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Abstract
The Padmakar-Ivan (PI) index is a Wiener-Szeged-like topological index
which reflects certain structural features of organic molecules. In this paper we
study the PI indices of bicyclic graphs whose cycles do not share two or more
common vertices.
INTRODUCTION

Wiener index (W) and Szeged index (Sz) were introduced to reflect certain
structural features of organic molecules [1-3]. [4, 5] introduced another index
called Padmaker-Ivan (PI) index. PI index is a very useful number in chemistry,
as demonstrated in literature [5-13]. In [5] authors studied the applications of PI
index to QSRP/QSAR. It turned out that the PI index has a similar
discriminating function as Wiener index and Szeged index, sometimes it gave
better results. Hence, PI index as a topological index is worth studying. In [6]
authors pointed out that PI index is superior to °X, >X and logP indices for
modeling Tadpole narcosis. For the previous results about PI index, see [14-19].

Let G be a simple connected graph. The PI index of graph G is defined as
follows:

PI(G) = ¥[n.(e|G) + n.(e|G)],
where for edge ¢ = uv n.(e|G) is the number of cdges of G lying closer to u
than v, n.(e|G) is the number of cdges of G lying closer to v than u and
summation goes over all edges of G. The edges which are equidistant from u
and v are not considered for the calculation of PI index [15). In the following
we write n,, instead of n,,(e}G).
PRELIMINARIES

Definition 2.1[20]. A graph G is called a bicyclic graph if therc exist two edges
€1, & EE(G) such that G—{ e}, e;} isa spanning trce of G. That is, G is a
bicyclic graph if and only if G is a simple connected graph with n vertices and n
+ 1 edges.
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Definition 2.2. Let e = uv € E(G) and e € E(Cax+1), Where Caxi = XiXa.. XokeiXys
X1 = U, Xaxe = V. Let g
Ee1 = {€) € E(G)—E(Cx+)| the shortest paths from u to e, and
from v to e, must pass through Xy« respectively}.
We call E,., the attached edges at vertex xy.1. Let hy+1 = | Exa1l
Lemma 2.3[5]. (1). Let Cz,+ be an odd cycle, n> 1, we have
PI(Can+1) = 2n(2n + 1).
(2). Let Cy, be an even cycle,n > 2, we have
PI(Cyy) =4n(n—1).
MAIN RESULT
Theorem 3.1. Let G be a bicycle graph whose cycles do not share two or more
common vertices, n = |V(G)|.
(1). When G contains two odd cycles Cas1 and Caui, We have
PI(G) = n(n—1) + 2(k + t);
(2). When G contains two even cycles Cy and Cy, we have
PI(G) = n(n+1)—2(k + t);
(3). When G contains an odd cycle Cx.; and an even cycle Cy, we have
PI(G) =n*+2(k—t1).
Proof. Claim 1: Let e = uvEE(G). When e is not contained in any cycle, we
have
Ney + Ny =M.
In fact, suppose e, is equidistant from u and v, there exist two shortest paths P,
and P, from u to e, and from v to €, respectively, where e, # e. Hence,
W= {e} UP,UP,U {e)}
is a closed walk which contains a cycle containing ¢, a contradiction. Claim 1
follows.
Claim 2: Let C be an cven cycle, e = uvEE(C), we have
Ney + Ney=0n—1.

In fact, let C = x,X;... XakX;, wWhere x;=1u, Xpx = V. By the definition of G there
are two edges X)Xz and XXk which are equidistant from u and v. Similarly,
X;X;+) is not equidistant from u and v, where xxin EE(C), i £k, i# 2Kk, Xak+1 = X1,

Let e,E€ E(G)—E(C), let P; and P4 be the two shortest paths from u to e, and
" from v to e, respectively.

Case 2.1. e, €E(C,), where C, is a cycle and C,#C.



By the definition of G, P; and P, must pass through the same vertex Xj to e,
wherc ;€ V(C). Let zEV(P;)NV(P,) and z be the first vertex from u to e,
along P;. Since

[E(P3)| = [E(P4)],
we have
[E(P3(u,2)] = [E(P4(v, 2))|.
Define
C;=P;3(u,z) UPy(v, 2) U {uv}.

Obviously, C, is an odd cycle contained by C, which is a contradiction. Hence,

e; is not equidistant from u and v.
Case 2.2. e, is contained in no cycle.

Similarly, we can prove that e, is not equidistant from u and v.

By Definition 2.1 we have |E(G)} = n + 1. Claim 2 follows.

Claim 3: For an odd cycle Cy+1, € = uvE E(Cyyt)), n = |V(G)|, we have

D In,(e|G)+n,(e|G))=2k(n+1).

e E(C 34 ,)

In fact, by the definition of G and Lemma 2.3 wc have
Neu(€|Carr1) + Nev(€]Cornr) = 2k.
Let r = |[E(G)|—|E(Cgx+1)), by Definition 2.1 we have r = n—2k. By Definition
22wehaver=h; +hy+... + hyyy.
Without loss of generality, let € = uv, Coi1 = XiXa... Xoks1X), Where X, = u, Xpa
= v. By the definition of G we have d(u, x.1) = d(v, x+1). Hence, by the
definition of G and Definition 2.2 we know that the edges in E,4, are
equidistant from u and v, hence, they have no contributions to  n,(e|G) +
n.,(e|G). Similarly, the edges in E; are not equidistant from u and v, hence, they
have contributions to n.,(e|G) + n.(e|G), j #k + 1. Thus, we have
Ney(€|G) + neu(€lG) = 2k + r—hy..
By symmetry we have

S [n,lG) +n, (|G

ecE(C y,)
=2k(2k+ 1) +r—h; + ... + r—hy,
= 2K(2k + 1) + 2kr
‘ =2k(n + 1),
Claim 3 follows.



By Claim 1, Claim 2 and Claim 3 we have
(1). When G contains two odd cycles Cox+t and Cyy, We have
PI(G) =2k(n + 1) + 2t(n + 1) + n(n + 1 —2k—1—2t—1)
=n(n—1)+2(k +1);
(2). When G contains two even cycles Cy, and Cy, we have
PI(G) = 2k(n—1) + 2t(n—1) + n(n + 1 —2k—2t)
=n(n+1)—2(k +1);
(3). When G contains an odd cycle Cx; and an even cycle Cy, we have
PI(G) = 2k(n + 1)+ 2t(n—1) + n(n + 1 —2k—1—21)
=n’+2(k—t).
The theorem follows.
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