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ABSTRACT

In this paper we study the global behavior of the nonnegative equilibrium
points of the difference equation
Az, _oy
, n=0,1,...,

Ln+1 = SE
B4-C n Tyei
i=0

where A, B,C are nonnegative parameters, initial conditions are non-
negative real numbers and k,! are nonnegative integers, [ < k. Also we
derive solutions of some special cases of this equation.

Keywords: Difference Equation, Globally Asymptotically, Periodicity, Os-
cilation.

1. INTRODUCTION

Difference equations have played an important role in analysis of math-
ematical models of biology, physics and engineering. Rational difference
equations is an important class of difference equations where they have
many applications in real life for example the difference equation =, =
%'fnﬂ which is known by Riccati Difference Equation has an applications
in Optics and Mathematical Biology (see[14]). Many researchers have in-
vestigated the behavior of the solution of rational difference equations. For
example see Refs. [1-18].

Aloqeili [2] studied the solutions, stability character, semi-cycle behav-
ior of the difference equation z,4; = ——==1— and gave the following

A—Tpn_1Tn
formulation

ARS COMBINATORIA 96(2010), pp. 145-160



-;. 2i-1 2i-1
a (1—-a)—(1—a )z-120
zo 1 a(1—a)—(1=aF)z_ 20 ' v EVEN,

Tpn =

a?~'(1-a)~(1-a*)z_ 3o
- l:IO eFF T (1-e)-(1—aZF)z_ 20 n odd.

Andruch et al. [3] studied the asymtotic behavior of solutions of the
difference equation z,4; = 2=t

btcxnTn-1’
Cinar [5] investigated the global asymptotic stability of all positive so-
lutions of the rational difference equation z,41 = 25—

Also, Cinar [6] investigated the positive solutions of the rational differ-
ence equation 41 = —rpmt—.

Yalcinkaya [17] investigated the global behaviour of the rational differ-
ence equation T,41 = a+ $"‘"‘.

Karatas et al. [12] obtalned the solution of the difference equation

— _9Tn—(2k+2)
Tnt+l = 2k+2 .

—a+ n Tn—i
=0

El-Owaidy et al. [8] studied the dynamics of the recurcive sequence
Tny1 = _p—ﬁ::;:'_z .
Battaloglu [4] discussed the global asymptotic behavior and periodic-

ity character of the following difference equation z,+; =

Ln—k
3+’7‘°n-(k+n) by
generalizing the results due to El-Owaidy et al.

Hamza et al. [10] studied the asymptotic stability of the nonnegative
equilibrium point of the difference equation z,4; = L
B+C l'l Tn-2i

Gibbons et al. [11] investigated the global asymptotlc behav:or of the
difference equation z,41 = atbony

+
Elsayed [9] investigated the quahtatlve behavior of the solution of the

bz?
+ —2—
dlfference equatlon Tn+1 = ATy Zatd e

Our aim in this paper is to investigate the dynamics of the solution of
the difference equation

Az,
L tap = — AT g

B+C n Tn—i
i=0
where A, B, C are nonnegative real numbers, initial conditions are non-
negative and [, k are nonnegative integers, ! < k. Also we obtained solutions
of some special cases of Eq.(1.1).
The following special cases can be obtained:
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1. When A =0, Eq.(1.1) reduces to the equation z,4, = 0.

2. When B = 0, Eq.(1.1) can be reduced to a linear difference equation,
by the change of variables z,, = e¥».

3. When C =0, Eq.(1.1) reduces to the equation z,41 = —é-.’l}n_Q[, which
is a linear equation.

For various values of k, we can get more equations.

2. PRELIMINARIES

Let I be some interval of real numbers and let f : I¥*! — I be a
continuously differentiable function. Then for every set of initial conditions
Tk, T—(k+1)s -+, To € I, the difference equation

(2'1) Tny1 = f(xnazn—la ~-~,xn—k): n= 01 L.,
has a unique solution {z,}n. _, .

Definition 1. An equilibrium point for Eq.(2.1) is a point T € I such that
= f(ZT,....,T).

Definition 2. A sequence {z,}o. _, is said to be periodic with period p if
Tnyp = Tn for alln > —k. :

Definition 3. (i) The equilibrium point T of Eq.(2.1) is locally stable if
for every € > 0, there exists § > 0 such that for all z_y, T_(k—1)y--To € I
with |£—g — | + [€_(k—1) — F| +... + w0 — T| < 8, we have |z, — F| < € for
alln > —k.

(ii) The equilibrium point T of Eq.(2.1) is locally asymptotically stable if
T is locally stable solution of Eq.(2.1) and there exists v > 0, such that for
allT_ g, T_(k=1)s .-, Zo € T with |x_s — E|+|x_(k_1) 4 §|+...+|azo - I <7,
we have nlgrgo Tnp =T.

(iti) The equilibrium point T of Eq.(2.1) is global attractor if for all

TekyT_(k-1),---,To € I, we have lim z, =7Z.
n—o0

(iv) The equilibrium point T of Eq.(2.1) is globally asymptotically stable
if T is locally stable, and T is also a global attractor of Eq.(2.1).

(v) The equilibrium point T of Eq.(2.1) is unstable if T is not locally
stable.

The linearized equation associated with Eq.(2.1) is

k af
(2.2) Yntl = E Era (Z,Z, .. yT) Yn—i, n=0,1,....
i=0 T

The characteristic equation associated with Eq.(2.2) is
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R T P
(2.3) A —Za (Z, %, ..., E) A" =0.

i—0 Ln—i

Definition 4. A positive semicycle of a solution {z,}m.._, of Eq.(2.1)
consists of a "string” of terms {zi,T141,...,Zm}, all greater than or equal
to equilibrium T with | > —k and m < oo such that eitherl = —k orl > -k
and x1-1 < T and either m =00 orm < 00 and T4 < T.

A negative semicycle of a solution {:1:,.};(;_,:) of Eq.(2.1) consists of a
"string" of terms {xi, Ti41,..-» Tm} all less than T withl > —k and m < o
such that either |l = —k orl > —k and ©;_, > T and either m = oo or
m < oo and T4y > T.

Definition 5. A solution {z,}re_, of Eq.(2.1) is called nonoscillatory if
there exists N > —k such that either z, > T forVn> N or z, <%
for¥n> N,

and it is called oscillatory if it is not nonoscillatory.

Theorem 1. [18)Assume that f is a C! function and let T be an equilibrium
point of Eq.(2.1). Then the following statements are true.

(i) If all roots of Eq.(2.3) lie in open disk |\| < 1, then T is locally
asymptotically stable.

(%) If at least one root of Eq.(2.3) has absolute value greater than one,
then T is unstable.

3. DyNamICs OF EqQ.(1.1)

In this section, we investigate the dynamics of Eq.(1.1) under the as-
sumptions that all parameters are nonnegative, the initial conditions are
nonnegative and [, k are nonnegative.

The change of variables z, = 2**{/ gyn reduces Eq.(1.1) to the difference
equation

QYn—
(3.1) Yni1 = — B =01,

1+ H Yn—i
i=0

where a = %. We can see that 7, = 0 is always an equilibrium point of
Eq.(3.1). When a > 1, Eq.(3.1) also possesses the unique positive equilib-
rium J, = *%/a —1.
Theorem 2. The following statements are true:

(i) If @ < 1, then the equilibrium point §, = 0 of Eq.(3.1) is locally
asymptotically stable,
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(i) If & > 1, then the equilibrium points §; = 0 and Gp = **Va—1 are
unstable.

Proof. The linearized equation associated with Eq.(3.1) about ¥ is

—=2k-+1 2k

oy o

zu+l+_:'—'_2 (E Zpn—i— zn-2l) ’“_ﬁ n—2l = 0 n= O 1
(1 +y2k+l) = (1_|_ 2k+l)

The characteristic equation associated with this equation is

AR o VT g Z/\z \2k-2 1 AZk=2l _ .
(1+72k+1) — (1+§j-2k+1)2

Then the linearized equation of Eq.(3.1) about the equilibrium point
y,=0is

Znp1 —azp—1 =0, n=0,1,...

The characteristic equation of Eq.(3.1) about the equilibrium point §, =
0is

A2Zk=21 (/\21+1 _ a) -0.

So
A=0and A = *¥a.
In view of Theorem 1:
If @ < 1, then || < 1 for all roots and the equilibrium point 7, = 0 is
locally asymptotically stable.
If o > 1, it follows that the equilibrium point , = 0 is unstable.
The linearized equation of E q.(3.1) about the equilibrium point 7, =

*+l/a — 1 becomes

1\ (& 1
Zn41 + (1 - a’) (Z Zn—i — zn—2l) - Ezn—2l = Oy n= 0& la sene

i=0
The characteristic equation of E q.(3.1) about the equilibrium point

To = **Wa—1is,
1
AZKHD i_y2k-20) _ Lyok-a _ g
E At=) a/\ 0

i=0
It is clear that this equation has a root in the interval (—oo, —1). Then
the equilibrium point 7, = ***J/a — 1 is unstable.
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Theorem 3. Assume that a < 1, then the equilibrium point §, = 0 of
Fq.(3.1) is globally asymptotically stable.

O

Proof. Let {yn}or. _o. be a solution of Eq.(3.1). From Theorem 2 we know
that the equilibrium point 7; = 0 of Eq.(3.1) is locally asymptotically
stable. So it is sufficed to show that

lim y, = 0.

n—o0

Since

— _QYn-2n
Ynt1 = 2k

< OYn-2t-
1+_IJ° Yn—i
We obtain
Yn+1 £ OYn-21-
Then it can be written for t =0,1,...

Y+l S at“y-zu Ye(2t+1)+2 < a’“'y—(zl—n, e Yr(+n+20+1 S
attly,.
If & < 1, then lim a**1) =0
t—co

and

lim y, = 0.

n-—00
The proof is complete. a

Theorem 4. A necessary and sufficient condition for Eq.(3.1) to have a
prime period (21 + 1) solution is that a = 1. In this case the prime period
(2l + 1) is of the form ...0,0,¢,0,¢,0,9,...,0,¢... where ¢ > 0 and the
number of the pairs 0, isl — 1.

Proof. Sufficiency: Let o = 1, then for every ¢ > 0, it is obvious that
0,0,9,0,0,0,0,...,0,¢..from Eq.(3.1).
Necessity: Assume that Eq.(3.1) has a prime period (2! + 1) solution
;I.‘.;z,a, P, 8,0,0,P, ..., 0, p....We have a = mﬁ%;m- and p = H—a,-,f-‘%:q;r.
en
o+ pttla2kti=l _ g g2k=l+1l+1 — o (p — @), this implies that a = 1.
The proof is complete. O

4. THE SoLUTIONS FORM OF SOME SPECIAL CASEs OF EQ.(1.1)
Our aim in this section is to find a specific form of the solutions of some
special cases of Eq.(1.1).

4.1. On the Difference Equation r,4; = ﬁl”—’;‘fL When we
(=" [T 2n—

take ! = k,A = C = (—1)" and B =1 in Eq.(1.1), we obtain the equation
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(_l)n Ln—2k

2k
1+ ("l)n n Tn—iq

i=0

, n=0,1,..

(41) T4l =

where initial conditions are non zero real numbers, k is an odd positive

2k
number and [] z_; # F1.
i=0
We shall éive a few lemmas which will be useful in investigation of the
solutions of Eq.(4.1).
2k
Lemma 1. Let [[z—; = p and p # F1. Then for some solutions of

i=0
Eq.(4.1), the following equalities are true

T2k T_(2k-2 .
vl = 33,22 = —T_(2-1) (1 +p), 23 = 252,24 = —2_(2x-3) (1 - P),
. r_
Tok-2 = Tro>¥ok-1 = —T-2 (1 + ), Tok = =5, Tar41 = —2o (1 — p).
2k—3 2%—3
AlSO, H Titqg = H T—;.
=0 =0

Proof. When we have n = 0,1,...,2k in Eq.(4.1), it is easily obtain by
iteration method. (]

2k
Lemma 2. Let [[z—-; = p and p # F1. Then for some solutions of
i=0

Eq.(4.1), the following equalities are true
= T—(2k—4) -1 —_ -
Z-aea +p),$2k+7 = —Z_(2k-5)»

L2k+5 = —TL—(2k-3)s T2%k+6 = T+p
T_(ak_g)(1+
T2k48 = I(+':_)§,p2, L2k+9 = —T—(2k=T7)y ++»y Tak—1 = —L-3,
—2(=1 (1
Typ = uzlﬁ)l,xmu = %1y Taky2 = 1?.1:,]:)-
4k—2 2k—3
AlSO, H ZTit+q = H T—;.
i=2k+1 i=0
Proof. When we have n = 2k + 4,2k + 5, ...,4k + 1 in Eq.(4.1) and from
Lemma 1, it is easily obtain by iteration method. a

2%k
Lemma 3. Let [[z—; = p and p # F1. Then for some solutions of

i=0
Eq.(4.1), the following equalities are true
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Tarye = T (2k—3) (1 +P) , Tak47 = _z%ff,;‘", Tak48 = —Z—(2k-5) (—1 + D),

Tapro = =E=2, Z4pq10 = T_(2k-7) 1+ ),y Tok = T-3 (1 + ),

Tek+1 = o Tok+2 = —T-1(—1 +p),Tek+s = 13-
6k—1 2k—3
Also, H Titd = H Ti.
i=4k+2 i=0
Proof. When we have n = 4k + 5,4k + 6, ...,6k + 2 in Eq.(4.1) and from
Lemma 2, it is easily obtain by iteration method. O

2k
Theorem 5. Assume that [[ z—; =p,p # F1,k=1(mod2) and1 <m <
i=0
2k + 1. Let {z,}o2 _o; be a solution of Fq.(4.1). Then for n =0,1,... all
solutions of Eq.(4.1) are of the form

for m = 1(mod 4)

a:_[gklls;n-xzj n=0 (mod 4)

T2k = (m=-1))(—1+P) n=1 (m0d4)
42 z =\ ol = ’
(4.2) (2k+1)n+m — Zlatotmo) n =2 (mod4)

Z-[2k—(m-1)) n =3 (mod4)

for m = 2(mod 4)

—Z_[2k—(m-1)) (1 +P) n =0 (mod4)

_ ] —T-zk—(m-1)] n =1 (mod4)
(43) zTEk+D)n+m —Z_f2k—(m-1)} (—1+p) n=2(mod4) ’
T_(2k—(m—1)] n = 3 (mod 4)
for m = 3(mod 4)
ZZofpkotmob)] =rm n =0 (mod4)
Toppe-eno)(14P) g (mod 4)
44 T n+m = i _ ?
(4.4) (2k+1)n+ Tolphotmoll n =2 (mod4)
T_[2k—(m—1)] n =3 (mod4)

for m = 0(mod 4)

T_[2k—(m—1)] (-1+p) n=0(mod4)

_ _x—[2k—(m—1)l n=1 (m0d4)
(4.5) Z(2k+1)n+m T _(2km(m-1)] (1 +P) n = 2 (mod 4)
T_{ok—(m-1)] n = 3 (mod 4)
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Proof. In view of Lemma 1, it is obvious that our assumption is true for
n=0and m=1,2,3,4.
Now we show that the result holds forn=1and m =1,2,3,4.
From Eq.(4.1), we can write
-z
Tk+1)+1 = ok
1- 'Ho Tokt1—i

From Lemma 1, we obtain

z_ok(~1+p)

L2k42 = 1+p

If it is taken n = 2k 4- 2 in Eq.(4.1), we have

T(2k+2)+1 = ok

1+ JT zorqo—i

i=0

Then from previous equality and Lemma 1,

—Z(2x-1)(1 + p)
1+p '

If it is taken n = 2k + 3 in Eq.(4.1), we have

Tok+3 =

T(2k+3)+1 = ok

1+ J] zok43—i

i=0
Then

z_2x-2)(1 +p)

Tok+a = “1+p

Finally for n = 1 and m = 4 from Lemma 2, we get

Toht5 = =% (2k-3)-

Similarly it can be show that our assumption is true for n = 2,3 and
m =1,2,3,4 using Lemma 2 and Lemma 3.

Now suppose that our assumption holds for (n — 1). We shall show that
the result holds for n. From our assumption for (n — 1) we have
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for m = 1(mod 4)

:c_|2k1;g;n—121 n =1 (mod4)
Z_(2k—(m—-1))(—1+D) =92 d 4
46 . B ) = 1+p n= (mO )
(4.6) (2k+1)n—(2k+1—m) _ m_—x%;-_—m n = 3 (mod4)
T—[2k—(m—1)] n =0 (mod4)

for m = 2(mod 4)

(4.7)
—Z_2k-(m-1) (1 +p)  n=1(modd)
. _ —T_{2k—(m—1)] n =2 (mod4)
(2k+1)n—(2k+1~m) —Z_f2k—(m-1)) (-1 +p) n=3(mod4) ’
T —[2k—(m—1)] n =0 (mod4)
for m = 3(mod 4)
—z_lil;;g;n—l(lll-'- | n=1 (m0d4)
Zoppeom-DITP) = 2 (mod 4)
4.8 T n— _ = —1+p )
(4.8) (2k+1)n—(2k+1-m) z_|zfn_r;—nl n = 3 (mod4)

Z_[2k—(m-1)) n =0 (mod4)

for m = 0(mod 4)

T [2k—(m—1)} (—1 + p) n=1 (mod 4)

_ —Z_[2k—(m—1)) n =2 (mod4)
(4'9) Z(2k+1)n—(2k+1—m) T _{2k—(m—1)] (1 +p) n=3 (mod 4)
T [2k—(m—1)] n =0 (mod 4)

From Eq.(4.1), we write

(—1)@RHDRHA=M) g o 4 1y 2kt 1—m)

T(2k+1)n+m = ok .
1+ (—1)@k+Dn+(=m) TT 2094 4 1yn—(i41-m)
i=0
Then
—Z(2k4+1)n—(2k+1—m)
Z(2k+1)n+m = 2% )
1- HO Z(2k+1)n—(i+1—m)
1=

for m =1 (mod4) and n =1 (mod 4).
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Since m = 4s + 1, we have

z — TE(2k+1)n—(2k—ds)
(2k+Dn+m 1-2(2k41)n— (~43) T2k +1)n—(1=da) -+ T(2k+1)n - (2k—ds)

From equalities (4.6), (4.7), (4.8), (4.9) and since £ = 1(mod2) and
m < 2k + 1 we have

- "-l'-zk;(m—x)l - ‘—lzkl;(m-m
. — — P
T2+ Dntm = 1—:{’:—, = =

That is, we have

Z_pk—(m-1)) (=1 +p)
(4.10) T+ D)ntm = [ (ml +)]p .

Similarly, we have
— L2k +1)n—=(2k+1—1n
Z(2k+)n4+m = : = )

2k
1+,ﬂ0$(2k+x)n—(i+1—m)
1=

for m = 2(mod4) and n = 1(mod 4).

Since m = 4s + 2, we have
T = T(2k+1)n—(2k—1—4s)
(2k+1)n+m 14+Z(2k 4 1)t 1= (=) T(2k+1)n ~(=43) - T(2k41)n—(2k— 1 —ds)

From equalities (4.6), (4.7), (4.8), (4.9), (4.10) and since k = 1(mod 2)
and m < 2k + 1 we have

TZ—2k—(m-1))(1+p)

T2k+1)nt+m = 1+p
Then
(4.11) T(2k+1)ntm = —T—(2k—(m—1)|-

Also, for m = 3 (mod 4) and n =1 (mod 4), we obtain

— __TIT2k+1)n—(2k+1-m)
T(2k+1)n+m = 215 - =
1~,I'Iow(2k+nn—(-'+x—m)
1=

= —T(2k+1)n—(2k—-2—4d3s)
1=Z(2k+1)n+2= (= 40) E(2k-+1)nt1 = (~ds) - E(2h4 1) (2h =2 —4d3)

From equalities (4.6), (4.7), (4.8), (4.9), (4.10) and (4.11), we have
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_F-[2k=(m=-1)}
— =13
T(k+1)ntm = Tﬁd’_;

Then

—T_j2k—(m—-1)] (1 + P)
“1+p

(4.12) T@k+1)ntm =

The last, for m =0 (mod4) andn=1 (mod 4), we get

m(2'«+1)n —(2k+1—-m)

T(2k+1)ntm =
+I'l T(2k4+1)n—(i+1—m)

= T(2k+1)n—(2k—3—43)
14T (2k 4 1)n 43— (—43s) T(2k+1)n+2—(—4s) - T(2k+1)n—(2k—3—45)

From equalities (4.6), (4.7), (4.8), (4.9), (4.10), (4.11) and (4.13), we
have

~T_(2k~(m—-1)] (1—P)

Z(2k+1)n+m = 1-p
Then
(4.13) T2k 1)ntm = —T—[2k—(m—1)].

Thus, we have proved (4.2), (4.3), (4.4) and (4.5) for n = 1 (mod 4).
Similarly one can prove (4.2), (4.3), (4.4) and (4.5) forn = 4l+2,n = 4143
and n = 4l where l € Z%.

Also we give the following corollary in view of Theorem 5. O

Corollary 1. Every solution of Eq.(4.1) is periodic with prime period 8k+
4.

2k
Theorem 6. Assume that k > 1,Z_2k, T_(2k-1),---»To > 0 and Mz >
i=0
1. Then a solution {z,}pw _o; of Eq.(4.1) is oscillates about Z = 0 and for
the solutions of Eq.(4.1), the following statements are true:

(i) Every positive semicycle consists of one, two or 2k+3 terms;

(ii) Every negative semicycle consists of one or two terms;

(iii) Every positive semicycle of length one is followed by a negative semi-
cycle of length one or two;

(iv) Every positive semicycle of length two is followed by a negative semi-
cycle of length two;

(v) Every positive semicycle of length 2k+3 is followed by a negative
semicycle of length two;
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(vi) Every negative semicycle of length one is followed by a positive semi-
cycle of length one;

(vii) Every negative semicycle of length two is followed by a positive
semicycle of length one, two or 2k+3.

2%

Proof. Since z_sk,Z_(2k-1),-.-»Zo > T and [] z_; > 1, we have the follow-
ing inequalities for T =0 =

T1, L5, L9y w0y T2—1 > Es T2, LGy L10y +oey T2k < 5)

X3, L7, L1y ey L2l < Ty T4y T8y T12y ooey T2h—2 > T,

T2k+2) T2k+65 T2k+10) -+ Lak > T, L2k43y L2k47+ L2k4111 o) Tak+1 < T,

Toh4-4y T2k+85 T2k+12y +oy Lak+2 > Ty L2h+5s L2495 T2k 413y ooy Tak—1 < T,

Tak+3) TAk+T: Tak+115 -0y Lok +1 < Ty Tdk+4s Tak+8) Tak+12y o Tok+2 < T,

Tdk+5) Tak+9) Tdk+13y o> L6k+3 > Ty Tak+6> Lak+10s Lak+14, ---) L6k > T,

Tek+4) T6k+8y T6k+12) ooy L8k+2 > Ty L6k+55 L6k+9> T6k-+13» ---) T8k+3 > T,

T6k+63 T6k+10) T6k+14s ++»y L8k+4 > Ly T6k+7s L6k+11> T6k+15) -++» L8k+1 > T,

from (4.2), (4.3), (4.4) and (4.5). Since the solution {z,};o _,, of

Eq.(4.1) is periodic with prime 8k + 4 and the above inequalitics, the so-
lution {z,},o _,, of Eq.(4.1) is oscillates about T = 0. Also it is seen that

(i), (ii), (iii), (iv), (v), (vi) and (vii) are true. O
4.2. On the Difference Equation z,4 = %. When we take
—A+ ] zna-i
=0

l=k,B=—-Aand C =1 in Eq.(1.1), we obtain the equation

Azp_ok

2k
—-A + H Tn—i
i=0

where % is a positive integer and initial conditions are non zero real

2%
numbers with [] z_; # A.
i=0

(4.14) Tppl = , n=0,1,..,

2k
Theorem 7. Assume that [[ 2_; = p and p # A. Let {zp}on _,, be a
i=0
solution of Fq.(4.14). Then forn=10,1,...
Ax_agp,
T22k+1)nt1 = ﬁ@?(%ﬂ)nw =tz 1) (-A+p),
Ax_(op_
x2(2k+l)n+3 = __‘(4%)‘2)', $2(2k+1)n+4 = %z—(f!k—-:i) (_A + p) ,

. s
Tak+)nt2k = 7T-1 (—A + D), T2kt )n2k+1 = Zht5

T2(2k+1)n+2k+2 = T2k L2(2k+1)n+2k+3 = T—(2k—1)»

s
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L2(2k+1)n+4k+1 = T=1, T2(2k+1)n+4k+2 = Z0.

Proof. For n = 0 the result holds. Now assume that n > 0 and that our
assumption holds for n — 1. Then
L2(2k+1)n—4k—-1 = %Jz(zkﬂ)n—«tk = %x—(zk-—l) (-A+p),

To(2k+1)n—tkt1 = —.—m—l To(2k+1)n—dk+2 = §E—(2k—3) (FA+ D),

A
To(2k+1)n—2k=2 = Ax—l( A +p), To@k41)n—2k—1 = 5=,
+7

T2(2k+1)n—2k = T—2k> T2(2k+1)n—2k+1 = T—(2k—1);

T2(2k+1)n—1 = T—1, T2(2k+1)n = T0-

It follows from Eq.(4.14) that

_ __AZTa@kti)n-2k Az _o;
L2(2k+1)n+1 = 2k = “A¥zor_1..m "
_A+’n032(2k+l)n-i
=

Hence, we have

Az_gy
T2(2k+1)n+1 = A+p
Also, we get from Eq.(4.14) that
Azz(zk“)n—(ek 1) Az _(2r—1) AT _(2k-1)
Zz = = - .
2(2k+1)n+2 _A —A+Z oz ..z —(2k-1) —A+ —2+r
+ H T(2k+1)n+1—i Atp

Hence, we have

1
To2k+1)n+1 = 7 T—(2k-1) (—A+p).

Similarly, one can obtain the other cases. Thus, the proof is complete.
O

Theorem 8. Eq.(4.14) has a periodic solutions of period (2k+1) iff p = 24
and will be take the form {.’L'-Qk,ﬂ)_(gk_l), ey T 1, L0, L1y T2y coey T2ht1, -
If p # 2A, then periodicity number is (4k + 2).

Proof. Firstly, assume that there exists a prime period (2k + 1) solution
T2y T (2k—1)s s T—13 L0y T1, T2, oy T2k+1, ---Of Eq.(4.14).
We have from the form of solution of Eq.(4.14) that

Az_ AZ_ (25—
Took = S5, _(ok-1) = £T—(2k-1) (A + D), T_(2k-2) = =52,

T_(2k-3) = %xT—(2k-3) (FA+D), ... To1 = JT_1 (A +p),z0 = L.

Then p = 2A4.
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Secondly, suppose that p = 2A. Then we have
T2(2k+1)n+1 = L2k, T2(2k+1)n+2 = T(2k—1)) -y T2(2k+1)n+2k+1 = T0,

T2(2k+1)n+2k+2 = T—2k) L2(2k+1)n+2k+3 = T—(2k—1)» =y L2k +1)n+2(2k4-1) =

Zo-

Thus, we obtain a period (2k + 1) solution.

Lastly, assume that p # 2A. Then we see that periodicity number is
(4k + 2) from the form of solution of Eq.(4.14).

The proof is complete. ]
4.3. On the Difference Equation z,,, = —ﬁx—sz In this section
—A-T] zn-:

i=0
we obtain a form of the solutions of the equation
Azn ok

2k
i=0

(4.15) Tyl = , n=0,1,..,
where k is a positive integer and initial conditions are non zero real
2k
numbers with [] z_; # —A.
=0
2k o
Theorem 9. Assume that [ x_; = p and p # —A. Let {zn}on_,, be a

i=0
solution of £q.(4.15). Then forn =0,1,...
Az_s
T2kt )n+l = S5, Ta2ki1)ns2 = AT—(2k-1) (A = P),

AT _(op~ 1
T2k 1)n+3 = “hos, Ty(2k 4 1)ndd = 5T (2k-3) (—A— D),

L A
Tok+nt2k = 72-1 (=4 = P), okt )nt2kt1 = 255,
T2(2k+1)n+2k+2 = T2k T2(2k+1)n+2k+3 = T—(2k—1))

T2(2k+1)n+dk+1 = T—1, T2(2k+1)n+4ak+2 = L0
Proof. The proof is similar to Theorem 7 and it will be omitted. O

Theorem 10. Eq.(4.15) has a periodic solutions of period (2k +1) iff p =
—2A and will be take the form {.’l:_gk,x_(gk_l), vy T_1, 20, L1, T2, eovy T2k41, } .
If p # —2A, then periodicity number is (4k + 2).

Proof. The proof is similar to Theorem 8 and it will be omitted. O
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