On a Stevié integral-type operator from
generally weighted Bloch spaces to Bloch-type
spaces on the unit ball ‘

Haiying Li Tianshui Ma

Abstract

Let g € H(B), g(0) = 0 and ¢ be a holomorphic self-map of the unit
ball B in C". The following integral-type operator

1
B = [ RitoeNee T, £ € HB), € B,

was recently introduced by S. Stevi¢ and studied on some spaces of holo-
morphic functions on B, where Rf(z) = Y 7., 2k 5L (2) is the radial
derivative of f. The boundedness and compactness of this operator from
generally weighted Bloch spaces to Bloch-type spaces on B are investigated
in this note.

§1 Introduction

Let B be as usual the unit ball in C*, D the open unit disc in C, H(B)
the space of all holomorphic functions in B. For any z = (z;,22,...,2,), w =
(w1,ws,...,w,) € C", the inner product is defined by (z,w) = 3°7_, ;.

For any f € H(B) with the Taylor expansion f(z) = 218120 ag?®, let
Rf(z) = ZI#IZU |Blapgz? be the radial derivative of f, where 3 = (B1,B2y...,08n)
is a multi-index, |8] = B + -+ + B and 27 = 2% ... 28 It is casy to see that
Rf(z) = (Vf(2), Z), where V f denotes the complex gradient of f.

For any 0 < a < oo, the generally weighted Bloch space ([5]) By, consists
of all functions f € H(B) such that

I£llg, = £(0)] + sup(l — |21%)* R (2)| log —— < co.
z€B 1 Izl

The little generally weighted Bloch space By, o is a subspace of By, con-
sisting of those f € Bf, such that

H _ 2\a ; =
I!}Tl(l IZI ) |Rf(z)llog 1 - |Z|2 0'
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A positive continuous function g on the interval [0,1) is called normal ([23])
if there are § €[0,1), a and b, 0 < @ < b such that

p(r) pr) o
A= is decreasing on [0,1) and hm i G-re ;

_#lr)_ is increasing on [0,1) and hm p(r)
a-rr & G-

If a function p : B — [0, 00) is normal, we also assume that p(z) = u(|z]), z € B.
The Bloch-type space B,, consists of all f € H(IB) such that

B,(f) = sup 1(2)|IRf(z)| < oo

where u is normal. The Bloch-type space becomes a Banach space with the
norm | f||z, = |f(0)| + Bu(f) ([25, 40]). The little Bloch-type space B¢ is a
subspace of B, consisting of those f € B, such that lim);|_,; u(2)|Rf(2)| = 0.
Bearing in mind the following asymptotic relation from {40]

bu(f) = sup u(2)|V £(2)| < sup u(2)|Rf (2|,
2€B z€B

the little Bloch-type space is equivalent with the subspace of B, consisting of
those f € B, such that lim;_,; u(2)|Vf(2)| = 0.
Let ¢ be a holomorphic self-map of B. For f € H(B) the composition

operator is defined by
Cof(2) = f(p(2)), z € B.

It is of interest to provide function theoretic characterizations of when ¢
induces bounded or compact composition operators on spaces of holomorphic
functions ([4]). For some recent results, mostly in C* or related to Bloch-type
spaces, see [3, 6, 7, 19, 20, 21, 22, 25, 33, 42, 44] and the references therein.

Let g € H(B), g(O) 0, ¢ be a holomorphic self-map of B and

BUE = [ RieeNee %, £ € HE), 2 <B.

The operator I$ was introduced in [35] and studied also in the following papers:
(26, 32, 35, 38]. Operator I3 is a generalization of the operator L, introduced
by S. Li and 8. Stevi¢ and studled in (1, 2, 8, 9, 10, 11, 12, 186, 17] For one-
dimensional case, the case of polydisk and rela.ted results see, for example,
[13, 14, 15, 18, 24, 27, 28, 29, 30, 31, 34, 36, 37, 39, 41, 43]. In this paper, we
study the operator I{ by investigating the boundedness and compactness of the
operator from generally weighted Bloch spaces to Bloch-type spaces.

Throughout the remainder of this paper C' will denote a positive constant in-
dependent of functions, the exact value of which may vary from one appearance
to the next.
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§2 Main results and its proofs

First we formulate and prove several auxiliary results which are used in the
proofs of our main results.
Lemma 2.1 ([26]) Suppose f,g € H(B) and g(0) = 0. Then

RIG(N)(2) = 9(2)Rf(¢(2)).

Proposition 2.2 Assume that p is normal on B, g € H(B), g(0) =0, ¢
is a holomorphic self-map of B and o > 0. Then 1g : Bi, — B, is compact if
and only if for any bounded sequence (f;)jen in Bisg, when f; — 0 uniformly
on compact subsels of B, then 115 fillB, — O as § — oo.

The result follows by standard arguments similar to those in Lemma 3 in
[11] and [24]. Hence we omit the details.

Now we begin to study the boundedness and compactness of the operator
13 : Bigy — B, following the ideas from Stevié’s papers (26, 32, 35, 38].

Theorem 2.3 Assume that p is normal on B, g € H(B),g(0) = 0, ¢ is
a holomorphic self-map of B and « > 1. Then the following statements are
equivalent.

(i) I3 : By, — By, is bounded;

(it) I : B, o — By is bounded;

(iii)
sap — HEI@Il(2)
wes (1~ lp()P)* log =i

< 00. (1)

Proof (i)= (ii) This is obvious.
(ii)= (iii) Let fi(z) = 2 € B, 0,0 € {1,2,...,n}. By the boundedness of
I$ : Bi, o — By, we have that for each € {1,2,...,n}

123 fulls, = sup u(=)lg()len ()l < 183, mom, fll 3, (2)
Hence
n n
s:g#(l)lg(Z)ll‘P(Z)l < Z#(Z)LQ(Z)”‘PI(Z)I <l sg, o—B. Z Ilfill g, < oo.
z 1=1 =1
Case a > 1. Let
fle) = 1 - fwl? _ (1 = Jw|?)?
w (1= (z,w))®log 1_-&7) (1 - {z,w))e+!log l-(i,w) )

An easy calculation shows that f € Bf}, , and sup,,¢p || fullBg, < oo. From
this and the boundedness of I : B, , — B, it follows that

CllglBe =B, = Efpwlls,
sup H(2) R f o) (2(2))ll9(2)]

p(w)|g(w)||e(w)?
(1 = lp(w)?)* log %o

w € B.
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Then

sup #(2)llg(2)lle(2)] < sup —2p@leE@leN
izy - 1e@P) g o~ eaizs (1= 19(2)1?)* log sz
< C“I«?:"B.‘;g,o—'Bu < 00.

When |p(2)| < 4, by (2), we have

p(2)llg(2)lie(2)] 1
< —s——supy(z
T-le@P)r g oy~ Q) log% sup 1 Ng(2)lle(2)|
1 n
< o Milsg, o~8. fillBe < o0,
(%)“log‘—‘s—‘ pllBye, ;" " Yor

from which (1) follows in this case.
Case o = 1. For fixed w € B, let

e
fw(z) = loglog m, zeB.

An easy calculation shows that

|wl?

(1 - jw[?}log =5

wa(‘I.U) = ) f € Bl%g,Oa S:I; "fw”B,‘;‘ < 0.
w

Similar to Case a > 1 we get (1).

(ili)=> (i) For any z € B and f € B, we have
pRg()lle(2)}
lo(2)12)* log T=Zmye

From this, (1) and since I f(0) = 0 the boundedness of I : B, — By,
follows.

p(2)|RUIZf)(2)] < Cliflisg, -

Theorem 2.4 Assume that p is normal on B, g € H(B), g(0) =0, ¢ is
a holomorphic self-map of B and > 1. Then the following statements are
equivalent.

(i) 13 : B, — B, is compact;

(%) I3 : By, o — B, is compact;

(i) I3 : Biy. o — By is bounded and

i H@@leE
le)l=~1 (1= le(2)2)*log i1 Zmp

() I3 : By, — B, is bounded and (3) holds.

Proof (i)= (ii) is obvious. By Theorem 2.3 (iii) and (iv) are equivalent.

(ii)=> (iii) Clearly Ig : Bf, o — By is bounded. If ||| < 1, then condition
(3) is vacuously satisfied. Now assume [¢}loco = 1. Let (zx)ren be a sequence in
B such that |p(2k)] — 1 as k — oo.

(3)
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Case o > 1. Let k€ N,

fel) = 1 - Jo(zi)? _ (1 — le(ze)[*)?
(1= (2, 0(zM)*log 7oy (1~ (2 e(2k)))*H log tbnyy

Then sup ¢z || fell Bg, < oo and fi converges to zero uniformly on compacts
of B as k — co. By Proposition 2.2, then limy_.o [[1$ fill5, = 0. Hence

Mg ells, = sup #(2)IR(L3 fie)(2)]
p(2k) IR(I3 fie) (zi)

plzlo(zllez)l?
(1 - lp(2)1?)* log =%

v

By use of the fact that |¢(2;)] — 1 as &k — oo, we get

lim #(zk)|92(f<7k)|W’(Zlc)|e -0,
k=00 (1 — Jo(zk)|?)* log =7

from which (3) follows.
Casea=1. Let k€N,

1 - |p(z)? _ (1 — lp(2x)*)? _
(1= (zp(zog 75y (1 — (=, 0(ze)))?log oy

Ji(z) =

Similar to Case o > 1 we get (3).

(iii)= (i) Since 1g : Biy, o — By is bounded and by (2), then
sup u(2)|g(2)lle(2)] < oo.
z€B

Let (fk)ren be a bounded sequence in B, and fi converges to zero uni-
formly on compacts of B as k — oo. By (3) for every € > 0, there exists a

4 € (0,1) such that
w(2)lg(2)lle(2)|
(1 - |(p(z)|2)°‘ log 1_[5{2)‘2
whenever § < [p(2)} < 1. Hence

<€

28 fills, = igg#(Z)IR(Iéfk)(Z)l

< sup p()|g@E)|IRf(p(2))i+ sup  pu(2)|g(2)||R fi(p(2))
lp(z)|<8 §<|p(z)]<1

< suppu(z)]g(2)|le(2)] - sup |V fi(w)
=cB lwl<s

o p(2)lg(2)|le(2)]

+Cli fellsg, 5<|:l(lz)|<1 (1= (2)?)° log 11

<

C sup |V fi(w)| + Ce.
Jw|<é

189



By the uniform convergence of (fi)xen on compacts of B and Cauchy’s es-
timate, then (|V fi|)ken also converges to zero on compacts of B as k — oo.
Hence lim—,c0 Supjy, <5 |V fi(w)| = 0. Hence for every € > 0,

limsup |1 fills, < Ce.
k—oo

Then limg_.co |3 fi|ls, = 0. By Proposition 2.2, the operator I3 : Bﬁ‘,g — B,
is compact.

Theorem 2.5 Assume that p is normal on B, g € H(B), g(0) = 0, ¢ is
a holomorphic self-map of B and o > 1. Then the following statements are
equivalent.

(i) If : Biy, o — By,o is bounded;

(#)I3 : Bi, o — By is bounded and

(Jm, #(2)g(2)lle(2)] = 0.

Proof (i)= (ii) Since I : Bf, o — By, o is bounded, then I : Bigo — Bu
is bounded. Since fi(2) = 2 € Bz ol € {1,2,...,n}, we have I3 fi € By,
hence

#(2)IRUIZSi)(2)| = p(2)lg(2)|lei(2)| — 0,

as |z| — 1. For every l € {1,2,...,n}, and consequently
Il}gllﬂ(z)lg(Z)lIw(Z)l =0.
(ii)= (i) For every polynomial p, which obviously belongs to Bj3g 01 then

w2 RULP) (=)
< @) Ree()llg(2)]
< w@e@Ne) - 1Vp(e()lleo = 0, l2] — 1.

Hence I9p € Biog,0. Since the set of all polynomials is dense in Bf, ,, for
every f € By, there is a sequence of polynomials (px)ren such that ||f —
pxllBg, — 0, as k — co. By the boundedness of I : Bf, ; — B, then we have

W3S - pells, < W lisg, o8, - IIf —pellBz, — 0

as k — 0o. Then IJ(Bg, o) C Byo. Hence I : Bf, ; — B, o is bounded.
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