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Abstract: Zagreb indices are the best known topological indices
which reflect certain structural features of organic molecules. In
this paper we point out that the modified Zagreb indices are worth
studying and present some results about product graphs.

INTRODUCTION
Zagreb indices are the oldest and the best known topological
indices [1, 2, 3, 4]. The first Zagreb index M,(G) and the second
Zagreb index M,(G) are defined as follows [1, 2, 3, 4]: for a

simple connected graph G, let My(G) = 3} d(v)’, Mx(G) =

veV(G)

> d(u)d(v), where d(u) and d(v) are the degrees of vertices u

uveE(G)

and v respectively.

However, some authors found we should amend Zagreb indices,
because the contributing elements to the Zagreb indices give
greater weights to the inner (interior) vertices and edges and
smaller weights to outer (terminal) vertices and edges of a graph.
This opposes intuitive reasoning that the outer atoms and bonds
should have greater weights than inner vertices and bonds, because
the outer vertices and bonds are associated with the larger part of
the molecular surface and consequently are expected to make a
greater contribution to physical, chemical and biological properties.
One way to amend Zagreb indices is to input in the definitions of
M(G) and M2(G) inverse values of the vertex-degrees. We call
these indices the modified Zagreb indices and denoted them by
symbols ™M, and ™M, [5]. They are defined as follows [5]: for a
simple connected graph G, let "M)(G) = 3 —, ™M,(G) =

. 2
vevicy d (V)2
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PRELIMINARIES
For further details, see [8, 9].

Lemma 2.1[6]. The number of edges, m, in a k-regular graph is
kn/2, where k is the regularity and n is the number of vertices of
the graph.

Definition 2.2[8]. The k-cube is the graph whose vertices are the
ordered k-tuples of 0’s and 1’s, two vertices being joined if and
only if they differ in exactly one coordinate. The k-cube has 2
vertices, k2*"! edges and is bipartite.

Definition 2.3[8] A k-regular graph of girth 1 with the least
possible number of vertices is called a (k, [)-cage. If we denote by
f(k,]) the number of vertices in a (k, 1)-cage, we have f(2,1) =1and

fork>3,ifn=2r+1, fkI)> 1‘-("%)2-13 if n = 2r, f(k, 1)

S 20k=1) -2
- k-2
Definition 2.4[7].The hexagonal system CC; shown in Figure 1 is
referred to as the coronene ( a name borrowed from chemistry).
Circumscribing CC, by hexagons, we obtain the circumcoronene
(see CC; in Figure 1). The structure of the further members CC,,
CC;, ..., of the circumcoronene series is evident .
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Figure 1. CCy
Definition 2.5[10, 11]. The zeroth-order general Randic index
'R(G) = Yvev@d(v)' for general real number t, where d(v) is the

degree of v. Randic index of graph G, denotes (G), is defined as
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follows: #(G)= ) 1

wekiey Jd(w)d(v)
Definition 2.6[8]. The product Gx H of graphs G and H has the
vertex set V(GxH) = V(G) x V(H) and (a, x)(b, y) is an edge of
GxHifa=bandxy € E(H)orab € E(G)andx =y.
COMPARE MODIFIED ZAGREB INDICES WITH RANDIC
INDEX

Theorem 3.1. Let G be a k-regular graph with n vertices, n > 2,
we have

m =" m =
Mi(@G)= =, "MAG)= .
Proof. By the definition of ™M; we have ™M;(G) = . By

Lemma 2.1 and the definition of ™M, we have ™M(G) = 2 The

theorem follows.
Remark: Randic index has identical values for non-isomorphic
regular graphs with different connectivities but with the same
number of vertices [6], however, the modified Zagreb indices have
different values. Hence, the modified Zagreb indices are worth
studying.

By Theorem 3.1 we have

Theorem 3.2. Let G be the Petersen graph, we have "M,(G) = % ,

"Mx(G) = %, where the Petersen graph is defined in [8].

By Definition 2.2 and Theorem 3.1 we have
.
Theorem 3.3. Let G be a k-cube, we have "M,(G) = z—z , "™M>(G)

k-1
Tk

By Definition 2.3 and Theorem 3.1 we have
Theorem 3.4. Let G be a (k, 1)-cage.

(1). When k =2, we have "M,(G) = 0.25], ™M(G) = 0.25.
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(2). When k > 3 and 1 = 2r + 1, we have "M;(G) >X¢ - =2

Kk-2) ’
m o k(k=1y -2
MaA(G) 2 Uk-2)
(3). When k >3 and | = 2r, we have "M,(G) z?i"z(‘k—‘)'z‘)z-, "M,(G)
> k-1D"-1 .
k(k—2)

Theorem 3.5. Let CCy be circumcoronene, we have

2

m Co)= K +ik+t.
, Mz(C k) k +3 +6

Proof, Because there are 2k—1 hexagons in C,, see Figure 1, there
are 4k— 1 vertices in the upper layer of C;. Because there are 2k —
2 hexagons in C,, there are 4k—3 vertices in the upper layer of C,.
Similarly, there are 2k + 1 vertices in the upper layer of Cy. Hence,
the vertex number of CCy is

2x[(4k — 1) + (4k — 3) + ... +(2k + 1)] = 6K°.

Because there are k hexagons in Cy, there are k + 2 vertices with
~ degrees 2 in the upper layer of Cy. Obviously, there are 2 vertices
~ with degrees 2 in the upper layer of C;, wherei=1,2, ..., k- 1.
Hence, the total number of vertices of CCy with degrees 2 is [k + 2
+2(k — 1)] x 2 = 6k. By the definition of "M; we have "M,(CCy)
= (4K + 5k)/6.

Because 2m= »  d(v), where m is the edge number of CC,
veV(CCy)

we have m = 9k — 3k. In the upper layers of Cy, Cax.1 and the line
of C,, there are two edges whose vertices are with degrees 2.
Hence, the total number of edges whose vertices are with degrees
2is 6.

In the upper layer of C; there are two edges whose vertices are
with degrees 2 and 3 respectively. In line C; there are two edges
whose vertices are with degrees 2 and 3 respectively. In the upper
layer of C, there are two edges whose vertices are with degrees 2
and 3 respectively. Similarly, in line Cy there are two edges whose
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vertices are with degrees 2 and 3 respectively. In the upper layer of
Ci there are 2k —2 edges whose vertices are with degrees 2 and 3
respectively. Hence, the total number of edges whose vertices are
with degrees 2 and 3 is [2 + 4(k—2) + 2 + (2k—2)]x2 = 12(k—1).
By the definition of "M, we have "M,(CCy) = 6/4 + 12(k—1)/6
+ [9k*—3k—6—12(k—1)}/9 =k* + k/3 + 1/6. The theorem
follows.

MAIN RESULTS ABOUT PRODUCT GRAPHS

Theorem 4.1. "M, (P,xP,) = émn +772-(m +n) +%, where m,

n=>2,
Proof. By Definition 2.6 we have |[V(G x H)| = |[V(G)||V(H)),
dgxu((u,v)) = dg(u) + di(v). By the definition of ™M;(G) the
theorem follows.

Similarly, we have

Theorem 4.2. "M, (K,xK,) = ( o

-, where m,n>2.
m+n~2)

Theorem 4.3. "M,(C,xC,) = 5'1—’6{'- ,where m,n>3.

Theorem 4.4. mM](K], m-1 XK, n-l) =
(m—l)(n—1)+ | +n—l+m—l

4 (m+n-2)> m® nt’
Proof. By Definition 2.6, in K|, n-1XKj, p.i there are (m—1)(n—1)
vertices with degree 2, there is one vertex with degree m + n—2,
there are n—1 vertices with degree m, there are m—1 vertices
with degree n. By the definition of ™M, the theorem follows.

n

Theorem 4.5, "M, (P, *xC,) = %+7—2 , wherem>2,n> 3.

Theorem 4.6. "M, (Pn¥K;. 1.1) = ”T_l + %+ __(”"2;("‘1) +
n

where m,n>2.

i—%, where m,n>2.
(n+1)
Theorem 4.7. "M (CoXKy. )= 2@D 1 _ ™ where m>3,

9 (n+1)?’
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n=2.
m _ 2, n(m-2)
Theorem 4.8. "M;(PnxK;) = =+

il ,Where m,n>2,
n n

Theorem 4.9. "M;(Cn¥K,) = (—’%2 where m>3,n>2.
n

Theorem 4.10. "M (Kn*K| 5.1) = noly  _,where m,
m (m+n-2)

n=2.
Theorem 4.11. Let G and H be simple connected graphs, we have

™ <"MI(GHH) Smin{ 5 R(G) RuCH),

(m+n-2* ~
(m=D(n-1) 1 —+ ”"21 +’";1 }, where 0ILI(G) is defined in
4 (m+n-2)" m n

Definition 2.5, m = [V(G)| > 2, n= |V(H)| = 2.
Proof. By Definition 2.6 we have d((u, v)) = d(u) + d(v). Since d(u)
+d(v) = 2(d(u)d(v))°'5 , by the definition of ™M, we have
m 1 1 lo
M(GxH) = < = -"R(G
l( ) (u,v)eVz(GxH) d(u, V)2 wmeviGrn) 4d@)d(v) 4 I( )
OR.,(H). Since GxH is a subgraph of KxK, by Theorem 4.2 and

the definition of ™M; we have ™M;(GxH) > ( m

m+n-2) "
Claim 1: When m = 2 we have "M (GxH) < "M (K, 1XKj, n.1).
In fact, since m = 2, we have G =K, ;. When H # K| 5.1, H has
at most n—2 vertices with degrees 1 and at least 2 vertices with
degrees at least 2. By the definition of "M, we have "M(GxH) <

2(n4— 2, % . By Theorem 4.4 Claim 1 follows.

By symmetry we have
Claim 2: When n = 2 we have "M(GxH) < "M, (K. m.1XKi. 1)
Claim 3: When m = 3 we have "M,;(GxH) < "M, (K, 2%Ki. p.1).
We prove Claim 3 as follows:
Case 3.1. G=K, 5, HZ K| n.1.
Since H # K| 5.1, H has at most n—2 vertices with degrees 1 and
at least 2 vertices with degrees at least 2. By the definition of "M;
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we have "M, (K ,xH) < L’:—ZZ+"T_2+%+§. By Theorem 4.4

have "M, (K. ,xKyp) = 20Dy 1 4 only 2 0
we have "M;(Ky.2xKj.n.1) Z o e T Claim

3 follows.
Case3.2.G=C3, H=K, ..

By Theorem 4.7 and Theorem 4.4, Claim 3 follows.
Case3.3.G= C3, H+# Kl,n-l.

Similar to Case 3.1 we have "M;(C;xH) < @ +T6€' Claim 3

follows.

By symmetry we have
Claim 4: When n = 3 we have "M (GxH) < "M (K. m1%K]. 2).
Claim 5: When m > 4, n > 4 we have "M, (K .1 xH) < ™M, (K|,
m-1XK1, ne1)-

In fact, when H # K, ,,.1, H has at most n—2 vertices with
degrees 1 and at least 2 vertices with degrees at least 2. By the

definition of "M, we have "M, (K .1 ¥H) < (m-li("—z) +

2(m—l)+ n—2+ 2

. —.  When m >4 we have
9 m° (m+1)

2(m-1) +
9

1 _ < m-1 . By Theorem 4.4 Claim 5 follows.
(m+1) 4

Similarly, we have
Claim 6: When m >4, n > 4 we have "M;(GxK n.)) < "M;(K.
m-1XK1, pet)-

Claim 7: Whenm>4,n>4,G#Kn.1, H#K; 1, we have
"M(GxH) < "M (Ky. m1¥K). 1)

In fact, when G # K| .1, G has at most m—2 vertices with
degrees 1 and at least 2 vertices with degrees at least 2. Similarly,
when H # K .1, H has at most n—2 vertices with degrees 1 and at
least 2 vertices with degrees at least 2. By the definition of "M, we

m (m=-2)(n-2), 2(m-2) 2(n-2), 4
have "M,;(GxH) < p + 5 + 5 + lé-By
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Claim 5 we have ™M (K} m-1¥H) < ('"“L("‘z) + 2(’”9 ) R
m

——2——2—.Whenn24wehave -2_(1'—22+ l< "_'_2+ E.Hence,
we have (m=2n=2) , 2(m9'2)+ 2("9-2)+ % < (m—li(n—z) +

2(m-1) "‘22 + 2 —. By Claim 5 Claim 7 follows.
9 m (m+1)

From these Claims above we have ,
Claim 8: When m > 2, n > 2, we have "M;(GxH) < "M (K.
m-1XK1. n-1). The theorem follows.

Similarly, we have

Theorem 4.12, "M(P,xP,) = %mn + T14i4 (m+n) + é , where

m,n> 3,

Theorem 4.13. "M,(Kn¥K,) = 5(:”—”23 where m, n>2.
m+n-—

Theorem 4.14. "M(CnxC,) = -'%'—'- ,where m,n>3.

Theorem 4.15. "My(K;, m1*K}, 11) =
(m=1)(n-(m+n) , m? +n*—m-n

, Where m, n > 2.
2mn mn(m+n-2)

Theorem 4.16. "M(P,xC,) = -";—" +% , where m, n > 3.

Theorem 4.17. "My(PnXKi, i) = 222+ (m;(Z)y;)_]) *
n n

n—l+(m—3)(n—l)+ 2 + m-3

3 5 proverdi ,where m>3,n>2.

Theorem 4.18. "My(CpxKy, p) = 20 DE=D M Ghere
9(n+1) (n+1)
m>3,n>2.
2 2
Theorem 4.19. "M,(P,<K,) = n-l, mn —2n +r2nn+4 ,where m
n 2(n+1)

>3,n=>2.
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Theorem 4.20. mM;,(C.,,XK,.) = ,where m>3,n>2.

1)
Theorem 4.21. mMz(Kme,,n_l) = _n-l L m-Dn-1)

m+n-2 2m

m(m-1)
2(m+n-2)*"

Theorem 4.22. Let G and H be simple connected graphs, we have
"M (GXH) s%(OR.,(G) 2+ "RA(H) 2(G)), and "Ma(GxH) =

where m,n>2.

%(0111(0) 2(H)+ °R(H) 2(G)) if and only if both G and H are

k-regular graphs, where 0R;(G) and y(G)are defined in

Definition 2.5, m = [V(G)| = 2, n = |[V(H)| > 2.
Proof. "M,(GxH) = Z dgu (x,u)dg,, (y,v) =

{x.uXyv)IEE(GxH)

1
+
xevz(c) uve;(ll) (d(x)+d@))d(x)+d(v))

1 .
. Since d(u) + d 22,/d d(x),
22 A dGy Snee d(u) + d(x) G

we have "M(GxH) < Y

er(o)uve;(n) 4d(x),/d(u)d(v

| 1
S S ¥ e I S
ueVZ(;I)xys;G)4d(u)\/([(x)d(y) 4 (G )uvel'zj(ﬂ)\/d(u)d(l’)

JRAE) ¥ —— = 2(Ru(G) 2t + R (H) £(G)). Since

KyeE(G) \/ d(x)d(y)

d(u) + d(x) =2 \[d(u)d(x) if and only if d(u) = d(x), we know that

+

"My(GxH) = %(OR-I(G) 2(H)+ °Ry(H) #(G)) if and only if both G

and H are k-regular graphs. The theorem follows.
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