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ABSTRACT

In this paper, the critical group structure of the Cartesian product
graph Cy x C,, is determined, where n > 3.
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1 Introduction

Let G = (V, E) be a finite connected graph without self-loops, but with
multiple edges allowed. Then the Laplacian matrix of G is the |V| x |V|
matrix defined by

_ | d(u), ifu=v,
L(G)uv _{ —Qyy, if us#uv, (1.1)

where a,, is the number of the edges joining v and v, and d(u) is the degree
of u.

Regarding L(G) as representing an abelian group homomorphism: Z!V!
— ZWI, its cokernel coker(L(G)) = Z!Vl/im (L(G)) is an abelian group,

determined by the generators z,,-- - , v and relation L(G)X = 0, where
z; =(0,---,0,1,0,---,0) € ZIYl, whose unique nonzero 1 is in position i,
and X = (z1,---,z)yv|)*. Note that the same symbol z; denotes both an

clement of the group coker(L(G)) and a basis element of the free abelian
group Z!V1,
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The finitely generated abelian group coker(L(G)) can be described in
terms of the Smith normal form (or simply SNF) of L(G). Two integral
matrices A and B of order n are equivalent (written by A ~ B) if there
are unimodular matrices P and @ such that B = PAQ. Equivalently, B is
obtainable from A by a sequence of elementary row and column operations:
(1) the interchange of two rows or columns, (2) the multiplication of any
row or column by —1, (3) the addition of any integer times of one row
(resp. column) to another row (resp. column). It is easy to see that A ~ B
implies that coker(A) & coker(B). Given any |V|x|V| unimodular matrices
P and Q and any integral matrix A with PAQ =diag(ay,--- ,qyv)), it is
casy to see that ZIV1/im(A) = (Z/a1Z) ® - -- ® (Z/av|Z). Here, the rank
of L(G) is |V| — 1, with kernel generated by the transpose of the vector
(1,---,1). Thus we can assume the SNF of L(G) is diag(t1,"-- ,tjv|-1,0),
and it induces an isomorphism

coker(L(()) = K(G)® Z. (1.2)

where K(G) = (Z/t12) © (Z/t22) ® -+ - ® (Z[t\v|-12).

In [1] and [5 (Chapter 14)], the finite abelian group K(G) is defined
to be the critical group of G. Its invariant factors ty,t2,- - ¢jy|—1 can be
computed in the following way: for 1 < ¢ < |V|, t; = A;/A;—, where
Ao =1 and A; is the i—th determinantal divisor of L(G), defined as the
greatest common divisor of all i x ¢ minor subdeterminants of L(G). From
the well known Kirchhoff’s Matrix-Tree Theorem (7, Theorem 13.2.1] we
know that ¢; - - - t;y|—; equals the number « of spanning trees of G. It follows
that the invariant factors of K (G) can be used to distinguish pairs of non-
isomorphic graphs which have the same &, and so there is considerable
interest in their properties. If G is a simple connected graph, the invariant
factor ¢; of K(G) must be equal to 1, however, most of them are not easy
to be determined.

Compared to the number of the results on the spanning tree number
K, there are relatively few results describing the critical group structure of
K(G) in terms of the structure of G. There are also very few interesting
infinite family of graphs for which the group structure has been complete
determined (see [2, 3, 4, 6, 7, 8], and the references therein). In this
paper, we describe the critical group structure of Cartesian product graph
Cy x Cyp (n > 3) completely, where C,, is the cycle on n vertices.

Given two disjoint graphs G; = (i, E1) and G2 = (Va, E;), their
Cartesian product is the graph G; x G2 whose vertex set is the cartesian
product Vi x V2. Suppose u1, uz € Vi and vy, vo € Vo. Then (uy,v1) is
adjacent to (ug,v2) if and only if one of the following conditions satisfied:
(i) w1 = up and (v1,v2) € Es, or (ii) (u1,u2) € Ey and v; = v2. One
may view G; x Gz as the graph obtained from G> by replacing each of its
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vertices with a copy of G, and each of its edges with |Vi| edges joining
corresponding vertices of G in the two copies. From the definition of the
Cartesian product of two graphs, it is easy to see that there are n layers
of C4 x Cy, each of which is a copy of Cy. Let Z,, denote Z/nZ, then for
i€ Zy, j € Zy, let vj— denote the j-th vertex in the i-th layer of Cy x C,,.
The vertex v; is adjacent to vertices v_fi and vi, where =i+ 1, k=j+1(
mod 4) (see Fig. 1).
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Fig. 1. Graph Cy x C,,.

2 Preliminaries

Let m be a positive integer. Decnote a(m) = L'ﬁﬁ%m, B(m) =
m+2—+/ IEE 7L . —
Aot up(m) = mm(a”(m) = BP(m)), vp(m) = of(m) +
pP(m), for p € R.
By the following proposition 2.1, it is easy to see that for every integer
p 2 0, up(m) and vy(m) are integral. The propositions 2.1 and 2.2 can be
easily proved by induction.

Proposition 2.1. Ifp is integral, then

{up(m) = (m + 2)upo1(m) — wp_a(m), -
vp(m) = (m + 2)vp—1(m) — vp_2(m), ’

with initial values

( ) = 01 U (m) = 1,

131



And if g > 0 is another integer, then uye(m) = vp(g_1)(M)uy(m)+uyg—2)(m).

Proposition 2.2. If p is a nonnegative integer, then

o up(m)=p( mod m), vp(m)=2( mod m); (2.3)

o vgp(m) = m(m + 4)u(m) + 2; (2.4)
_ 1 Va(m)up(m), i ¢ :

+ o) ={ O 3

where

Vo(m) = Z Up(g+1-2i) (), Vq'('m)= Z vp(q+1—2i)(m) - L
0<2i<q 0<2i<q+1
(2.6)

If n is a positive integer of the form pf! - .- pi" where the p!s are distinct
primes, then let Ty, (n) denote t;. Let e, = un(2), fo = un(4).

Proposition 2.3. Let To(n) = to, T3(n) = ta, for n > 2. Then we have
0, if to=0,
Do) ={ %1 5 B30 D) =t Dilen) = tai and Ta(f) =
0, if to=0,
ts+1, if t2>0.

Proof. Let n = 2'2q, where q is odd.

By (2.5), en = V(2)ea:z and f, = Vj(4)f2:2. By (2.3), vp(2) and v,(4)
are even for every p and then from (2.6) we have that V;(2) and V(4) are
odd. Thus Ty(e,) = Ta(ezz) and To(fn) = To( fgtq) If to = 0 then
To(egt2) = To(e1) = 0 and T2(for2) = T2(f1) = 0. Now we prove by induc-
tion on t2 > 0 that To(eq:) = t2+ 1 and To(faez) = ta2. This is valid if £ =
1. Since from (2.4), (2.5) and (2.6) it follows that ets = vge;-1(2)egez-1 =
(12€2,,-2 + 2)ege,-1 and forr = vorp-1(4) foro-1 = (32f2,-2 + 2)f2z2 1, then
by the induction hypothesis we have that Th(epe.) = T2(12€2,,-2 + 2) +
T2(82z2 1) = 1+t2 and Tg( 2:2) = T2(32f2,2_g+2)+T2(f212—1) =1+4it-1=
ta. Thus Tz(en) =ts+ 1 and Tz(fn) = tq.

Let n = 33y, where 31 1.

, .

By (2.5), en = { Kzggzj“ 5117 Note that vn(2) = 4un-1(2) -
n—-2(2) = vp—1(2)—vn—2(2) = —vp—3( mod 3), %(2) =2, 1(2) =4 = I(
mod 3), v2(2) = 14 = 2( mod 3), v3(2) =52 = 1( mod 3), v4(2) =194 =
2( mod 3), v5(2) =724 =1 ( mod 3). Then it is not difficult to see that
1f2’{'y then U3ta (y4+1-21) (2) =2 ( mod 3); if 2 I Y then 1)3!3(.7_'_1_2,;)(2) =1 (
mod 3). Hence, if 2 { v, then Vj(2) =2 x H_1=9( mod3);if2]n,
then V,(2) = Z( mod 3). It follows that neither V,(2) (v is even) nor
V;(2) (v is odd) contains the divisor 3, and hence T3(es) = T3(es:). Now
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we prove by induction on ¢3 that Ty(eges) = t3. It is valid if 3 = 0, or
1. Since from (2.4) and (2.5) we have that ey, = (vgs-1.0(2) + v0(2) —
1egeis-1 = (1263,3 1 + 3)eges-1. So by the induction hypothesis we have
Tg(eaz;;) = T3(12ed.3_, +3)+T;(6313 1) =1+4t3—1=t3. Thus Ts(en) = {3.

If t2 = 0, namely n is odd, then we have f,, = 6f,_1— fa_o = —fn_2 =

= (=1 A ( mod 3). Note that f1 =1, so T3(f,) =0
If t2 > 0, namely n is even, then we can write n = 3! - 2¢, where
, .

3 'f €. B}' (25)) fn = { “jz((;l))ff-;:::: i:-'g}'z, By (2.1): vn(4) = 6071—1(4) —
Vn-2(4) = —vu_2(4) = --- = (=1)Fvp(4) = (—=1)32( mod 3). Then from
(2.6) we have that if 2t ¢,V/(4) =2 x && —1 = ¢( mod 3); if 2 | ¢, then
Ve(4) = (=2) x § = —e( mod 3). Thus neither V/(4) (e is odd) nor V,(4)
(¢ is even) is divisible by 3. So T3(fn) = T3(f2.3:s). Now we prove by
induction on t3 that T3(fo.3:s) = t3+ 1. If t3 =0 or 1, we have f3 = 6 and
Je = 6930 respectively, so it is valid. Since from (2.4), (2. 5) and (2.6) it fol-
lows that f2 3ty = (1)2 3ty -1 2(4)+U{)(4) ].)f2 gty -1 (32f2 313_1 +3)f2 3tz—1,
then by the induction hypothesis we have T3(f5.3:5) = T5(32 f,, qta-1 +3) +
T3(fages-1) =1+t a

3 System of relations for the cokernel of the
Laplacian on Cy x C,

Now we work on the system of relations of the cokernel of the Laplacian of
Cq x Cp. Let 2% =(0,---,0,1,0,---,0) € Z**, whose unique nonzero 1 is
in the position corresponding to vertex v; It follows from the relations of
cokerL(Cﬂ; x C,,) that we can get the system of equations:

4z} — (5 +25) — it =27l =0, jeZ,, i€ Z,. (3.1)

Lemma 3.1. There are three sequences of integral numbers (a;)i>o, (bi)i>o,

(ci)izo such that

K] 1 0 (} 0

zh = a,v:t;—i-bi(xﬂl +$Jl~_l)+c,~z;-+2 —ai—1%;—bi1(Zj41 +wg_1)—-c,~_11('g+2),
2

where j € Zy, 1 < i < n. Moreover, the numbers in the above sequences

have recurrence relations and initial conditions as follows

a; = 3(i + ui(4) + 2u;(2)), (z>0),
b= i = i), (>0,  (33)
ci = (¢ + ui(4) — 2us(2)), (i >0).

Proof. From (3.1), it follows that

ot =dal - (@l +al ) —2i ! forj€Zy,2<i<n—1.  (3.4)
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This lemma is valid for the cases ofi=1,2. Suppose that a: azz +
bi(z)yy + 25 1) +azhyy —a12d — b1 (29, +29_1) — 1123y, for 1 < h.
T}{lf{l from the induction assunr}lptlon and equa.tlon (3.4), it follows that
] =4:x;~‘—( J4_1+:1:J 1)—x !

=4(ahxj+bh( j+l+ 1)+cha:J+2 ah— 1z — by 1(:1:1,{_1+:z:J -
ch—lxg'+2) d (ah.’lﬁ;_'_l + bh(xj+2 + :cj) + Chmj 1 ah—la3_7+1 br—1 ( Tit2 +
z9) —ep-123_ 1) (ahz}*1+bh(:c}+:v31-_2)+c;,mj+1—ah_la:j_l—bh_l(:rg+
T '—2) - Ch_1$j+1) - (a'h-lml' + bh—l($}+1 + -'Bl'..l) + Ch_1$}+2 - a‘h_zx? -
bp—2(23y; +23_1) — ch—2

= (4ah — 2by, — ah_l)a:j + (4bh —ap —Chp — bh—l) (:C_.li+1 + :B;»_l) +
(40;, -~ 2bp, — Ch—l)m;-.,.g — (4ah_1 —2bp_y — ah_g)xg — (4bp_1 — ap—1

—Ch-1— bh—2) (fB?H + xg_l) - (46;.—1 —2bp-1 - ch_z)m2+2
= ah+1$; + bh+1(zgl'+1 + w;—l) + ch+lf"'gl'+2 - ahm? - bh(3’2+1 + w?-l)
— ChaT4o-
Thus (3.2) holds by induction.
From the process of induction just now, it is easy to see that

a1 = 4a; — 2b; — a;,
biy1 = 4b; — (a; + ¢i) — bi—1, (3.5)
ciy1 = 4c; — 2b; — ¢,

fori > 1. Let 7; = a; + ¢; and 7; = a; — ¢;. After a short calculation, we
can get

Nir1 = 47 — Ni-1,

=0 m=1

Tigo — 8Tip1 + 147 — 87i—1 + Tic2 =0,

0 = 0, =1

By proposition 2.1, we have n; = u;(2) = e;. Let ¢; = 27; — ¢, then one
can verify that ¢4 = 6¢;y1 — @i, with ¢ = 0 and ¢; = 1. Immediately,
é: = u;(4) = f;, and then 7; = (i +u(4)). Now the equalities in (3.3) can
been verified directly. O

We know from lemma 3.1 that the systerm of equation (3.2) has at most
8 generators, i.e., each z} can be expressed in terms of 29,129, 23, 23, z}, =}, =3,
3. So there are at least 4n — 8 diagonal entries of the Smith normal form of
L(G) are equal to 1, however the remaining mvarlant factors of coker(C4 X
C,) hide inside the relations matrix induced by 9, x9, 29,23, 2}, 2}, 2}, z}.
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A

an by cn bn

bn Qn bn Cn

Cn b, a, b'n.

bn en by an
Aﬂ+l _An :

and M = < A A ) From (3.2) and the cyclic structure of

Cy x Cy,, we have

(! pl ol ol 0 .0 0 0y -
LetY = (zg, =1, x3, 23, 23, =3, %3, 3)", A, =

0 _ .n_ 1 1 1 1 0
T} = 2} = apzj + bn(Tjyy +2j_1) + CaZjyy — Cn-1T

0 0 0
= an+1xl~ + bn+1(1: i+1 +z ~_1) + C-n+1$,]:+2 — QnT;
0 J 3 J 0 ) J 7
—ba(zjy) +25_1) — a0,

where 0 < j € 3. Therefore

1 _ .ntl
T —:l'j

(M - I)Y =0. (3.6)

From the argument above, we know that one can reduce L(G) to
Iyn—s & (M — I) by performing some row and column operations up to
equivalence. Now we only need to evaluate the SNF of M — I.

4 Analysis of the coefficients of the Smith
normal form of M — I

If we multiply the last 4 rows of M — I by —1, then we have that

Apnp1— 1y —An o Anr— 14 —-A, (4.1)
An _An—l - 14 _An An—-l + I4 ) ’

From lemma. 3.1, one can verify that ;41 +¢;41+2bi4+1 = a;+c;+2b+1,
for cach i € N, and it results that each line sum of the right matrix of (4.1)
is equal to 0. Immediately, we have the following lemma.

Lemma 4.1. M — I ~ (0) & M,, where M, is the submatriz of M — 1
resulting from the deletion of the first row and column.

Let h, = e, + €ntl, Gn = fn + fn—i-lv Pi =€ +en_i ¢ = fi+ fn—i:
and let

0 0 0 1 1 1 1 -1 -1 0 1 O 1
121 -1 -1 -1 -1 0 1 0 0 0O 0
000 -1 O 1 0 -1 0 0 0 0 -1
Liy=]0 1 0 0 0 0 o|,Ri=]|-1 o0 0 0 O 0
0 00 O 0 1 0 0 0 1 0 -1 O
110 O 0 0 0 -1 0 -1 0 0 O
0 0 0 O 1 1 0 0 0 0 0 O 0

oo oo
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Then one can check that L; and R; are unimodular matrices and

0 0 0 n n 0 O

0 P-1 Do 0 0 0 0

0 Do P1 0 0 0 0

LiMiR; = 9-1+90 P-l:“‘]-l poj—qo n—;l-—x n—4qo 0 0
‘10291 Po:j_-qo Plg"]l ﬂ—‘;qo n;‘ll 0 0

0 0 0 M= Mo, p

0 0 0 "—'Em "—'Ep—' Po P

Putting m = 2 and 4, then it follows from proposition 2.1 that

Pit1 =4pi — pi-1, ‘
4.2
{ gi+1 = 6¢; — gi—1. (42)
1 0 0 0 0 0 O
0 0 1 0 0 0 O
0 -1 4 0 0 0 O
Let Mo =LiMiRyandU =] 0 0 0 0 1 0 O
-1 0 -1 -1 6 0 O
0 0 0 0 0 0 1
-1 0 0 0 0 -1 4
Then by (4.2) we have UM, =
0 0 0 n n 0 0
0 Pi-1 Pi 0 0 0 0
0 Pi Pi-1 0 0 0 0
‘Ji-—:+'li Pi-1+9i1 Pitygi n—qi-1 n—g; 0 0 (4.3)
fli_"'Zﬂi Pit9; Piili‘%‘i! ﬁq_,_ ""‘l]:iil 0 0
2 4
0 0 0 n+;i_l -n—t-,& Pi-1 Pi
0 0 0 atpa ARl p iy

Now we distinguish two cases.

Case 1 n=2s+1 odd.
In this case, by (4.2) one can verify that

( Ds Ps+1 - hs hs) ( qs ‘Is+1) = (gs s ) i (4.4)
Ps+1 Ps+2 hs 3hy)’ ds+1 gs+2 gs 99s
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Let i = s+ 1 in (4.3), then by (4.4) we have

0 0 0 n n 0 0
0 hg hs 0 0 0 0
0 hs 3h, 0 0 0 0
+1 — gs+hs st —Ux —9s
UmM=1 0 90 idan uly a0 0
398 323 32 E] 4.1 4s O O
0 0 0 nth, "*,;3'% he hy
0 o 0 2k ndthe po 3p,
Let
0 -1 1 0 0 0 O 0 0 0 0 0 0 1
0O 0 0 0 01 -1 0 -1 0 01 0 O
0 0 0 -1 1 0 0 0 1 0 0 0 0 O
Ly=|1 0 0 0 00 O0|,Re=]1 -2 0 10 0 -2
0O 1 0 0 0 0 O -1 2 0O 0 0 0 2
0O 0 0 0 01 o 0 1 1 0 0 1 1
o 0 0 1 0 0 o0 0 -1 -1 0 0 0 -1

It is clear that Ly and R, are unimodular matrices. By a direct calculation,
we get

L2Us+11V12R2 =X® Y, (4.5)
0
0 2k 0 o ,? g 0
where X = [ Ay 0 2hs| andY = | 41 Os b 0
s h 0 n —2gﬂ hs+g. 08
a D) 9s

Using the standard method for calculating the determinant factors, we
have SNF(X) = diag ((hs, 9s), hs, (_;‘4'_3)_5) and SNF(Y) = diag ((n, hs, ),

(7, hs)(hy, gu) hs(nhsng,,higs) nhygs
(n, hyy g95) (nha)(hs,gs) (nhs, ngy, hsgs) ) °

Now, it is casy to see SNF(M;) = SNF(M,) = dia.g((n, hs, gs),
(hsa gs)’ (n, ho)(hy, gs) hs hs(nhs, ng,, hags) hag. dnh,gs )

("1 hs:.‘la) ? (n| ha)(hay gs) ? ("ra, .’/a)’ (nh,, ngs, h'sgs)
Case 2 n = 2s even.
In this case, by (4.2) one can verify that

(Ps ps+1>= 2e;  de, O Qa1 _ (2 6fs)
Ps+1  Ps+2 des ldes )’ \Gs+1 Gst2 6fs 34fs)°
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Apply (4.3), we have

0 0 0 2s
0 2eg deg 0
0 deg 14e; 0

U8+1M2 =1 4f, fo+es 3fs + 2e4 afs
20f, 3fs+2s 17fs+7Te, =Sl

2
0 0 0 s+e;
0 0 0 5+ 2e,
Let
1 0 0 0 0 0
0 -1 1 0 O 0
1 0 0 0 0 -1
L3=]-1 -4 1 7 -1 0
0 5 —-4 0 0 0
0 0 0o 0 O 1
0 2 =21 1 0
and
0 -2 O 1 -2 0
0 6 0 0 5 0
0 -1 0 0o -1 0
Rz = 2 6 0 -4 6 1
-1 -6 0 4 -1 -1
0 -3 2 2 -3 1
0 3 -1 -2 3 0
Then we have LUt MaR; =
2s 0 0 0 0
0 2e, 0 0 0
3e, 0 Ge; O 0
s—2fs es+4fs 0 8f; 0
0 0 0 0 6e;
s 0 0 0 0
%(fs +s) fs 0 0 3es

2s 0 0
0 0 0
0 0 0
=30 0
s—127t, 0 0
s+2e; 2, deg
s+ 7e; 4des ldeg
0

0

-1

0

0

0

0

0

0

0

2

-2

-1

1

0 o0

0 0

0 O

0 o (4.6)

0 0

es O

fs 2fs

Let M3 denote the matrix on the right side of (4.6). If we can further
reduce M3 to the direct product of some small matrices as in the above case
of n being odd, then the calculation will become easier. Unfortunately, we

can not achieve it.
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Let

s 0 0 0 0 0 0
0 e 0O 0 0 0 0
3e, 0 3e, O 0 0 0
My=| s—2fs e +4fs 0 f, 0 0 0
0 0 0 0 3, 0 O
s 0 0 0 0 e O
%(fs'i's) fs 0 0 3es fs fs
1 0 00 0 00 0 0 00 0 O
0 0 0 0 -1 01 0 1 00 0 O
0 1 00 0 00O 1 0 0 10 0 O
L,=1]10 O 1.0 0 O0O0], 2 0 -4 01 0 O
-1 -1 01 0 00 ¢ 0 0 00 0 1
-1 0 00 0 10 0 0 0 00 1 o0
0 0O 00 1 0 0 1 -1 0 0 -1 0
It is clear that L, and R4 are unlmodular matrices and LyM{Ry =
E® F, where
s 0O 0 O
1 fs 0 0
p=|206Ff) L0 00 n 19 o o). @)
0 0 e 0 0 0 3e
0 0 0 3e s

Now we can compute the determinantal divisors of ¥ and F' and fur-
thermore obtain the SNF of Mj. Here we directly give the result and omit
the details of computation. However we must say that proposition 2.3 plays
an important role in this computation.

Note that SNF(E) =
(s,e5)(es.fs) cea(ses,sfs.esfs) 3ses fs HY) .

diag { (s, €5, fa), ZGies 77 “loenlen ) (ses,s}'s,esfs)) 2,
(s:e,)(es,fs) Bes(ses,sfs,esfs) ses fa H .

(s’ es,fa)’ s(ireﬁffs) ’ e(st:«i)‘(geav]&) ! (se.nsefsyesfs) ? ]f2 | S

diag
and

diag ( (s, fs), €s, ele if214s,
SNF(F)={ gE( Phens), 24

diag (e, f3), 3¢s, (—g-)) if2 | s.

Note that we further have SNF(M3) =
diag ((s esy fs), (es, fs), (s, cu)(“svfa €, es(sesefsiesfs)  Beyfs 3sey fo ) :

[CN D) (sies)(es,fs) 7 (es, fs)? (ses,efs,esfs)
if 2¢%s,
H S €3 ) Cayrfg 3ey(ses,8f5,esfs
diag ((S, €s, fs)a (es’fs)’ _(Szf;_)'e#__;_lf‘faf , 3€s, e(s :ﬁ (s‘{s’;sf ’ (es, fs) (333,6,{5;3;‘.’:))
if 2]s.

139



Note that M3 is obtained from M3 by multiplying its rows 1, 2 , 5 by
2, columns 3, 7 by 2, column 4 by 8. Then we have that there are integers
t; such that S;(M3) = 24S;(M3), for 1 <i < 7.

e n = 2s with s odd.

It follows from proposition 2.3 that 2 { e; and 2 { f,. Moreover,
A;(M3) is odd and hence S;(M3) is odd. Since det(M3[3,4,6,7|1,2,5,6]) =
—9¢3(es + 4f5) is odd, where M3(3,4,6,7|1,2,5,6] is the submatrix that
lies in the rows 3, 4, 6, 7 and columns 1, 2, 5, 6 of M3. Thus t; = s =
t3 = t4 = 0. Note that every nonzero element in rows 1, 2, 5, columns
3, 4, 7 of M3 is even and on the main diagonal, so every 5 x 5 submatrix
of M3 must contain at least one row and at least one column of them.
Thus 22 | As(M3). Since det (M3][1,3,4,6,7|1,2,3,5,6]) = 36se3(es +4fs),
then 23 is not its divisor. Thus t5 = 2. As above, 2* | Ag(Ms), but
det (M3]1,3,4,5,6,7|1,2,3,5,6,7]) = —144se3f;(es + 4,), which is not di-
visible by 2%, So tg = 4—2 = 2. Finally, it is easy to see that t; =8—4 = 4.
Thus the SNF of M3 here is .

: 8, es)(€s, fa des(ses,5fs €5 fs) 12es 48se, fo
diag ((5, es, fs)y (esy fs), ¢ (s,,)gf,f‘{ )7 €s, (g,ea)(i,;‘{)a Z—GT.—%’ m/

e n = 2s with s even.

Let t = T5(s), then from proposition 2.3, it follows that Ta(es) =t +1
and To(fs) = t. It is clear that S3(M3) = Si1(M3), so t; = 0. Since
To(det(M3[6,7]1,2))) = To(sfs) = 2t = To(A2(M3)) = 2t, then clearly
to = 0. It is not hard to see that the maximal power of 2 contained in
each of the 3 x 3 minor subdeterminants of M3 is at least 3¢ + 2, and then
we can conclude that Th(As(Mz)) = 3t + 2, since det (M3[4,6,7|1,2,7]) =
—25f,(es+4f,) is not divisible by 23:+3. Then T5(S3(Ma)) = Ta(As(Ms))—
To(A2(M3)) = (3t +2) — 2t =t + 2. So t3 = To(S3(M3)) — To(S3(M})) =
(t+2)—t = 2. All the 4 x 4 minor subdeterminants of M3 contain
the divisor 24+4, and then we can say that T>(A4(M3)) = 4t + 4, since
det (M3[3,4,6,7]1,2,3,7]]) = —12ses fs(es + 4f5) is not divisible by 24¢+5.
Then To(S4(M3)) = To(As(M3)) — To(A3(Ms) = (4t+4) —(3t+2) = t+2.
So tq = Ta(Sa(M3)) — To(Ss(ME)) = (t+2) — (t+1) = 1. Go on in this
way, we obtain that t5 = ¢ = 1 and t; = 3. Thus we get that SNF of M3

here is

3 1 €9 3y Js bes 8:5)s,€s)s 2es fs 8ses fs
diag ((syes:fs)y (s, fs), 4(8(:8)}38{ )) 6es, (st)g‘,;s)f ); (ef,,)f',)’ (se“:‘;"’fgd

5 Conclusion

Now we can give the main result as follows.
Theorem 5.1. If n = 25+ 1, then the critical group of C4 x Cp (n > 3) is
Z(",hngs) ® Z(hsygl) ® ZH_LM.L%J"':‘ h.'.'g:, & Zh. & Zn, ":"'ns-"!' haga) D Z hsgy D

8498 (ha.gs)
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If n = 2s with s odd, then the critical group of Cy x C, (n > 3)

i Z(S es,fs) @ A(ess.{a) @ ZLJ(_A'L).L}_Q)’ La)legs ® Z'va ) Zﬁs—‘"y“ Loe z‘lcsi__[_l;:)-“ b Z_J.L.(f: L @
Z Se
Gy

If n = 2s with s even, then the critical group of Cy x C, (n > 3) is

Z(s’ e fo) @ Z(e,,f.) D Zags, :lei,! 3. 1) D Zﬁe, &) Zocz’(.:: :[; s '[:_,2 & Z(i_:;"ﬁ'f ]
Example 5.1. To give an illustration of theorem 5.1, we consider the
three graphs Cs x Cy, C4 x Cs and Cy x Cg. Note thateg =0, e; = 1, ey =
4,e3 = 15,e4 = 56,e5 = 209,e6 = 780, fo = 0, fi = 1, fo = 6, f3 =
35, fy = 204, fs = 1189, fo = 6930. Then by theorem 5.1 we have that
K(CyxCy) = (Z2)* D Zs®(Z24)*® Zos; K(C1xCs) = (Z10)*® Z779D Z15580
and K(CyxCs) = Zs®(Z15)*® Z6o® Z1260D Zso40. Maple gives the identical
result.

Let Hy(m) = un(m)+unt1(m). Clearly, H,(2) = h,, and H,(4) = g,

Theorem 5.2. If n; | ny, then K(Cyx Ch,) is a subgroup of K(Cyq x Cy,,).

Proof. We only need to prove that every invariant factor of K(Cy x Cp,)
is a divisor of the corresponding one of K(Cy x Cp,). We distinguish three
cases.

Case 1. ny =2s+ 1 and np = (2k + 1)(2s + 1).

Let p = 25+ 1, ¢ = 2k + 1, then Hm(m) = Hprys(m). Since
aff =1, then from the definition we can dlrcctly verify that upr4s(m) =
VpkUs (M) + Upk— s (M), Upkgs+1(M) = Vp(M)ugy1(m) + upk—s—1(m). Thus
Hpk+8( m) = vpk(m)Hs(m) + Hpk s—1(m) = 'Upk(m)HS(m) + Hp(k—l)+s =

(E vip(m) + 1) H,(m). It means that H,(m) | Hprss(m) and

hence hs | hpkys, 9s | Gpk+s- So every invariant factor of K(Cy x Cogyy)'is
a divisor of the corresponding one of K(Cy x Cor1)(2s+1))-

Case 2. n; =2s+ 1 and np = 2k(2s + 1).

Since one can verify that (un(m) + unt1(m))(un(m) — ups1(m)) =
—Uzn+1(m) and u,, (m) = vy(M)un—p(m)—uu—2,(m), we have that H,(m) |
uza+1(m) and if p | n, then uy(m) | up(m). Thus H,(m) | u,,(m), and
Up, (M) | wgn,(m). Then Hy(m) | ugn,(m). It means that ks | exn, and
gs | fxn,- So every invariant factor of K(Cy x Coey) is a divisor of the
corresponding one of K(Cy x Cor2s41))-

Case 3. ny = 2s and ngp = 2ks.

Since us(m) | ugs(m), then e, | exs and f, | frs. So every invariant
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factor of K(C4 x Cay) is a divisor of the corresponding one of K(Cy x
Coks)- o

Theorem 5.3. The spanning tree number of C4xChp, (n > 3) is 2732ne4% f?'%’

e, 7 (VE+1)" = (V3- 1" (V2+ 1) - (V- 1))’

Proof. We prove this theorem by distinguishing two cases.
Case 1: n=2s+1.

Note that hi = (es + ess1)! = gt (V3+1)" = (V3= 1)) and
@ = (fot for)? = L (VB+1) - (VE- 1)),

From (4.3), we know that the spanning tree number of Cy x C, of
this case is (det X) - (det¥) = 4nhig? = e (V3+1)" - (V3-1)m)".
(V2+1)" = (V2-1)")" = 273%ne} 13

Case 2: n =2s.
From (4.4), we know that the spanning tree number of Cy x Cy, of this
case is det(Ms) = 2832sedf2 = 2732ne‘_'.% f% ] O

Corollary 5.1. For every n > 3, we have that
n—1 . .
T (4—2cos 2—’,:1)2 (6 — 2cos 222)

= i (VB+ 1) = (V-1 (V2 + 1) - (V2 - 1)),

Proof. 1t is not difficult to know that the Laplacian eigenvalues of C,
are (2 — 2cos 2—”1), 0 < j < n—1. Then it follows from the argu-
ment of the second section of (7] that the Laplac1an eigenvalues of Cy x
Cp are: 0,2,2,4,2 — 2008—1 4 — 2cos—1 (with multiplicity 2), 6 —
2cos 2—:1, where 1 < 7 < n— 1. Then by the well known Kirchhoff
Matrix-Tree Theorem we know the spanning tree number of Cy x C,, is

n—1 . . .
i H] (2 —2cos 2—:1) (4-2cos 2—"-l)2 (6 —2cos 2—,’:1) . Since C,, has n span-
]=

ning trees, we have 2 H (2—2cos ) = n. Thus the spanning tree number
J_

of CyxCy, equals 4n ]'[ (4—2cos 2 ) (6—2cos 21‘-1) Recall theorem 5.3, we
J-
n—1

have4n [] (4 — 2cos 2% ) (6 — 2cos 2£2) = = (V3+ 1) - (vV3- 1)”')4
=1
A(V2+1)r - (V2 - 1)") . So this corollary holds. O
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