On a Stević integral-type operator from generally weighted Bloch spaces to Bloch-type spaces on the unit ball

Haiying Li Tianshui Ma

Abstract

Let $g \in H(\mathbb{B})$, g(0) = 0 and φ be a holomorphic self-map of the unit ball \mathbb{B} in \mathbb{C}^n . The following integral-type operator

$$l_{\varphi}^{g}(f)(z) = \int_{0}^{1} \mathcal{R}f(\varphi(tz))g(tz)\frac{dt}{t}, \ f \in H(\mathbb{B}), \ z \in \mathbb{B},$$

was recently introduced by S. Stević and studied on some spaces of holomorphic functions on \mathbb{B} , where $\mathcal{R}f(z) = \sum_{k=1}^n z_k \frac{\partial f}{\partial z_k}(z)$ is the radial derivative of f. The boundedness and compactness of this operator from generally weighted Bloch spaces to Bloch-type spaces on \mathbb{B} are investigated in this note.

§1 Introduction

Let $\mathbb B$ be as usual the unit ball in $\mathbb C^n$, $\mathbb D$ the open unit disc in $\mathbb C$, $H(\mathbb B)$ the space of all holomorphic functions in $\mathbb B$. For any $z=(z_1,z_2,\ldots,z_n),\ w=(w_1,w_2,\ldots,w_n)\in\mathbb C^n$, the inner product is defined by $\langle z,w\rangle=\sum_{j=1}^n z_j\overline{w_j}$.

For any $f \in H(\mathbb{B})$ with the Taylor expansion $f(z) = \sum_{|\beta| \geq 0} a_{\beta} z^{\beta}$, let $\mathcal{R}f(z) = \sum_{|\beta| \geq 0} |\beta| a_{\beta} z^{\beta}$ be the radial derivative of f, where $\beta = (\beta_1, \beta_2, \dots, \beta_n)$ is a multi-index, $|\beta| = \beta_1 + \dots + \beta_n$ and $z^{\beta} = z_1^{\beta_1} \dots z_n^{\beta_n}$. It is easy to see that $\mathcal{R}f(z) = \langle \nabla f(z), \overline{z} \rangle$, where ∇f denotes the complex gradient of f.

For any $0 < \alpha < \infty$, the generally weighted Bloch space ([5]) B_{\log}^{α} consists of all functions $f \in H(\mathbb{B})$ such that

$$||f||_{B^{\alpha}_{\log}} = |f(0)| + \sup_{z \in \mathbf{B}} (1 - |z|^2)^{\alpha} |\mathcal{R}f(z)| \log \frac{e}{1 - |z|^2} < \infty.$$

The little generally weighted Bloch space $B^{\alpha}_{\log,0}$ is a subspace of B^{α}_{\log} consisting of those $f\in B^{\alpha}_{\log}$ such that

$$\lim_{|z| \to 1} (1 - |z|^2)^{\alpha} |\mathcal{R}f(z)| \log \frac{e}{1 - |z|^2} = 0.$$

MR Subject Classification: Primary 47B38.

Keywords. Stević integral-type operator, generally weighted Bloch space, Bloch-type space, boundedness, compactness.

A positive continuous function μ on the interval [0,1) is called normal ([23]) if there are $\delta \in [0,1)$, a and b, 0 < a < b such that

$$\frac{\mu(r)}{(1-r)^a}$$
 is decreasing on [0,1) and $\lim_{r\to 1} \frac{\mu(r)}{(1-r)^a} = 0$;

$$\frac{\mu(r)}{(1-r)^b} \text{ is increasing on [0,1) and } \lim_{r \to 1} \frac{\mu(r)}{(1-r)^b} = 0.$$

If a function $\mu : \mathbb{B} \to [0, \infty)$ is normal, we also assume that $\mu(z) = \mu(|z|), z \in \mathbb{B}$. The Bloch-type space B_{μ} consists of all $f \in H(\mathbb{B})$ such that

$$B_{\mu}(f) = \sup_{z \in \mathbf{B}} \mu(z) |\mathcal{R}f(z)| < \infty$$

where μ is normal. The Bloch-type space becomes a Banach space with the norm $\|f\|_{B_{\mu}} = |f(0)| + B_{\mu}(f)$ ([25, 40]). The little Bloch-type space $B_{\mu,0}$ is a subspace of B_{μ} consisting of those $f \in B_{\mu}$ such that $\lim_{|z| \to 1} \mu(z) |\mathcal{R}f(z)| = 0$. Bearing in mind the following asymptotic relation from [40]

$$b_{\mu}(f) = \sup_{z \in \mathbf{B}} \mu(z) |\nabla f(z)| \asymp \sup_{z \in \mathbf{B}} \mu(z) |\mathcal{R}f(z)|,$$

the little Bloch-type space is equivalent with the subspace of B_{μ} consisting of those $f \in B_{\mu}$ such that $\lim_{|z| \to 1} \mu(z) |\nabla f(z)| = 0$.

Let φ be a holomorphic self-map of \mathbb{B} . For $f \in H(\mathbb{B})$ the composition operator is defined by

$$C_{\varphi}f(z) = f(\varphi(z)), z \in \mathbb{B}.$$

It is of interest to provide function theoretic characterizations of when φ induces bounded or compact composition operators on spaces of holomorphic functions ([4]). For some recent results, mostly in \mathbb{C}^n or related to Bloch-type spaces, see [3, 6, 7, 19, 20, 21, 22, 25, 33, 42, 44] and the references therein.

Let $g \in H(\mathbb{B}), \ g(0) = 0, \varphi$ be a holomorphic self-map of \mathbb{B} and

$$I_{\varphi}^{g}(f)(z) = \int_{0}^{1} \mathcal{R}f(\varphi(tz))g(tz)\frac{dt}{t}, f \in H(\mathbb{B}), z \in \mathbb{B}.$$

The operator I_{φ}^g was introduced in [35] and studied also in the following papers: [26, 32, 35, 38]. Operator I_{φ}^g is a generalization of the operator L_g introduced by S. Li and S. Stević and studied in [1, 2, 8, 9, 10, 11, 12, 16, 17]. For one-dimensional case, the case of polydisk and related results see, for example, [13, 14, 15, 18, 24, 27, 28, 29, 30, 31, 34, 36, 37, 39, 41, 43]. In this paper, we study the operator I_{φ}^g by investigating the boundedness and compactness of the operator from generally weighted Bloch spaces to Bloch-type spaces.

Throughout the remainder of this paper C will denote a positive constant independent of functions, the exact value of which may vary from one appearance to the next.

§2 Main results and its proofs

First we formulate and prove several auxiliary results which are used in the proofs of our main results.

Lemma 2.1 ([26]) Suppose $f, g \in H(\mathbb{B})$ and g(0) = 0. Then

$$\mathcal{R}I_{\varphi}^{g}(f)(z) = g(z)\mathcal{R}f(\varphi(z)).$$

Proposition 2.2 Assume that μ is normal on \mathbb{B} , $g \in H(\mathbb{B})$, g(0) = 0, φ is a holomorphic self-map of $\mathbb B$ and $\alpha>0$. Then $I_{\varphi}^g:B_{\log}^{\alpha}\to B_{\mu}$ is compact if and only if for any bounded sequence $(f_j)_{j\in N}$ in B_{\log}^{α} , when $f_j\to 0$ uniformly on compact subsets of \mathbb{B} , then $||I_{\varphi}^g f_j||_{B_{\mu}} \to 0$ as $j \to \infty$.

The result follows by standard arguments similar to those in Lemma 3 in [11] and [24]. Hence we omit the details.

Now we begin to study the boundedness and compactness of the operator $I_{\varphi}^g: B_{\log}^{\alpha} \to B_{\mu}$ following the ideas from Stević's papers [26, 32, 35, 38].

Theorem 2.3 Assume that μ is normal on \mathbb{B} , $g \in H(\mathbb{B}), g(0) = 0$, φ is a holomorphic self-map of $\mathbb B$ and $lpha \geq 1$. Then the following statements are equivalent.

- (i) $I_{\varphi}^g: B_{\log}^{\alpha} \to B_{\mu}$ is bounded; (ii) $I_{\varphi}^g: B_{\log,0}^{\alpha} \to B_{\mu}$ is bounded;

(iii)

$$\sup_{z \in \mathbf{B}} \frac{\mu(z)|g(z)||\varphi(z)|}{(1 - |\varphi(z)|^2)^{\alpha} \log \frac{e}{1 - |\varphi(z)|^2}} < \infty. \tag{1}$$

Proof (i) \Rightarrow (ii) This is obvious.

(ii) \Rightarrow (iii) Let $f_l(z) = z_l \in B^{\alpha}_{\log,0}, l \in \{1, 2, ..., n\}$. By the boundedness of $I^g_{\varphi}: B^{\alpha}_{\log,0} \to B_{\mu}$, we have that for each $l \in \{1, 2, ..., n\}$

$$\|I_{\varphi}^g f_l\|_{\mathcal{B}_{\mu}} = \sup_{z \in \mathbb{B}} \mu(z)|g(z)||\varphi_l(z)| \le \|I_{\varphi}^g\|_{B_{\log,0}^{\alpha} \to \mathcal{B}_{\mu}} \|f_l\|_{B_{\log}^{\alpha}}. \tag{2}$$

Hence

$$\sup_{z\in\mathbb{B}}\mu(z)|g(z)||\varphi(z)|\leq \sum_{l=1}^n\mu(z)|g(z)||\varphi_l(z)|\leq \|I_\varphi^g\|_{B_{\log,0}^\alpha\to\mathcal{B}_\mu}\sum_{l=1}^n\|f_l\|_{B_{\log}^\alpha}<\infty.$$

Case $\alpha > 1$. Let

$$f_w(z) = \frac{1 - |w|^2}{(1 - \langle z, w \rangle)^{\alpha} \log \frac{e}{1 - \langle z, w \rangle}} - \frac{(1 - |w|^2)^2}{(1 - \langle z, w \rangle)^{\alpha + 1} \log \frac{e}{1 - \langle z, w \rangle}}, \quad w \in \mathbb{B}.$$

An easy calculation shows that $f \in B^{\alpha}_{\log,0}$ and $\sup_{w \in \mathbf{B}} \|f_w\|_{B^{\alpha}_{\log}} < \infty$. From this and the boundedness of $I^g_{\varphi} : B^{\alpha}_{\log,0} \to \mathcal{B}_{\mu}$ it follows that

$$C\|I_{\varphi}^{g}\|_{B_{\log,0}^{\alpha}\to\mathcal{B}_{\mu}} \geq \|I_{\varphi}^{g}f_{\varphi(w)}\|_{\mathcal{B}_{\mu}}$$

$$= \sup_{z\in\mathbb{B}}\mu(z)|\mathcal{R}f_{\varphi(w)}(\varphi(z))||g(z)|$$

$$\geq \frac{\mu(w)|g(w)||\varphi(w)|^{2}}{(1-|\varphi(w)|^{2})^{\alpha}\log\frac{c}{1-|\varphi(w)|^{2}}}.$$

Then

$$\sup_{|\varphi(z)| \ge \frac{1}{2}} \frac{\mu(z)||g(z)||\varphi(z)|}{(1 - |\varphi(z)|^2)^{\alpha} \log \frac{e}{1 - |\varphi(z)|^2}} \le \sup_{|\varphi(z)| \ge \frac{1}{2}} \frac{2\mu(z)||g(z)||\varphi(z)|^2}{(1 - |\varphi(z)|^2)^{\alpha} \log \frac{e}{1 - |\varphi(z)|^2}} \\ \le C \|I_{\varphi}^g\|_{B_{\log,0}^{\alpha} \to \mathcal{B}_{\mu}} < \infty.$$

When $|\varphi(z)| \leq \frac{1}{2}$, by (2), we have

$$\begin{split} \frac{\mu(z)||g(z)||\varphi(z)|}{(1-|\varphi(z)|^2)^{\alpha}\log\frac{e}{1-|\varphi(z)|^2}} & \leq & \frac{1}{(\frac{3}{4})^{\alpha}\log\frac{4e}{3}}\sup_{z\in \mathbf{B}}\mu(z)|g(z)||\varphi(z)| \\ & \leq & \frac{1}{(\frac{3}{4})^{\alpha}\log\frac{4e}{3}}\|I_{\varphi}^g\|_{B_{\log,0}^{\alpha}\to\mathcal{B}_{\mu}}\sum_{l=1}^{n}\|f_l\|_{B_{\log}^{\alpha}}<\infty, \end{split}$$

from which (1) follows in this case.

Case $\alpha = 1$. For fixed $w \in \mathbb{B}$, let

$$f_w(z) = \log \log \frac{e}{1 - \langle z, w \rangle}, \quad z \in \mathbb{B}.$$

An easy calculation shows that

$$\mathcal{R} f_w(w) = \frac{|w|^2}{(1 - |w|^2) \log \frac{e}{1 - |w|^2}}, \quad f \in B^{\alpha}_{\log, 0}, \quad \sup_{w \in \mathbf{B}} \|f_w\|_{B^{\alpha}_{\log}} < \infty.$$

Similar to Case $\alpha > 1$ we get (1).

(iii) \Rightarrow (i) For any $z \in \mathbb{B}$ and $f \in B_{\log}^{\alpha}$, we have

$$\mu(z)|\mathcal{R}(I_{\varphi}^g f)(z)| \leq C\|f\|_{B_{\log}^{\alpha}} \frac{\mu(z)|g(z)||\varphi(z)|}{(1-|\varphi(z)|^2)^{\alpha} \log \frac{e}{1-|\varphi(z)|^2}}.$$

From this, (1) and since $I_{\varphi}^g f(0) = 0$ the boundedness of $I_{\varphi}^g : B_{\log}^{\alpha} \to \mathcal{B}_{\mu}$ follows.

Theorem 2.4 Assume that μ is normal on \mathbb{B} , $g \in H(\mathbb{B})$, g(0) = 0, φ is a holomorphic self-map of $\mathbb B$ and $\alpha \geq 1$. Then the following statements are equivalent.

- (i) $I_{\varphi}^g: B_{\log}^{\alpha} \to \mathcal{B}_{\mu}$ is compact; (ii) $I_{\varphi}^g: B_{\log,0}^{\alpha} \to \mathcal{B}_{\mu}$ is compact; (iii) $I_{\varphi}^g: B_{\log,0}^{\alpha} \to \mathcal{B}_{\mu}$ is bounded and

$$\lim_{|\varphi(z)| \to 1} \frac{\mu(z)|g(z)||\varphi(z)|}{(1 - |\varphi(z)|^2)^{\alpha} \log \frac{e}{1 - |\varphi(z)|^2}} = 0; \tag{3}$$

(iv) $I_{\varphi}^g: B_{\log}^{\alpha} \to \mathcal{B}_{\mu}$ is bounded and (3) holds. **Proof** (i) \Rightarrow (ii) is obvious. By Theorem 2.3 (iii) and (iv) are equivalent.

(ii) \Rightarrow (iii) Clearly $I_{\varphi}^g: B_{\log,0}^{\alpha} \to \mathcal{B}_{\mu}$ is bounded. If $\|\varphi\|_{\infty} < 1$, then condition (3) is vacuously satisfied. Now assume $\|\varphi\|_{\infty} = 1$. Let $(z_k)_{k \in \mathbb{N}}$ be a sequence in \mathbb{B} such that $|\varphi(z_k)| \to 1$ as $k \to \infty$.

Case $\alpha > 1$. Let $k \in \mathbb{N}$,

$$f_k(z) = \frac{1 - |\varphi(z_k)|^2}{(1 - \langle z, \varphi(z_k) \rangle)^{\alpha} \log \frac{e}{1 - \langle z, \varphi(z_k) \rangle}} - \frac{(1 - |\varphi(z_k)|^2)^2}{(1 - \langle z, \varphi(z_k) \rangle)^{\alpha + 1} \log \frac{e}{1 - \langle z, \varphi(z_k) \rangle}}.$$

Then $\sup_{w \in \mathbb{B}} \|f_k\|_{B^{\alpha}_{\log}} < \infty$ and f_k converges to zero uniformly on compacts of \mathbb{B} as $k \to \infty$. By Proposition 2.2, then $\lim_{k \to \infty} \|I^g_{\varphi} f_k\|_{\mathcal{B}_{\mu}} = 0$. Hence

$$\begin{split} \|I_{\varphi}^{g}f_{k}\|_{\mathcal{B}_{\mu}} &= \sup_{z \in \mathbf{B}} \mu(z) |\mathcal{R}(I_{\varphi}^{g}f_{k})(z)| \\ &\geq \mu(z_{k}) |\mathcal{R}(I_{\varphi}^{g}f_{k})(z_{k})| \\ &= \frac{\mu(z_{k})|g(z_{k})||\varphi(z_{k})|^{2}}{(1 - |\varphi(z_{k})|^{2})^{\alpha} \log \frac{e}{1 - |\varphi(z_{k})|^{2}}}. \end{split}$$

By use of the fact that $|\varphi(z_k)| \to 1$ as $k \to \infty$, we get

$$\lim_{k \to \infty} \frac{\mu(z_k)|g(z_k)||\varphi(z_k)|}{(1 - |\varphi(z_k)|^2)^{\alpha} \log \frac{e}{1 - |\varphi(z_k)|^2}} = 0,$$

from which (3) follows.

Case $\alpha = 1$. Let $k \in \mathbb{N}$,

$$f_k(z) = \frac{1 - |\varphi(z_k)|^2}{(1 - \langle z, \varphi(z_k) \rangle) \log \frac{e}{1 - \langle z, \varphi(z_k) \rangle}} - \frac{(1 - |\varphi(z_k)|^2)^2}{(1 - \langle z, \varphi(z_k) \rangle)^2 \log \frac{e}{1 - \langle z, \varphi(z_k) \rangle}}.$$

Similar to Case $\alpha > 1$ we get (3).

(iii) \Rightarrow (i) Since $I_{\varphi}^g: B_{\log,0}^{\alpha} \to B_{\mu}$ is bounded and by (2), then

$$\sup_{z\in\mathbb{B}}\mu(z)|g(z)||\varphi(z)|<\infty.$$

Let $(f_k)_{k\in\mathbb{N}}$ be a bounded sequence in B_{\log}^{α} and f_k converges to zero uniformly on compacts of \mathbb{B} as $k\to\infty$. By (3) for every $\varepsilon>0$, there exists a $\delta\in(0,1)$ such that

$$\frac{\mu(z)||g(z)||\varphi(z)|}{(1-|\varphi(z)|^2)^{\alpha}\log\frac{e}{1-|\varphi(z)|^2}} < \varepsilon$$

whenever $\delta < |\varphi(z)| < 1$. Hence

$$\begin{split} \|I_{\varphi}^{g}f_{k}\|_{\mathcal{B}_{\mu}} &= \sup_{z \in \mathbf{B}} \mu(z)|\mathcal{R}(I_{\varphi}^{g}f_{k})(z)| \\ &\leq \sup_{|\varphi(z)| \leq \delta} \mu(z)|g(z)||\mathcal{R}f_{k}(\varphi(z))| + \sup_{\delta < |\varphi(z)| < 1} \mu(z)|g(z)||\mathcal{R}f_{k}(\varphi(z))| \\ &\leq \sup_{z \in \mathbf{B}} \mu(z)|g(z)||\varphi(z)| \cdot \sup_{|w| \leq \delta} |\nabla f_{k}(w)| \\ &+ C\|f_{k}\|_{B_{\log}^{\alpha}} \cdot \sup_{\delta < |\varphi(z)| < 1} \frac{\mu(z)|g(z)||\varphi(z)|}{(1 - |\varphi(z)|^{2})^{\alpha} \log \frac{e}{1 - |\varphi(z)|^{2}}} \\ &\leq C \sup_{|w| \leq \delta} |\nabla f_{k}(w)| + C\varepsilon. \end{split}$$

By the uniform convergence of $(f_k)_{k\in\mathbb{N}}$ on compacts of \mathbb{B} and Cauchy's estimate, then $(|\nabla f_k|)_{k\in\mathbb{N}}$ also converges to zero on compacts of \mathbb{B} as $k\to\infty$. Hence $\lim_{k\to\infty} \sup_{|w|<\delta} |\nabla f_k(w)| = 0$. Hence for every $\varepsilon > 0$,

$$\limsup_{k\to\infty} \|I_{\varphi}^g f_k\|_{\mathcal{B}_{\mu}} \le C\varepsilon.$$

Then $\lim_{k\to\infty} \|I_{\varphi}^g f_k\|_{\mathcal{B}_{\mu}} = 0$. By Proposition 2.2, the operator $I_{\varphi}^g : B_{\log}^{\alpha} \to \mathcal{B}_{\mu}$ is compact.

Theorem 2.5 Assume that μ is normal on \mathbb{B} , $g \in H(\mathbb{B})$, g(0) = 0, φ is a holomorphic self-map of \mathbb{B} and $\alpha \geq 1$. Then the following statements are equivalent.

- (i) $I_{\varphi}^g: B_{\log,0}^{\alpha} \to \mathcal{B}_{\mu,0}$ is bounded; (ii) $I_{\varphi}^g: B_{\log,0}^{\alpha} \to \mathcal{B}_{\mu}$ is bounded and

$$\lim_{|z|\to 1}\mu(z)|g(z)||\varphi(z)|=0.$$

Proof (i) \Rightarrow (ii) Since $I_{\varphi}^g: B_{\log,0}^{\alpha} \to \mathcal{B}_{\mu,0}$ is bounded, then $I_{\varphi}^g: B_{\log,0}^{\alpha} \to \mathcal{B}_{\mu}$ is bounded. Since $f_l(z) = z_l \in B_{\log,0}^{\alpha}, l \in \{1,2,\ldots,n\}$, we have $I_{\varphi}^g f_l \in \mathcal{B}_{\mu,0}$, hence

$$\mu(z)|\mathcal{R}(I_{\omega}^g f_l)(z)| = \mu(z)|g(z)||\varphi_l(z)| \to 0,$$

as $|z| \to 1$. For every $l \in \{1, 2, ..., n\}$, and consequently

$$\lim_{|z|\to 1}\mu(z)|g(z)||\varphi(z)|=0.$$

(ii) \Rightarrow (i) For every polynomial p, which obviously belongs to $B_{\log,0}^{\alpha}$, then

$$\begin{split} & \mu(z)|\mathcal{R}(I_{\varphi}^{g}p)(z)| \\ & \leq & \mu(z)|\mathcal{R}p(\varphi(z))||g(z)| \\ & \leq & \mu(z)|g(z)||\varphi(z)| \cdot ||\nabla p(\varphi(z))||_{\infty} \to 0, \, |z| \to 1. \end{split}$$

Hence $I_{\varphi}^g p \in \mathcal{B}_{\log,0}$. Since the set of all polynomials is dense in $B_{\log,0}^{\alpha}$, for every $f \in B^{\alpha}_{\log,0}$, there is a sequence of polynomials $(p_k)_{k \in \mathbb{N}}$ such that $||f - f||_{\infty}$ $p_k|_{B_{\log}^{\alpha}} \to 0$, as $k \to \infty$. By the boundedness of $I_{\varphi}^g: B_{\log,0}^{\alpha} \to \mathcal{B}_{\mu}$, then we have

$$\|I_\varphi^g f - I_\varphi^g p_k\|_{\mathcal{B}_\mu} \leq \|I_\varphi^g\|_{B_{\log,0}^\alpha \to \mathcal{B}_\mu} \cdot \|f - p_k\|_{B_{\log}^\alpha} \to 0$$

as $k \to \infty$. Then $I_{\varphi}^g(B_{\log,0}^{\alpha}) \subseteq \mathcal{B}_{\mu,0}$. Hence $I_{\varphi}^g: B_{\log,0}^{\alpha} \to \mathcal{B}_{\mu,0}$ is bounded.

Acknowledgements. This work is partially supported by the Key Project of Chinese Ministry of Education (No. 208081), the Natural Science Foundation of Henan (No.2007110016; 2008B110006; 2010A110009; 102300410012) and the youth Foundation of Henan Normal University (No.01016400015).

References

- K. Avetisyan and S. Stević, Extended Cesàro operators between different Hardy spaces, Appl. Math. Comput. 207 (2009), 346-350.
- [2] D. C. Chang, S. Li and S. Stević, On some integral operators on the unit polydisk and the unit ball, *Taiwanese J. Math.* 11 (5) (2007), 1251-1286.
- [3] D. Clahane and S. Stević, Norm equivalence and composition operators between Bloch/Lipschitz spaces of the unit ball, J. Inequal. Appl. Vol. 2006, Article ID 61018, (2006), 11 pages.
- [4] C. C. Cowen and B. D. MacCluer, Composition operators on spaces of analytic functions, Boca Roton: CRC Press, 1995.
- [5] H. Li and P. Liu, Composition operators between generally weighted Bloch space and Q_{log}^q space, Banach Journal of Mathematical Analysis, 3 (1) (2009), 99-110.
- [6] S. Li and S. Stević, Weighted composition operators from α-Bloch space to H[∞] on the polydisc, Number Funct. Anal. Optimization, 28 (7-8) (2007), 911-925.
- [7] S. Li and S. Stević, Weighted composition operators between H[∞] and α-Bloch spaces in the unit ball, Taiwanese J. Math. 12 (7) (2008), 1625–1639.
- [8] S. Li, S. Stević, Generalized composition operators on Zygmund spaces and Bloch-type spaces, J. Math. Anal. Appl. 338 (2008), 1282-1295.
- [9] S. Li and S. Stević, Integral type operators from mixed-norm spaces to α-Bloch spaces, Integral Transform. Spec. Funct. 18 (7) (2007), 485-493.
- [10] S. Li and S. Stević, Riemann-Stieltjes operators on Hardy spaces in the unit ball of Cⁿ, Bull. Belg. Math. Soc. Simon Stevin 14 (2007), 621-628.
- [11] S. Li and S. Stević, Riemann-Stieltjes type integral operators on the unit ball in Cⁿ, Complex Variables Elliptic Equations 52 (6) (2007), 495-517.
- [12] S. Li and S. Stević, Compactness of Riemann-Stieltjes operators between F(p, q, s) and α -Bloch spaces, *Publ. Math. Debrecen* 72 (1-2) (2008), 111-128.
- [13] S. Li and S. Stević, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl. 338 (2008), 1282-1295.
- [14] S. Li and S. Stević, Products of composition and integral type operators from H[∞] to the Bloch space, Complex Variables Elliptic Functions 53 (3) (2008), 463-474.
- [15] S. Li and S. Stević, Products of Volterra type operator and composition operator from H[∞] and Bloch spaces to the Zygmund space, J. Math. Anal. Appl. 345 (2008), 40-52.
- [16] S. Li and S. Stević, Riemann-Stieltjes operators between different weighted Bergman spaces, Bull. Belg. Math. Soc. Simon Stevin 15 (4) (2008), 677-686.
- [17] S. Li and S. Stević, Riemann-Stieltjes operators between mixed norm spaces, *Indian J. Math.* 50 (1) (2008), 177-188.
- [18] S. Li and S. Stević, Products of integral-type operators and composition operators between Bloch-type spaces, J. Math. Anal. Appl. 349 (2009), 596-610.
- [19] B. D. MacCluer and R. Zhao, Essential norms of weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (4) (2003), 1437-1458.
- [20] K. Madigan and A. Matheson, Compact composition operators on the Bloch space, Trans. Amer. Math. Soc. 347 (7) (1995), 2679-2687.
- [21] S. Ohno, Weighted composition operators between H[∞] and the Bloch space, Taiwanese J. Math. 5 (2001), 555-563.
- [22] S. Ohno, K. Stroethoff and R. Zhao, Weighted composition operators between Bloch-type spaces, Rocky Mountain J. Math. 33 (4) (2003), 191-215.
- [23] A. L. Shields and D. L. Williams, Bounded projections, duality, and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.

- [24] S. Stević, Boundedness and compactness of an integral operator on mixed norm spaces on the polydisc, Sibirsk. Mat. Zh. 48 (3) (2007), 694-706.
- [25] S. Stević, Norm of weighted composition operators from Bloch space to H_{μ}^{∞} on the unit ball, Ars. Combin. 88 (2008), 125-127.
- [26] S. Stević, On an integral-type operator between Bloch-type spaces on the unit ball, Bull. Sci. Math. (in press) (2008), doi:10.1016/j.bulsci.2008.10.005.
- [27] S. Stević, Generalized composition operators from logarithmic Bloch spaces to mixednorm spaces, Util. Math. 77 (2008), 167-172.
- [28] S. Stević, On a new integral-type operator from the weighted Bergman space to the Bloch-type space on the unit ball, *Discrete Dyn. Nat. Soc.* Vol. 2008, Article ID 154263, (2008), 14 pages.
- [29] S. Stević, On a new integral-type operator from the logarithmic Bloch space to the Bloch-type space on the unit ball, Appl. Math. Comput. 206 (2008), 312-320.
- [30] S. Stević, On a new operator from H[∞] to the Bloch-type space on the unit ball, Util. Math. 77 (2008), 257-263.
- [31] S. Stević, Essential norm of an operator from the weighted Hilbert-Bergman space to the Bloch-type space, Ars. Combin. 91 (2009), 123-127.
- [32] S. Stević, Integral-type operators from the mixed-norm space to the Bloch-type space on the unit ball, Siberian J. Math. 50 (6) (2009), 1260-1267.
- [33] S. Stević, Norm of weighted composition operators from α-Bloch spaces to weighted-type spaces, Appl. Math. Comput. 215 (2009), 818-820.
- [34] S. Stević, On a new integral-type operator from the Bloch space to Bloch-type spaces on the unit ball, J. Math. Anal. Appl. 354 (2009), 426-434.
- [35] S. Stević, On an integral operator from the Zygmund space to the Bloch-type space on the unit ball, Glasg. J. Math. 51 (2009), 275-287.
- [36] S. Stević, Products of integral-type operators and composition operators from the mixed norm space to Bloch-type spaces, Siberian J. Math. 50 (4) (2009), 726-736.
- [37] S. Stević, The boundedness and compactness of an integral operator between H[∞] and a mixed norm space on the polydisk, Siberian J. Math. 50 (3) (2009), 495-497.
- [38] S. Stević and S. I. Ueki, Integral-type operators acting between weighted-type spaces on the unit ball, Appl. Math. Comput. 215 (2009), 2464-2471.
- [39] S. Stević and S. I. Ueki, Weighted composition operators and integral-type operators between weighted Hardy spaces on the unit ball, *Discrete Dyn. Nat. Soc.* Vol. 2009, Article ID 952831, (2009), 20 pages.
- [40] X. Tang, Extended Cesàro operators between Bloch-type spaces in the unit ball of Cⁿ, J. Math. Anal. Appl. 326 (2) (2007), 1199-1211.
- [41] W. Yang, On an integral-type operator between Bloch-type spaces, Appl. Math. Comput. 215 (3) (2009), 954-960.
- [42] W. Yang, Weighted composition operators from Bloch-type spaces to weighted-type spaces, Ars. Combin. 93 (2009), 265-274
- [43] X. Zhu, Integral-type operators from iterated logarithmic Bloch spaces to Zygmund-type spaces, Appl. Math. Comput. 215 (3) (2009), 1170-1175.
- [44] X. Zhu, Weighted composition operators from logarithmic Bloch spaces to a class of weighted-type spaces in the unit ball, Ars. Combin. 91 (2009), 87-95.

College of Mathematics and Information Science, Henan Normal Univ., Xinxiang 453007, P.R.China. E-mail address: tslhy2001@yahoo.com.cn.