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Abstract: Let G = (V, E) be a simple connected graph with n vertices.
The degree of v; € V and the average of degrees of the vertices adjacent
to v; are denoted by d; and m;, respectively. The spectral radius of G is
denoted by p(G). In this paper, we introduce a parameter into an equation
of adjacency matrix, and obtain two inequalities for upper and lower bounds
of spectral radius. By assigning different values to this parameter, one can
obtain some new and existing results on spectral radius. Specially, if G is
a nonregular graph, then

o(C) < max {dvm,- — djm; + \/(dim; — dym;)? ~ 4d;d;(d; — d;)(m; —mJ)}
1<j<ikn 2(d —d)

and

p(G) > min (Emizdmyt Vdims — dimy)? ~ Adid; (di — ;) — my)
1<j<ign 2(dz _ d]) .

If G is a bidegreed graph whose vertices of same degree have equal av-
erage of degrees, then the equality holds.
AMS classification: 05C50
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1. Introduction

Let G = (V,E) be a simple connected graph with n vertices and e
edges. The vertex set of G is denoted by V' = {vy,v2, ...,v,}. Two vertices
v; and v; being adjacent is denoted by v; ~ v;. For v; € V, the degree of v;
is denoted by d; and the average of degrees of the vertices adjacent to v; is
denoted by m;, that is, m; = dl‘_ Y d;. Let A and é denote the maximum

v ~Y;
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vertex degree and the minimum vertex degree of G, respectively.

Let A(G) be the adjacency matrix of G. Since A(G) is a real symmet-
ric matrix, its eigenvalues must be real, and may be ordered as X (G) >
A2(G) > ... 2 Au(G). The sequence of n eigenvalues is called the spectrum
of G, the largest eigenvalue A, (G) is often called the spectral radius of G,
denoted by p(G) = A\ (G).

2. Some upper bounds for spectral radius

We now list some known upper bounds for the spectral radius p(G).
(a) (Collatz and Sinogowitz [1}) If G is a connected graph of order n,
then
p(G) < p(Kn) =n—1. 1)

The upper bound occurs only when G is the complete graph K.
(b) (Collatz and Sinogowitz [1]) If G is a tree of order n, then

p(G) < p(K1n-1) = VR - 1. 2

The upper bound occurs only when G is the star K n_1.
(c) (Hong [2]) If G is a connected unicyclic graph, then

p(G) < p(S3), 3

where S3 denoted the graph obtained by joining any two vertices of degree
one of the star K ,—1 by an edge. The upper bound occurs only when G
is the graph S3.

(d) (Brualdi and Hoffman [3]) If e = (£), then

p(G)<k-1, (4)

where the equality holds iff G is a disjoint union of the complete graph Kj.
and some isolated vertices.
(e) (Stanley [4])
p(G) < (-1 +V1+8e)/2, (5)

where the equality holds iff e = (’;) and G is a disjoint union of the complete
graph K} and some isolated vertices.
(f) (Hong [5]) If G is a connected graph, then

p(G) £V2e—n+1, (6)

where the equality holds iff G is one of the following graphs:
(I) the star K n—1;
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(IT) the complete graph K,,.
(g) (Hong, Shu and Fang [6]) Let G be a simple graph, then

0—-14++/(6+1)2+4(2e—dn
() < L1t VOF P A - bn) ™
where the equality holds iff G is either a regular graph or a bidegreed graph

in which cach vertex is of degree either § or n — 1.
(h) (Berman and Zhang [7]) If G is a connected graph, then

p(G) < mam{vdidj :1<4,j< n, V;U; € E}, (8)

where the equality holds iff G is a regular graph or bipartite semiregular
graph.

(i) (Favaron and et al. [8])
(I) For any graph G without isolated vertices

P(G) < maz{m;:v; € V}. 9)
(II) For any graph G
P(G) < maz{/dim; : v; € V}. (10)
(i) (Das and Kumar [9]) If G is a simple connected graph, then
P(G) < maz{/mim; : vv; € E}, (11)

where the equality holds iff G is either a graph with all the vertices of equal
average degree or a bipartite graph with vertices of same set having equal
average degree.

(k) (Das and Kumar [9]) Let G be a simple connected graph,then

p(G) < V2e—(n—1)3 + 3 - 1)A, (12)

where the equality holds iff G is a regular graph or a star graph.
(1) (Shu and Wu [10]) Let G be a simple connected graph with degree
sequence A =d; > ds > ... > d, =, then

— j 2 . — .
p(G)SlrSn‘.iSnn{d’ 1+\/@+l)2+4(z D =di)y - g

where 1 <4 < n. If i=1, the equality holds iff G is a regular graph. If
2 < i < n, the equality holds iff G is either a regular graph or a bidegreed
graphin whichd; =dy=...=di.y=n~1landd;=..=d, =4.
(m) (Shu and Wu [10]) Let G be a simple connected graph with second
largest degree A'. If there are p vertices with degrec A, then
A — 1+ /(A +1)%2 + 4p(A = AY)

p(G) < 5 . (14)
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The equality holds if and only if G is a A-regular graph, or G = K, + H,
where H is a (A’ — p)-regular graph with n — p vertices (The join K, + H
of disjoint graph K, and H is the graph obtained from K, U H by joining
cach vertex of K, to each vertex of H).

(n) (Stevanovic [11]) If G is connected and non regular, then

1

PG <A - o Ty

(15)

The upper bounds from (1) to (4) are applied to some particular graphs.
Hong [12] has pointed out that the upper bound in (6) is an improvement
on the upper bound (5). Das and Kumar [9] has pointed out that the upper
bound (10) is better than the upper bound (6).

3. Some lower bounds for spectral radius

We now list some known lower bounds for the spectral radius p(G).
(o) (Collatz and Sinogowitz [1]) If G is a connected graph of order n,
then
p(G) 2 M(Fn) = 2cos(r/(n +1)). (16)

The lower bound occurs only G is the path P,.
(p) (Hong [2]) If G is a connected unicyclic graph, then

p(G) 2 M(Cr) =2, (17)

where C,, denotes the cycle on n vertices. The lower bound occurs only G
is the cycle C,.
(q) (Favaron and et al. [8]) For any simple graph,

p(G) > VA. (18)

The lower bound occurs only G is the star K a.
(r) (Das and Kumar [9]) If G is a simple graph with at least one edge
and d; is the highest degree of G. Then

(i +d; = 1) +/(ds +d; - 1)2 — 4(ds — 1)(d; — 1) + 4c}; + B1;v/dr
p(G) 2 5 ,
(19)
where d; = maz{dy : vivx € E} and ¢y  is the cardinality of the common
neighbors of v, and v;.

4. Main results
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Lemma 1 [13]. Let G be a simple connected graph with n vertices and A
its adjacency matrix. Let P be any polynomial and S;(P(A)) is the row
sums of P(A) corresponding to vertex v;. Then

minS;(P(A)) < P(p(A)) < mazS;(P(A)).

The equality holds if and only if the row sums of P(A) are all equal.
Lemma 2. For any simple graph G with n vertices, there exists at least
a vertex v; € V, such that d; > m;, where d; and m; arc the degrec of
the vertex v; and the average of degrees of the vertices adjacent to v;,
respectively.

Proof.

=>4 =>de, ZZd _ng.

v~y i=1 v,
Assume for all ¢ € {1,2,...,n}, we have d; < m;, then
Sd<3 Y =3
i=1 vj~v;
This is a contradiction.
O

Theorem 3. Let G be a simple connected graph with n vertices and p(G)
be the spectral radius of G. The degree of the vertex v; and the average of
degrees of the vertices adjacent to v; are denoted by d; and m;, respectively.
Then

— 2 R ITL: — e 4di" 4li ;
min T+ VT +4d,x+4d,:n,} < p(G) < max { z+ V12 ¥+ 4dd;x + dd;m 1
1<i<n 2 1<i<n 2

where £ € D = {z|z > max {—2d; + 2V/di(di — m;)},d; > m,).
<ikn
If G is a regular graph, or G is a bidegreed graph whose vertices of
same degree have equal average of degrees, that is for all d; = dj,i,j €
{1,2,...,n}, have m; = m;, then the equality holds.

Proof. Note that S;(A*) is exactly the number of walks of length k in G
which begin fromn v;. In particular

Si(A) =d

(20)

and

L Tt 2
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For Vz € R, we have
Si(Az) + .’IIS,(A) =d;m; + zd;.

Let

Dax {Si(A%) +=Si(A)} = max {dim; +2d;} = M;
and

1Ignii£n{si(A2) +zS;(A)} = fg“;ié‘n{dimi +zd;} =m.
By Lemma 1

m < p(G)? +2p(G) < M.

Solving the quadratic inequality, we obtain

- 2 - 2
:1:+\/2cc +4m<p(;)< x+\/; +4M, (B)
or
—_ — 2 —_ — 2
T \/;? +4M<p(G)< T \/;: +4m. ©)

For (B), we get

-z + Vz2 + 4d;jz + 4d;m;

i -z + Vx* + dd;x + dd;m;
1558 ) }<p(G) < mex {

2 }
Since z2 + 4d;x + 4d;m; > 0,i € {1,2,...,n}. For d; > m;, we have

2 € (=00, (—2d; — 2/d;(d; — ma))] U [(~2d; + 2v/d:(d; — ma)), +00).

Since

) —z + V12 + 4d;z + 4dym;
lim
T——00 2
when z € (—o0, (—2d; — 24/di(d; — m;))], the inequalities (20) is meaning-
less, thus we consider z € D.
(i) If G is a regular graph, then m; =d;,i =1,2,...,n. Forz € D,

= +OO,

—z+ V2 + ddiz + 4d;m;

12 2 b= g = A,
and
. =T+ Vz* +4diz 4 4dimy .
min } = min d; =4,
1<i<n 2 1<i<n
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the equality holds.
(ii) Let G be a bidegreed graph with vertices degrec A and §. For all
d; = dj;,%,j € {1,2,...,n}, we have m; = m;. Then

- 2 iz +4dim;
(R,

y -z +Vz? +4Ax + 4Ampa -z + V2t + 46z + 45m5}
- 2 ' 2 ’

where ma and m;s are denoted by the average of degrees of the vertices
adjacent to d; = A and d; = (3,7 € {1,2,...,n}), respectively. Let

—z+ V22 +4Az +4Ama  —x + V22 + 40z + 40m;
2 - 2 :

Solving this equation we have

_AmA —51715
A-§

Zo =

For this zo, the row sums of P(A) are all equal. By Lemma 1

-z 4 V22 + dd;z + dd;my;

pG) = max{ 3 }
. —z+Vz? +ddx + 4d;m;
= min { }
1<ikn 2
Ampa — g Amp - dmg

= fA(—_ﬁ—‘) = fa(——A_"é"")

Ama — dmg + \/(AmA - 577).5)2 - 4A(5(A - 6)(mA - mg)
28— 9) :

(21)

where we denote fa(x) = fi(z) when d; = A and f5;(z) = f;(z) when
d; =46.14,5€{1,2,..,n}.

a

Remark. We have similar inequalities about (C). For £ <« 0, we can use
the inequalities to obtain some similar results to the Corollary 11 and the
Corollary 12.

Corollary 4 {8].

p(G) < 1?{3'5xn d;m;.

Proof. Since 0 € D, the result follows by =0 and Theorem 3.
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Corollary 5.

p(G) > 1rsnz'1£n dim;. (22)
Proof. The result follows by =0 and Theorem 3.
O
Corollary 6.
5 < p(G) < A. (23)
The equality holds if and only if G is a regular graph.
Proof. Let
_ p) - e
fi(z) = EVE +24dz$ - 4d,m,’i =12,..,n

Differentiating f;(z) we obtain

, 1 z +2d;
/ = —(—=1 .
f'(x) 2( + \/a:2 +4d,~1:+4d,~m,')

(i) If d; > m;, then f{(x) > 0, fi(z) is an increasing function of z, and

T > —2d; + 2\/(1? —d;m; or =<-2d;— 2\/(112 —d;m;.

(ii) If d; < my, then fi(z) < 0, fi(z) is a decreasing function of z, and
z€R.
Either d; > m; or d; < m;

_ 3 X ooy
lim fiz)= lim —=rYE tadatddm
T—+00

z—+00 2

If we denote that d; = A and d,, = 4, then
(i) d1 > mq, fi(z) is an increasing function of z and

xll’llloo fl(a:) = d1 =A.
(ii) dn < My, fa(z) is a decreasing function of z and
a:BToo fo(z) =d, =4.

So
6= min d; < p(G) £ max d; = A.
1<ign 1<ikn

Clearly, The equality holds if and only if G is a regular graph.
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Corollary 7. Let

—z + V12 + dd;x + 4d;m;

R = inf{ max { 5 e
and
{ {—x+ Va2 +4d,-:v+4d,~m,~}}
"= :lelg lglzlgn 2 )
Then
r < p(G) < R. (24)

Proof. Since for alli € {1,2,...,n}, fi(z)(z € D) are continuous monotone
functions, the function Jpax. { fi(z)} and the function 1r<nm {fi(z)} are also

continuous functions. 3z, € D, such that

1‘?‘]&)( {fz(-’zl } < max {ft(o)} = ma»x my,

and Jzs € D, such that

11(11112 {fi(z2)} = r<mn {fi(0)} = mm d;m;.

Since
1I<nlél {fi(z)} < max {f,(l‘l)} < max vdim;,
1xya&x vdim; is a upper bound of mm { fi(z)}, by the existence theorem
sn
of supremum, the supremum of mm { fi(z)} is cxistent. Similarly, the

infimum of max {fi(z)} is ex1stent Let
1<i<n

. . —x+ \/3,'2 + 4d1,.'L + 4d,-m,-
r = sup{ mip {fi(=)}} = sup{ min { 3 h

and

_ —z + V12 + 4d;x + 4dim;
= tm VN = If i | 2

1

clearly, r < p(G) < R.
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Clearly, the upper and lower bound (24) is better than the upper and lower
bound (20), respectively. Since

the upper and lower bound (24) is also better than the upper bound (10)
and the lower bound (22), respectively.
Corollary 8. If G is a nonregular graph, then

dim; — djm; + /(dim; — djm;)? — ddid;(d; — dj)(m; — m;)
p(G) < | max { 2(d; — d;) b
(25)
If G is a bidegreed graph whose vertices of same degree have equal
average of degrees, then the equality holds.
Proof. If G is a nonregular graph , then 3¢,5 € {1,2,...,n}, such that
d; # dj. We solve the simultaneous equations for =

{ filz) =0
fi(z) =0,
we obtain
_dim; —djm;

di —d;
Clearly
' . dim; — d;m; dim; — d;m;

-.._-— < <
151:7!1<1?5nf( =4, ) <p(G) < | Jnax f(= = d; ),

where d; # d;.
Since
f(_d,m —djm; m; — dym; + \/(dimi - _,'mj)2 - 4didj(d,' — d;}(m; —my)

PEra 2d: - 3

The result follows by Theorem 3.

If G is a bidegreed graph whose vertices of same degree have equal
average of degrees, let d; = A and d; =34, i,j € {1,2,...,n}. Then we have
that

mi — djm; + /(dim; — djmy)? — ddid;(di — dj)(mi — m,-)}

Jpex { 2(d; — d;)
Amp — dms + v/ (Ama — dms)2 — 4A6(A — §)(ma — ms)
- 2(A - 6) ‘

By (21), the equality holds.
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O
Corollary 9. If G is a nonregular graph, then

p(G) > min dim; — danj + \/(d,m, - djmj)2 — 4didj(d,' - dj)(m,- - m,-) }
1<j<ign 2(d; - d;)
(26)
If G is a bidegreed graph whose vertices of same degree have equal
average of degrees, then the equality holds.
Proof. Similar to the proof of Corollary 8.
Theorem 10. Let G be a simple graph with n vertices and e edges. Let
A be the maximum degree of vertices of G and p(G) be the spectral radius
of G. Then

p(G)ZA—1+\/(A+21)2—4(An—2c)' (@7)

Proof. We use the symbol v;~v; to denote two vertices v; and v; are not
adjacent. From (A) we have that

S(4%) = " dj=dim

Vv

= 2-di— Y d;

% —d; — (n~d; — 1A
= 2+ (A—1)d;— Aln — 1).

v

(D)

Hence

S;(A%) — (A —1)S;(A) = 2e— A(n —1).
As this holds for every vertex v; € V. Lemma 1 implies that
P(G)? = (A =1)p(G) 2 2¢ — A(n - 1).
Solving the quadratic inequality, we obtain
2(C) > A-1+4 \/(A+21)2—4(An—2e).
In order to the equality to hold, all incqualities in the above argument
must be cqualities, from (D) we have that

> dj=(n-d;~1)A.

v~

It implies that G is a regular graph.
Conversely, if G is a regular graph the equality is satisfied.
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O

For (20), by assigning different values to the parameter z, we can obtain
some existing results on spectral radius.
Corollary 11. For v; € V of satisfy the condition d; > m;, if m; > 2— .,

then
p(G) S max {1+ V1 +dim; —2d;}, (28)
Proof. Let z = -2,
— p) ) —
T+ VT +24d,z+4d,m, 1+ ITd = 2d,

when d; > my, m; > 2 - F, 14+ dim; — 2d; 2 0, —2 € D, the result follows
by £ = —2 and theorem 2.

Corollary 12. For v; € V of satisfy the condition d; > m;, if m; > %— T6d
then

. 3++1/9—24d; + 16d;m;
)2 2l o 29

Proof. Similarly, z = -1.5 € D, the result follows by x = -1.5 and theorem
2.

O
Example. Fig. 1.
v vy
v3 vq g
G
Fig.1.

p(G) = 2.9354 [14, p.273, fig.1.16].

-z+vz24+122+36 [ 3 (z>-6) .
2 =\ —z—3(z < —6) °

—z + V2 + 16z + 40
5 .

fi(z) = fao(z) =
—z+ V2 482+ 28
2

f3(z) = fs(z) =
D =[-8 + 2V, +00).

s fa(z) =
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fi(z) fi(2), fa(z) | fa(z), fs(z) Ja(z)
x T€R z€R z>-8+2v6orz<-8-2/6
fi(z) <0 <0 >0 (z > —8 + 2v/6)
limx_..f_mf,'(x) dl = d2=3 d3 = d5=2 d4=4
y

f3(z) = fs(z)

X

: /‘,‘ fi(z) = f2(z)

In Fig.2, when -2 <z < -1,

R= :jrelif){ma:c{ﬁ(x)afz(fl’),fs(l')af4($)yf5(-'z)}} =3.

Hence
p(G) < 3.
Let
fa(z) = fa(=),
we obtain g = —1.5,
T o= Slelg{m’tn{fl(x)a f2(x)’f3(z)a fd(z)’fS(m)}}
= fg(-—l...r)) = f4(—15) ~ 2.886.
Hence

p(G) > 2.886.
Since £ = —2 € D, by (28), we have

p(G) <maz{l+vVI+9-6,1+VI+7—4,1+1+10-8} =3,

and £ = —1.5 € D, by (29), we have

‘ VI— T2 ¥ 144 - ~06
p(G)me{3+ 9 472+144’3~+\/9 448+112,3+\/9 4%+160}a:2.886.
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The various mentioned upper bounds for the graph shown in Fig.1 give
the following results:
(7),(24),(25),(28) (8) (9) (10),(12) (i1) (13),(14) (15) (23)
3 3464 35  3.162 324  3.236 3.9997 4

The various mentioned lower bounds for the graph shown in Fig.1 give
the following results:
(18) (19) (24),(26),(29) (22) (23),(27)
2 2622 2.886 2.646 2 )
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