NOTES ON ENDOMORPHISMS OF HENSON GRAPHS AND
THEIR COMPLEMENTS

NEBOJSA MUDRINSKI

ABSTRACT. We start by proving that the Henson graphs H,,, n > 3 (the ho-
mogeneous countable graphs universal for the class of all finite graphs omitting
the clique of size n), are retract rigid. On the other hand, we provide a full char-
acterization of retracts of the complement of Hy. Further, we prove that each
countable partial order embeds in the natural order of retractions of the comple-
ments of Henson graphs. Finally, we show that graphs omitting sufficiently large
null subgraphs omit certain configurations in their endomorphism monoids.

1. INTRODUCTION

Throughout the paper, all graphs (unless stated otherwise) are simple, undirected
and countable. We recall that a graph homomorphism f : G — H is a mapping of
vertex sets of G and H which preserves the edges: if z,y € V(G) are joined by an
edge, so are f(z), f(y) € V(H). Since we are working with simple graphs only,
this means in particular that if f(z) = f(y), then x, y must be non-adjacent. Of
course, if H = G, we obtain the definition of an endomorphism of G. A bijective
endomorphism is an automorphism of G. If f : G — H is a graph homomorphism,
the induced subgraph of H on f(V'(G)) we simply denote by f(G).

A graph G is homogeneous if every isomorphism @y : Fy — Fj of its finite
induced subgraphs F1, F; extends to an automorphism ¢ of G. Homogeneity is
a very important property in mathematical logic and permutation group theory,
see, for instance, [4, 13]. Classes of homogeneous graph-like structures which
have been determined include countably infinite tournaments (Lachlan [14]), di-
graphs (Cherlin [7]), finite (Gardiner [11]) and countably infinite (simple undi-
rected) graphs (Lachlan and Woodrow [15]). It is the main result of the latter paper
that lies in the focus of our interest here. For 1 < n < Ry, let K, denote the com-
plete graph (clique) with n vertices. A countably infinite graph G is homogeneous
if and only if G is isomorphic to one of the following:

(a) mK,, the disjoint union of m copies of K, where either m = Ng, or
n = Ro;

(b) the complements of the graphs from (a);

(c) the infinite random graph R (see [5] for a survey);

(d) the Henson graphs H,,, n > 3 (constructed first in [12]);

(e) the complements of Henson graphs.

2000 Mathematics Subject Classification. 05C99, 08A35, 20M20.
Supported by Grant No.144011 of the Ministry of Science and Environment of Republic of
Serbia.

ARS COMBINATORIA 96(2010), pp. 173-183



By a fundamental result of Fraissé [9] (see also (10, 13]), a homogeneous graph
G is uniquely determined by its age, the class of all finite subgraphs which embed
in G. It is then usually said that G is the Fraissé limit of its age. In the terminology
just described, the infinite random graph R is the Fraissé limit of the class of all
finite graphs, H,, is the limit of all finite graphs omitting Ky, and consequently, the
complement H , is the limit of all finite graphs omitting the null graph K..

Clearly, the graphs from (a) and (b) are sporadic and very easy to study. The
infinite random graph R (also called the Erd6s-Rado graph) was already a subject
of thorough investigations: we direct to [5] for an overview of results, or to [6]
for a number of more recent ones. In addition, let us mention a recent result [3]
that Ty, the full transformation monoid on an infinitely countable set, embeds in
End(R), and so does every countable semigroup.

It is the aim of this paper to investigate the analogous representation problem
for Henson graphs and their complements. We provide some useful information on
countable semigroups that embed in End(H,) and End(H,), n > 3.

In understanding the structure of a semigroup, it is often an important step to
consider its idempotents. If we are concerned with the endomorphism monoid
End(G) of a graph G, this means that we have to study its idempotent endomor-
phisms, called the retractions, and to describe the retracts of G — the images of
retractions. For example, it was shown in [2] that a graph G is isomorphic to a
retract of R if and only if it is algebraically closed, that is, if every finite set of
vertices of G has a common neighbor.

Furthermore, the set of idempotents of a semigroup (and so the set of retractions
of @) can be endowed with the so-called natural order defined by

g fifandonlyifef = fe=e.

The minimal elements with respect to this order are called the primitive idempo-
tents. It turns out that the natural order of all retractions of R is so complex that
it embeds every countable order [1], and even more, the whole power set of the
natural numbers, ordered by inclusion [8].

In a sharp contrast to R, all Henson graphs turn out to be are retract rigid (see
Proposition 1 below), which means that they have only one retraction — the iden-
tity mapping. As a consequence, a finite semigroup embeds into End(H,) if and
only if it is a group (Corollary 2). On the other hand, the structure of retractions of
complements of Henson graphs seems to be more involved than that of R. We are
going to give a complete characterization of the retracts of H; (Theorem 6). Fol-
lowing this, we will show that omission of the null graph K., in a graph G implies
the omission of a certain configuration in End(G) (Proposition 11). Therefore, the
situation with (countable) semigroups that embed in End(H,,) is something of an
intermediate between that above two cases (R and Hy,): not every finite semigroup
can be embedded into End(H,), but there are non-group finite semigroups that
do. As an example, we prove that each countable semilattice can be represented by
retractions of Hy, for each n > 3 (Corollary 14).
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2. HENSON GRAPHS AND THEIR RETRACTS

The infinite random graph R has many characterizations, but certainly the most
used one is that R is the unique (up to an isomorphism) countable graph with the
existentially closed (or e.c.) property: for any finite A, B C V(R) with ANB = §
there exists a vertex v € V(R)\(AUB) which is adjacent to all vertices from A and
to none from B. There is a similar property, called K,,_;-e.c., that characterizes
Henson graphs:

For any two disjoint, finite sets of vertices A, B such that A is
K,,_1-free (does not contain a clique of size » — 1 as an induced
subgraph) there exists a vertex z adjacent to all vertices from A
and to none from B.

By [12, Theorem 2.3], for each n > 3, any K, -free graph I" which satisfies K, ;-
e.c. must be isomorphic to H,,.

The following simple observation will easily settle the question of the repre-
sentability of finite semigroups by endomorphisms of H,,.

Proposition 1. Every endomorphism f of Hy (n > 3) is an isomorphism between
H, and f(H,). Consequently, each Henson graph H,, is retract rigid, that is, the
identity mapping is its only retraction.

Proof. First we prove that f must preserve non-edges. Assume to the contrary, that
for two non-adjacent vertices x, y there is an edge between f(z) and f(y). Now
let u; be a vertex adjacent to both z,y, and let uy, .. ., u,_o be further vertices of
H,, chosen so that u; is adjacent to all vertices from the set {z,y,u1,...,ui-1},
2 < i < n — 2, the existence of which is guaranteed by K,_;-e.c. But then
v; = f(u;), 1 <4< n—2,along with f(z) and f(y), form an clique of size n. A
contradiction.

Furthermore, f must be injective. For suppose that f(z) = f(y) for two distinct
vertices z,y. By K,,_;-e.c., there is a vertex z adjacent to = and non-adjacent to y
so that f(z) and f(z) must be adjacent. On the other hand, f(z) = f(y) and f(z)
are non-adjacent by the previous paragraph. A contradiction, thus the proposition
follows. ]

Corollary 2. Let S be a finite semigroup and n. > 3. Then S embeds in End(H,)
ifand only if S is a group.

Proof. If S is a finite semigroup which embeds in End(H,,) then, by the above
proposition, it has a unique idempotent e. Moreover, e must be an identity element
of S. Since each element of S has an idempotent power, it follows that for each
a € S we have ™ = e for a suitable m, > 1, showing that S is a group.
Conversely, Corollary 3.4 of [12] implies that Sy,, the symmetric group on an
infinitely countable set, embeds in Aut(H,). Hence, every finite (and countable)
group embeds in End(H,). a
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3. RETRACTIONS OF COMPLEMENTS OF HENSON GRAPHS

According to the above considerations, Hy, is the unique (up to isomorphism)
countable graph satisfying the property K ,_1-e.c., which is dual to K,_j-e.c.:
For any two disjoint, finite sets of vertices A, B such that B is
K, _1-free, there exists a vertex z adjacent to all vertices from A
and to none from B.

As a direct consequence of the above property, the graph H,, is algebraically closed
foralln > 3. .
We start by collecting some remarks on retractions of K ,,-free graphs.

Lemma 3. Let I be a graph that omits K, as a subgraph for somen 2 3, let e
be a retraction of I', G = e(I") the corresponding retract, and

Ar={z € V(Q): e} (z)| = k}
fork 2 1. Then:
(1) if I is algebraically closed, so is G,
@) le~Y(z)| < n—1forany z € V(G) (that is Ay, = D for all k > n),
(3) ifthe vertices x1,. . . , T, form a null graph and x; € Ay, 1 <1<, then

Z k,' <n-— 1.

i=1
Proof. (1) is immediate, as the property of being algebraically closed is obviously
preserved by graph homomorphisms.

(2) follows from the fact that if y,y’ € e~(z), then e(y) = = = e(y’), and so
y,y’ must be non-adjacent. Hence, |e~}(z)| > n for a vertex = would imply the
existence of a null subgraph of I" with at least n vertices.

(3) Note that if v € e~!(z;) and v € e }(z;), 1 < 4,5 < 7, then u and
v are non-adjacent, for otherwise e(u) = z; and e(v) = z; would be adjacent.
Therefore, the vertices from | JI_, e!(x;) form a null graph. By the given con-
ditions, this union can have at most n — 1 elements, thus the required inequality
follows. O

However, in order to work with H, efficiently (for example, to obtain some of
its retractions), we need a more constructive approach to these graphs. Recall (for
example, from [5]) that there is an inductive construction of R which is in fact a
special case of the canonical ‘recipe’ of constructing existentially closed structures
(see [13]). Namely, take I to be an arbitrary finite or countable graph. Assuming
that the graph I'y has been constructed, for each finite subset S C V([;) define a

new vertex zg“"'l) ¢ V(I'i) whose neighbor set is precisely S. By adding all such
vertices to I, we obtain I'ky1. As is easily verified, the union |J; ., I'x of this
chain of graphs has the existential property, so it is isomorphic to R.

Now modify the above construction such that the ‘initial’ graph I'o is K-free
(n > 3 is a fixed number), and in the process of obtaining Iz from I, expand
TI;, by vertices of the form zgﬂ'l) only for those finite subsets S C V(') for which
the induced subgraph of Iy on S is K,,—-free.
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Lemma 4. Let n > 3, let I'y be a K,,-free graph, and assume that the chain of
graphs {Iy : k < w} is constructed as above. Then

r=Jn

k<w
is isomorphic to H,.

Proof. First of all, I' is K,-free, for otherwise there is a minimal m > 1 such
that I, contains K,,. By minimality of m, and since every two vertices from
V(In) \ V(I'm-1) are non-adjacent, there is a unique S C V(I,,—1) such that
zg'" is a vertex from the considered n-clique. The other vertices of that clique must
belong to S, contradicting the fact that the graph formed by .S must be K,,_-free.

Further, let A, B be disjoint, finite subsets of V/(I") such that the induced sub-

graph on A is K,_;-free. Then there is an integer m such that AU B C V(I3,),
and 2§"*Y) € V(Ip1) © V(I') is the vertex required by Kn_1-e.c. O

By considering the dual construction to the above one, it follows that H,, can
be obtained by starting from an arbitrary at most countable K ,-free graph I'o, and
then by constructing a sequence of graphs I, £ < w, such that [ is enlarged
to k.41 by a countable complete graph consisting of vertices zékH) for all finite

K,,_1-free subsets S C V(I:), where zg"“) is joined to all vertices of I, except
to those from S. By the above lemma, the union of the chain {I} : & < w} must
be isomorphic to H .

We recall that the join G V G of graphs G, G is the graph having V(G;) U
V(G?2) as the set of vertices (while assuming that V(G;) N V' (G2) = 0) and

E(G1) UE(G2) U (V(G1) x V(G2)) U (V(G2) x V(GY))

as the set of edges.
Now we have the necessary prerequisites to exhibit a class of graphs whose
copies occur as retracts of H,,.

Proposition 5. Forn > 3, let H be a K ,-free graph, and let G = HV Ky, Then
there exists a retraction e of H,, such that e(H,,) = G.

Proof. Let I, k < w, be a sequence of graphs as above, such that its union I” is
isomorphic to H,. First of all, enumerate the vertices of H:
V(H) = {uo,u1,...}.

Now choose vy € V/([) arbitrarily, and then for each i > 1 a vertex v; € V(I3) \
V(Ii-1) such that

(i) the induced subgraph of I" on {vp, vy, ...,v;} is isomorphic to the induced

subgraph of H on {ug,uy,...,u;}, and

(ii) v; is adjacent to every vertex of I';_; which is not one of v, J <i.

Of course, if H is finite, the process of taking vertices vg,v;,... terminates in a

finite number of steps. Clearly, the required choice is v; = zg) where

S; = {v; : j <4, u; is non-adjacent to u;}.
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Further, let By = @ and Cp = V(Ip) \ {vo}. For each k > 0 define
Biy = {ZE'ZT” : ¢ € Bi},
Cit1 = V(IE)\ (Br+1 U {vk41})-
Finally, let
B= {’vo,’vl,...}U U By,
k>0
and consider e : V(I") — B given by

z z € B,
e =
(<) £ ifeeCy k>0

We claim that the induced subgraph of I'" on B is isomorphic to G, and that e is a
retraction of I'.

For the first part, since the induced subgraph of I" on {wp, v1, . .. } is isomorphic
to H, it suffices to show that for each k > 1 and = € By, z is adjacent to all other
vertices from B. Firstly, z is obviously adjacent to all other vertices from By, and

to v. Furthermore, z € Bj means that z = z?;)} for some y € Cj._1, so that
z is adjacent to all vertices from {Jog ;1 I €xcept y, and so, in particular, to all
vertices from By, ..., Bi—1 and {vo, ..., vx—1}. Also, by the condition (ii) above,
z and v; are adjacent for all j > k. Finally, if z' € B; for some j > k, then
z' = zg‘)} for some u € Cj_1, and thus =’ and z are adjacent.

It is obvious that we have e? = e, so it remains to prove that e is a homomor-
phism. Let u and »’ form an edge in I".

Case 1. u,u' ¢ B. Then e(u),e(u') € |, o Bk, and therefore they are ad-
jacent, both being universal vertices in the subgraph of I" induced by B (that is,
adjacent to all other vertices from B). Of course, they are different, since if u € C},

and ' € Ce, k, € > 0, then e(u) = 2{s7 " # 2{i1) = e(w).

Case 2. u & B and v’ € B (or the other way around). In this case, if u € Cy,
k > 0, then e(u) = z?:‘;'n # 4’ = e(u'), for otherwise u and ' are non-adjacent,
by construction. Hence, e(u) and e(u’) must be adjacent.

Case 3. u,u’ € B. This case is trivial, as e(u) = v and e(v’) = v'.

Since all possibilities are exhausted, e is a graph homomorphism, and the propo-
sition is proved. O

We have enough information to give a complete list of retracts of H;.
Theorem 6. Let G be a graph. Then there exists a retraction e of Hs such that
e(H3) = G ifand only if G = H V Ky,, where H is a K 3-free graph.

Proof. Sufficiency follows from the above proposition. For necessity, note that
e(H3) is an algebraically closed graph, so it cannot be finite. Also, it cannot be
a cofinite subgraph of H, for otherwise let V' be the set of all vertices of H3 not
belonging to e(H3), and choose v € V arbitrarily. By Ka-e.c., there is a vertex
z adjacent to all vertices from V' (thus z € V, so e(z) = z), and non-adjacent to
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e(v). This is, however, a contradiction, as v, z are adjacent, while e(v), e(z) are
not.

Hence, V is an infinite set of vertices, and, using the notation from Lemma 3,
Az = ¢(V'). As a consequence of Lemma 3 (3), each vertex from Ay is universal
in e(H3). Thus e(H3) = A; V A and Ay = Ky,, and so the theorem follows,
since A; is finite or countable and, of course, K 3-free. 0

Problem 1. Characterize the retracts of Hy, forn > 4.

We proceed by studying minimal retractions of the graphs H,. First we make
some observations on minimal retractions in general.

Lemma 7. (@) A retraction e of a graph I is minimal if and only if e(T") is a
retract-rigid graph.
(b) Let Cy, be the cycle with n vertices, X the set of all odd numbers > 5, and
LICX IfI#J, then\/;c;C;i # VjeJﬁj.

(¢) For each odd number n. 2 5, the graph C,is retract-rigid.

Proof. (a) A reference to Claim 1 in the proof of Theorem 4.1, p.142 of [2], suf-
fices: although it is proved there for I being R, the same proof applies verbatim to
the general case. .

(b) This follows from the fact that two graphs are isomorphic if and only if their
complements are isomorphic. Namely, the complement of \/,¢; C; is the disjoint
union of the cycles C;, ¢ € I (denote it by ;¢ C;). Since cycles of different length
are mutually non-embeddable, I # J obviously implies l#);c; C: # ;¢ s C;.

(c) Assume that for some odd n > 5, C,, has a non-trivial retraction e. Let
v be a vertex of C,, such that e(v) # v. Now enumerate the vertices of C, by
Yo = V,V1,...,Un—] Such that v; and v;4, are non-adjacent forali0 < : < n — 2,
as well as v,_) and vg. Clearly, v and e(v) must be non-adjacent — so assume,
without any loss of generality, that e(v) = v,. We prove by induction that e(vay) =
€(var41) = var41 foreach k > 0. Indeed, e(vor+2) must be non-adjacent to voy. 2,
but on the other hand, it must be adjacent to vax 1, as vgg, and vog.2 form an edge.
This already implies e(vor42) = Vok3, and so e(vory3) = vor43. In particular,
€(vn-3) = €(vn-2) = vs_2. Hence, e(vn—_1) must be non-adjacent to v,_1, but
adjacent to vy, _2, implying e(v,—;) = vo. However, this is impossible, since now
we obtain vp = e(vn,_1) = e(e(vn-1)) = e(v) = v}, a contradiction. O

Similarly to End(R) (cf. Theorem 4.1 of [2]), there are uncountably many prim-
itive idempotents in End(H,,) for eachn > 3.

Theorem 8. There exist 2% primitive idempotents in the endomorphism monoid
of Hy, foralln > 3.

Proof. Letw = {0,1,2,...} be the set of natural numbers. Since for any I C w
the graph V/;; C;is K,-free foralln > 3, by Proposition 5 there is a retraction
ey of H, such that the image of e; is isomorphic to \/,c; C; V Ky,. By (b) of
the above lemma, all these retractions are different, that is, e; = e if and only if
I = J. Furthermore, all graphs of this form are retract rigid by (c) of the previous

179



lemma, since Ky, is retract rigid, and the join of retract rigid graphs remains retract
rigid (cf. Claim 3 of the proof of Theorem 4.1 in [2]). Therefore, by (a) of the above
lemma, all retractions e; are minimal, forming a set of 2% primitive idempotents
of End(H,). a

Also, a result that parallels Theorem 3 of [8] is true for the graphs H .

Theorem 9. The power set of w (ordered by inclusion) embeds into the natural
order of retractions of H,, for eachn 2 3.

Proof. Consider the graph

G (v C'-gn.m) V Ky,

new

By Proposition 5, H, contains an isomorphic copy of G’ of G such that there is a
retraction of H, onto G’. Without any loss of generality, we identify G’ and G, so
that we have a retraction e : H,, — G.

Enumerate V(Cax) = {co2k,C1,2ks- - -+ Cak—1,2k} (for & > 2) and define f :
V(Car) — V(Cax) by

Fulcio) = Ci 2k, if ¢ is odd,
k\Gis2k) = Ciy12k, Otherwise.

It is easy to see that f}, is indeed an idempotent endomorphism of Cay, and that its
image is a complete graph of k vertices. Now for each I C w we define a mapping
e; : V(G) — V(G) such that

er(v) = Sig2(v), ifve V(62k+4) andk ¢1,
v, otherwise.

1t is straightforward to see that ey is an idempotent endomorphism of G. It acts on
G so that it turns the graphs Cay 4 for which k ¢ I into complete graphs of the
form Ko — thus producing two new universal vertices in e;(G) — and leaves
all the other cycle complements (as well as Ky,) fixed. Hence,

e](G) = (v 521;4.4) VKRO-

kel

Furthermore, efe is a retraction of the whole H,, onto G = ¢;(G), since e|v(c)
is an identity mapping.

We claim that eye < eye if and only if / C J, which would obviously finish the
proof of the theorem.

(=) First of all, note that we have efe = ejeeje = ereje = ejere by the
assumptions, since ee; = e; and ee; = ej. Let k € I, let i be even, and v =
¢i2k+4- Then v = e(v) = e;(v), so v = ere(v) = ejese(v) = ey(v). The latter
equality implies k& € J, for otherwise ej(v) = ciy1,2k4+4 # v. Hence, I C J.

(<) Let I C J. We prove that e; = erey = egjer holds. If v € V(Ky,),
or v € V(Caxyq) such that k € J, then ej(v) = v and ef(v) = ejej(v). Also,
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er(v) = ese;(v), since by definition we have respectively e;(v) = v in the former,
and e;(v) € V(Cagya) in the latter case (regardless whether k € [ or not). So,
it remains to consider the case when k ¢ I = k ¢ J. We distinguish two
possibilities. First,if v = cy; 2144 then e7(v) = €5(v) = caip1 2144, 50 eyey(v) =
v = ejyer(v). On the other hand, if v = C2i+1,2k+4, then e (v) = ej(v) = v, thus
ere;(v) = v = ejer(v) follows immediately.

Now by the above remarks, eye = ejeje = ereeje = (ere){eye), and similarly
ese = (ese)(ere), that is, eje < ee. 0O
Corollary 10. Every countable order embeds in the natural order of idempotents
of End(ﬁ,,), n>3

4. PARTIAL RESULTS ON EMBEDDINGS INTO End(H,,)

Proposition 11. Let nn > 3, and let e, f be endomorphisms of a K ,-free graph G
such thate? = eand ef = fe = e. Then

fn-2 — fn—2+(n—2)! )

Proof. Let z be a vertex of G. Along with z, consider the vertices e(z) and fi(=),
1 < ¢ € n— 2. Since all these vertices have the same image e(z) under e, by
Lemma 3 (2) two of them must coincide. If e(z) = z, then

f(z) = fe(z) = e(z) = =.

Further, if e(z) = fi(z) for some 1 < i < n — 2, then
FH(z) = fe(z) = e(z) = fi(=).
The remaining possibility is that
fi(z) = f(2)

holds for some %, j such that 0 < i < j < n—2. Summing up, forall z € V(G) we
have f*(x) = f7(z) for some distinct i,j € {0,1,...,n — 1} (which, of course,
may deperd on z) such that |i — j| < n - 2.

By assuming i < j and setting d = j — 4, it follows that f(z) = fi*+*4(z) for
allk > 0. Since i < n — 2, this implies

fr3(z) = [ ()
forall k > 0. Finally, d < n — 2,50 d | (n — 2)!. Thus,
fn—2(x) - fn—2+(n—2)!(x)
holds for all z € V(@), whence we are done. O

Remark 12. For n = 3, the conclusion of the above lemma is f=r This means
in particular that no nonidempotent semigroup with zero embeds in End(H3).

Furthermore, there are finite semigroups that cannot be represented by endo-
morphisms of H ,, for other values of n. A 0-group is a semigroup obtained from a
group G by adjoining a zero element. We denote it by GO,
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Corollary 13. Let C,, denote the cyclic group with m elements. Then C?, does
not embed in End(H,) ifm > (n — 2)L.

However, it turns out that every countable semilattice embeds in End(H,,) for
alln > 3. As known, a semilattice may be also viewed as an ordered set in
which every two elements have a greatest lower bound (with respect to the ordering
defined by =z < y if and only if zy = z).

Corollary 14. Every countable semilattice embeds in End(H,,) foralin > 3.

Proof. By the proof of Theorem 9, I — ere (I C w) is an embedding of the partial
order = (2¢,C) into the natural order of retractions of Hy. However, 2 itself
is an lower semilattice, and the considered embedding preserves the intersections,
since one easily verifies that

(ere)(ese) = erege = ejnye
holds for all I, J C w. Therefore, if we consider €2 as a semigroup, the above em-

bedding is in fact a semigroup embedding of £ into End(H,). As each countable
semilattice embeds in £2, the result follows. a

Let us remind that once more that by Corollary 3.4 of [12], every countable
group embeds in End(H,), too (via Aut(H,) = Aut(H,)). On the other hand,
we have seen that there are finite semigroups whose copies are not contained in
End(H,), such as large 0-groups (which might be considered as ‘combinations’
of semilattices and groups). Hence, the following question emerges.

Problem 2. Characterize the countable semigroups which embed in End(H,) for
nz3
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