponding result for walk-regular graphs, given by Fiol and Garriga [5] and Delorme and Tillich [2].

Theorem 2.2 Let Γ be a normal digraph. Then the following conditions are equivalent:

- (i) Γ is walk regular;
- (ii) Γ is spectrally regular.

Proof. If Γ is spectrally regular, suppose $A^l = \alpha_0 E_0 + \alpha_1 E_1 + \cdots + \alpha_d E_d$. Then for any vertex $u \in V$,

$$(A^{l})_{uu} = (\alpha_{0}E_{0} + \alpha_{1}E_{1} + \dots + \alpha_{d}E_{d})_{uu} = \alpha_{0}(E_{0})_{uu} + \alpha_{1}(E_{1})_{uu} + \dots + \alpha_{d}(E_{d})_{uu}.$$

For each k, $(E_k)_{uu}$ is independent of u, hence A_{uu}^l does not depend on u. Γ is walk regular.

Conversly suppose Γ is walk regular. Let $E_k = \beta_0 I + \beta_1 A + \cdots + \beta_d A^d$. Then

$$m_{u}(\lambda_{k}) = (E_{k})_{uu} = (\beta_{0}I + \beta_{1}A + \dots + \beta_{d}A^{d})_{uu} = \beta_{0}(I)_{uu} + \beta_{1}(A)_{uu} + \dots + \beta_{d}(A^{d})_{uu},$$

which implies that $m_u(\lambda_k) = \frac{m_k}{n}$, as desired. \square

Assume that A has d+1 distinct eigenvalues $\lambda_0, \lambda_1, \ldots, \lambda_d$ with $|\lambda_0| \ge |\lambda_1| \ge \ldots \ge |\lambda_d|$. By the Perron-Frobenius theorem, λ_0 is simple and has a positive eigenvector \mathbf{v} , if Γ is k-regular, then we may pick $\mathbf{v} = \mathbf{j}$, where \mathbf{j} denotes the all 1- vector, and $\lambda_0 = k$.

Proposition 2.3 Let Γ be a normal walk regular digraph. Then Γ is regular.

Proof. By Lemma 2.1, $m_u(\lambda_0) = \|\mathbf{z}_u^0\|^2 = \nu_u^2/\|\nu\|^2$. By Theorem 2.2 $\nu_u = \nu_v$ for any distinct $u, v \in V$; and so $\nu = \nu_1(1, 1, \dots, 1)^T$. Hence Γ is λ_0 - regular.

For a given digraph Γ with adjacency matrix A, we consider the following scalar product in $\mathbb{C}[x]$:

$$\langle p, q \rangle = \frac{1}{n} tr(p(A)q(A)^*)$$

It is obvious that the product is well defined in the quotient ring $\mathbb{C}[x]/(m(x))$ Notice that $1, x, x^2, \dots, x^d$ are linear independent in $\mathbb{C}_d[x]$, then by using the Gram-Schmidt method and normalizing appropriately, it is immediate to prove the existance and the uniqueness of an orthogonal system of polynomials $\{p_k\}_{0 \le k \le d}$ called predistance polynomials introduced by Fiol and Garriga in [4], which, for any $0 \le h, k \le d$, satisfy:

- $(1) \ deg(p_k) = k;$
- (2) $\langle p_h, p_k \rangle = 0$, if $h \neq k$; (3) $||p_k||^2 = p_k(\lambda_0)$.

Definition 2.1 ([1]) A digraph Γ of diameter D is weakly distance-regular if, for each nonnegative integer $l \leq D$, the number a_{uv}^l of walks of length l from vertex u to vertex v only depends on their distance $\partial(u,v)=k$, for any $l = 0, 1, \dots, D$. In this case we write $a_{uv}^l = a_k^l, 0 \le k, l \le D$.

Recall that, in a weakly distance-regular digraph, we have D = d([1], Theorem)2.2) and such polynomials satisfy $p_k(A) = A_k$, $0 \le k \le d$.

Theorem 2.4 Let Γ be a normal digraph with predistance polynomials p_0, p_1, \dots, p_d . Then the following statements are equivalent.

- (i) Γ is walk regular;
- (ii) The matrices $p_k(A)$, $1 \le k \le d$, have null diagonals.

Proof. Suppose Γ is walk regular . For $1 \leq k \leq d$, let $p_k(x) = \sum_{i=0}^k \gamma_i x^i$. Then $p_k(A) = \sum_{i=0}^k \gamma_i A^i$. For each vertex u,

$$(p_k(A))_{uu} = (\sum_{i=0}^k \gamma_i A^i)_{uu} = \sum_{i=0}^k \gamma_i a_0^i.$$

For each $1 \le k \le d$, we have

$$0 = \langle p_k, p_0 \rangle = \frac{1}{n} tr(p_k(A)) = \frac{1}{n} \cdot n \sum_{i=0}^k \gamma_i a_0^i = \sum_{i=0}^k \gamma_i a_0^i.$$

Hence $p_k(A)$, $1 \le k \le d$, have null diagonals.

Conversly, suppose $p_k(A)$ have null diagonals for each $1 \le k \le d$. Let $x^l = \sum_{k=0}^l \alpha_{lk} p_k$. Then $A^l = \sum_{k=0}^l \alpha_{lk} p_k(A)$ and

$$(A^l)_{uu} = \sum_{k=0}^l \alpha_{lk}(p_k(A))_{uu} = \alpha_{l0}(p_0(A))_{uu} = \alpha_{l0}.$$

Therefore $A^l_{uu} = \alpha_{l0}$, which is independent of u and Γ is walk regular. \square Let Γ be a normal walk regular digraph with the adjacency matrix A. Then by Proposition 1.1(b), $A^T = p(A)$ for some polynomial $p \in \mathbb{C}[x]$, so we may assume that $A^T = \mu_0 I + \mu_1 A + \cdots + \mu_d A^d$. Hence for any two vertices u and v with $(u,v) \in E$, the number of walks of length l from v to u is a constant. In particular, if the digraph Γ satisfies the very strong condition (Δ) : For any two vertices $u,v\in V$ with $\partial(u,v)=k$, $0\leq k\leq D$, the number $b^l_k(u,v)$ of walks of length l from v to u is independent of the choice of u and v. The following Theorem tells us that a digraph satisfying (Δ) is nothing but the distance-regular digraph.

A digraph $\Gamma = (V, E)$ with girth g is called stable if partial(u, v) + partial(v, u) = g for any pair of vertices $u, v \in V$ at distance 0 < partial(u, v) < g.

Theorem 2.5 Let Γ be a strongly connected regular digraph with girth $g \geq 3$. Then Γ is distance-regular if and only if Γ satisfies the condition (Δ) .

Proof. Firstly we conclude that if Γ satisfying the condition (Δ) , then Γ is stable. Let $(u=u_0,u_1,\cdots,u_{g-1})$ be a circuit of length g. It is obvious that for all 0 < t < g, $partial(u,u_t) = t$. It follows that $b_t^{g-t} > 0$. Now let u,v be two vertices with $\partial(u,v) = t$, 0 < t < g. Then there exists a walk of length g-t from v to u by $b_t^{g-t} > 0$, which implies that $partial(v,u) \le g-t$; and so partial(v,u) = g-t. By [3], D=g or D=g-1.

For any two vertices u and v with $partial(u,v)=k,\ 0 \le k \le D$, we consider the number $a_k^l(u,v)$ of walks of length l from v to u. Assume that Γ satisfying the condition (Δ) . If k=0, A_{uu}^l is just b_0^l and if k=D=g, $a_D^l(u,v)=b_D^l(u,v)=b_D^l$. If 0 < k < g, we have $a_k^l(u,v)=b_{g-k}^l(u,v)=b_{g-k}^l(u,v)=b_{g-k}^l$ since Γ is stable. It follows that the numbers a_k^l , $0 \le k \le D$, are constants. Hence Γ is a stable weakly distance-regular digraph, which is a distance-regular digraph by [1].

The converse is obvious.

References

- [1] F.Comellas, M.A.Fiol, J.Gimbert and M.Mitjana, Weakly distance-regular digraphs, J. Combin. Theory Ser. B 90(2004), 233-255.
- [2] C.Delorme, J.P.Tillich, Eigenvalues, eigenspaces and distances to subsets, Discrete Math. 165/166(1997), 161-184.
- [3] R.M.Damerell, Distance-Transitive and Distance-Regular Digraphs, Journal of Combinatorial Theory, Series B 31(1981)46-53.
- [4] M.A.Fiol, E.Garriga, From local adjacency polynomials to locally Pseudo distance-regular graphs, J.Combin. Theory Ser. B 71(1999), 162-183.
- [5] M.A.Fiol, E.Garriga, The alternating and adjacency polynomials, and their relation with the spectra and diameters of graphs, Discrete Appl. Math. 87(1998)(1-3), 77-97.
- [6] M.A.Fiol, E.Garriga, Spectral and Geometric Properties of k-Walk-Regular Graph, Electronic Notes in Discrete Mathematics 29(2007)333-337.
- [7] M.A.Fiol, E.Garriga, J.L.A. Yebra, Locally Pseudo-distance-regular graphs, J.Combin. Theory Ser.B 68 (1996), 179-205.