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Abstract

A graph is called integral if all eigenvalues of its adjacency matrix are
integers. In this paper, we investigate integral trees S(r;m;) = S(a1 +
a2+...+as;m, me,..., m,) of diameter 4 with s = 2,3. We give a better
sufficient and necessary condition for the tree S(ay+a2; m1, m2) of diameter
4 to be integral, from which we construct infinitely many new classes of
such integral trees by solving some certain Diophantine equations. These
results are different from those in the existing literature. We also construct
new integral trees S(a; +az+a3;my, mz, ms) = S(ai+1+1;my, me, m3) of
diameter 4 with non-square numbers 2 and my. These results generalize
some well-known results of P.Z. Yuan, D.L. Zhang et al.

Key Words: Integral tree, Characteristic polynomial, Diophantine equa-
tion, Graph spectrum.
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1 Introduction

Throughout this paper, we consider only simple undirected graphs (i.e.
undirected graphs without loops or multiple edges). Let G = (V, E) be a
simple graph G with vertex set V = {v1,v2,...,v,} and edge set E. Its
adjacency matrix A(G) is defined as n x n matrix A(G) = (ai;), where
ai; = 1 if the vertices v; and v; arc adjacent, and a;; = 0 if they arc non-
adjacent. The characteristic polynomial of G is the polynomial P(G,z) =
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det(zI, — A(G)), where I, denotes the n xn identity matrix. The spectrum
of A(G) is also called the spectrum of G and denoted by Spec(G) (see [3]).

We know that trees of diameter 4 can be formed by joining the centers
of 7 stars K m,, Ki,ms» - -+, K1,m, to a new vertex v. The tree is denoted
by S(r;m1, ma,...,m,;) or simply S(r;m;). Assume that the number of
distinct integers of m;,mg, ..., m, is s. Without loss of generality, assume
that the first s ones are the distinct integers such that 0 < m; < mp <
... < mg. Suppose that a; is the multiplicity of m; for each i =1,2,...,s
The tree S(r;m;) is also denoted by S(a1 + a2 + ...+ as;mi, me, ..., ms),
where 7 = 37_; a; and |V| = 1+ 37, ai(m; + 1). For all other facts on
graph spectra (or terminology), see [3].

A graph G is called integral if all eigenvalues of its characteristic polyno-
mial P(G,z) are integers. First observations on integral graphs were made
by Harary and Schwenk in 1974 [4]. So far, there are many results for some
particular classes of integral graphs [1]. In particular, some results on inte-
gral trees of diameter 4 were investigated in [1-9, 11-17]. In this paper, we
investigate integral trees S(r;m;) = S(ay + a2 + ... + ag;m, M2, ..., My)
of diameter 4 with s = 2,3. We give a better sufficient and necessary con-
dition for the tree S(a; + ag;my, mg) of diameter 4 to be integral, from
which we construct infinitely many new classes of such integral trees by
solving some certain Diophantine equations. These results are different
from those in the existing literature. We also construct new integral trees
S(a1 + a2 + az;m1, ma, m3) = S(a1 +1+1;my, my, mg) of diameter 4 with
non-square numbers my and m3. These results generalize some well-known
results of [9, 16, 17] etc.

2 Preliminaries

In this section, we state some known results on integral trees of diameter
4 and also obtain some new results on integral trees of diameter 4.

Lemma 1. ([7, 12]) For the tree S(r;m;) = S(a1 + ... + AgiMy, ..., M)
of diameter 4, then we have

P[S(’r' m;), ] = P[S(a1 + ...+as;m1,...,ms) z] = gltEizi ailmi=1)

H m)“"‘[H(w —mz)—zaz H (z® — my)].

i=1 i=1  j=1,j#i

Lemma 2. ([17, 12]) The tree S(r;m;) = S(a1 + ...+ as;m, ... ,ms) of
diameter 4 is integral if and only if (i) a; = 1 must hold if m; is not a
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perfect square, (ii) all solutions of the following equation are integers.

fI(fL’2 —-m;) —
i=1]

We now discuss Eq.(1) to get more information. First, we divide both
sides of Eq.(1) by [];_,(z? — m;), and obtain

S s

ai [[ @-my)=0 (1)
1

J=1,5#

=

s

a;
Clearly, +,/m; are not roots of Eq.(1) for 1 < i < s. Hence, all solutions
of Eq.(1) are the same as those of Eq.(2). By Lemma 2, and discussions of

[6, 16, 17] , we can deduce the following theorem holds.

Theorem 3. The tree S(r;m;)=S(a1 + a2 +... + as;m1,ma, ..., M) of
diameter 4 is integral if and only if (i) a; = 1 must hold if m; is not a
perfect square, (it) all solutions of the following equation are integers.

§

> mo =1 3)

i=1

Moreover, there exist positive integers uy, us,...,u; satisfying

0SS Vmy<up <yma<ups<...<us g < yms<us <+oo (4)

such that the following linear equation system in ai,as,...,as has positive
integral solutions (a1,az, ..., a,), and such that a; = 1 must hold if m; is
not a perfect square. ‘

P el e R e

ui-my uf—ma ui—m

.................. (3)
uzi'm.l + ug(}-mz +...+ u!d‘-l-:ns =
Theorem 4. ({17, 6]) The tree S(r;m;)=S{a; + ... + ag;my, ..., my)

of diameter 4 is integral if and only if there erist positive integers u; and
nonnegative integersm; (i = 1,2,...,s) such that0 < /m)] < uy < /mz <
U < ... < Us—) < /g < uy < 400, and such that

i (uf —my
ngzf';(k(;ni - :ik)’ (k=1,2,...,s) (6)

a, =

are positive integers, and such that a; = 1 must hold if m; is not a perfect
square.
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Corollary 5. If the tree S(r;m;)=S(a1 + a2 + ... + ag;my1,ma, ..., Mm;)
of diameter 4 is integral, then we have the following results.

(1) (16, 17]) ay > 1. Moreover m, is a perfect square.

(2) (116, 17]) r = iy ai = Yi uf — Liy ™

(8) M=y uf = Loy mad) (1 + Tica 25)-

(4) ([16, 17]) Spec(S(a1 + a2z + ...+ as;m1, m2,...,m;)) =

0 i,/ml +uy; £/mo ... :I:,/ms tug
s
1+Zai(m,-—1) a; —1 1 as—1 ... as—1 1

Proof. We only prove (2)-(4). By Lemma. 1, we have

P[S(a; + a2+ ...+ as;m1,ma,...,ms), 7]

= gt alme DL (2 = ma) [T (2 - mi)

- Zr‘"l a; HJ——-I J#i (w —my )]

=i ai(m;=1) H (x2 — )a'_l[x2s _ (21—1 a; + Z‘“ ml)st -2
+ + ( I)S(Hz—l ml)(l + Zz: )]

= xl+z,_ ai(mi—1) l'[ —1(“" — )a.—l H 1("" _ u2)

By using the relation between roots and coefficients of polynomials, and

the inequality (4), we obtain the results in (2)-(4). O
s a;
Lemma 6. Denote Uam(z) = g pe- g
®z,m(z) = [H(:r - my)|[1 - Yam(z),
where vectors @ = (a1, as,.. ,as) € (N\ {0})%, 7 = (m1,ma,...,m,) €

N, N={0,1,2,...}.
Let n be a positive integer. Then u is an integral root of &z () if and
only if u/n is an integral Toot of ®@z,2 mn2(x) too.

Proof. It is easy to see that v is a root of ®z(z) if and only if vn is a
root of ®zn2 mn2(z). Therefore if all roots of @5, (x) are integers, then the
roots of ®z,2 mn2(z) are integers as well.

Assume now that all roots of ®z,2 ;an2(x) are integers and let v be one
of them. Then v/n is a rational root of ®;.3(z). Since ®z m(zx) is a monic
polynomial with integral coefficients, its rational roots should be integers.
Therefore v/n € Z. O
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From the above lemma we can obtain the following result.

Theorem 7. If mi(= 0),ma, ..., m, are perfect squares, then the tree
S(ar+az+...+ay;my,my, ..., ms) of diameter { is integral if and only if
the tree S(a1n® + agn® + ... + asn®; min?, mon?, ..., mn?) is integral for
any positive integer n.

Remark 8. For my(> 0),ms, ..., m, are perfect squares, the above Theo-
rem 7 shows that we have to study Eq.(3) only for the case (ai,as, ..., ay,
my, my,...,ms) = 1. Let us call such a vector (@, m) primitive.

Next we shall give some facts on number theory.

Lemma 9. ([18]) Let K be an associate class of solutions of the Diophan-

tine equation
z? — dy® = m, )

and let ug+voVd be the fundamental solution of the associate class K. Then
all solutions of the class K are given by z + yvd = +(uo + voVd)(zo +
yo\/a)", where n is an integer, and To + yoVd is the fundamental solution
of the Pell equation

2 —dy® = 1. (8)

Lemma 10. (/10]) Let a,b and c be integers with d = (a,b), we have
(1) Ifd fc, then the linear Diophantine equation in two variables
ez t+by=c 9)
does not have integral solutions.

(2) If dlc, then there are infinitely many integral solutions for Eq.(9).
Moreover, if x = o,y = yo is a particular solution of Fq.(9), then
all its solutions are given by

z=ux0+ (b/d)t, y=1yo— (a/d)}t, wheret is an integer.

3 Integral trees of diameter 4

In this section, we shall construct infinitely many new classes of integral
trees S(a1 + ...+ as;my, ..., m,) of diameter 4, different from those of
1-9,11-17).

The idea of constructing such integral tree is as follows: First, we prop-
erly choose integers m; (> 0), ma (> 0), ...,ms (> 0). Then, we try
to find proper positive integers u; (i = 1,2,...,s — 1) satisfying (4) such
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that there are positive integral solutions (a3, a2, . . ., as) for the linear equa-
tion system (5) (or such that all ax’s of (6) are positive integers). Finally,
we obtain positive integers aj, as, . ..,as such that all the solutions a;’s of
Eq.(5) or Eq.(6) are integers. Thus, we have constructed many new classes
of integral trees S(a; + a2 + ... + as;m1, Mo, ..., m,) of diameter 4.

Theorem 11. (1) ([9, 18]) For s = 1, then the tree S(r;m;)=S(a1;m;)
of diameter 4 is integral if and only if m; (# 0) and m; +r(= mi1+a;)
are perfect squares.

(2) ([9]) For s = 2, if my is not a perfect square, then the tree S(r;m;)
= S(ay + ag; my, mo) of diameter 4 is not an integral tree.

Theorem 12. For s = 2, let my < ma. Then the tree S(r;m;)=S(a1 +
az; my, m2) of diameter 4 is integral if and only if one of the following two
cases holds:

(1) When mg(> m2 + 2m + 1) is not a perfect square, my = m?, mg =
(m+q)2+u, a1 = v(u+1), ag = 1, and integers m (> 0), g(= 1),
u(> 1), v(> 1), ue(> 1) satisfy the following equations.

{ uwv = ¢(2m + q), (10)

uf=14u+v+(m+q)%

(2) When my is a perfect square, my = m?, mp = (m +k)?, m > 0,
k > 2, let (g(2m + q),(k — q)(2m + g + k) = d, g(2m + q) = do,
(k—q)2m +q+k)=dB, (0,) =1, a1 =t +g(2m +q), a2 = f3¢,
where t > 1, 1 < q < k, and integers m(> 0), k(> 2), t(> 1), ua(=> 1),
a(> 1), B(= 1) satisfy the following equation.

u = (m+k)? + (e +B)t. (11)

Proof. Because s = 2, and m; < ma, from Theorem 4, we know the tree
S(r;m;)=S(a1 + az;m1,my) of diameter 4 is integral if and only if there
exist positive integers u; and nonnegative integers m; (i = 1,2) such that
0< ymy < uy < /M3 < ug < +00, and such that

S (u2
Mot oy =12 0

ar =

are positive integers, and such that a; = 1 must hold if m; is not a perfect
square.
We will discuss the following three cases:
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Case 1. For s = 2, if m, is not a perfect square, by Theorem 11 (2),
then the tree S(r;m;)=5(a; + ag;m1, m2) of diameter 4 is not an integral
tree.

Case 2. For s = 2, if my is not a perfect square, then a; = 1 must
hold, we choose ) = m?, u; = m +q, ma(> m? +2m + 1) is not a perfect
square, where m > 0, ¢ > 1, 0 < my(=m?) < u?(= (m + ¢)?) < my < u3,
then a; must be a positive integer, and as = 1. By Theorem 4, we have

(uf —m)(ud —m1) _ g(2m + q)(uf — m?)

= 13
aj m2 — ml mo — m2 ) ( )
m) — 1Mo mo —m

From (13) and (14) or Theorem 3, we can get the following line equation
system (15) in a1, a2 must have positive integral solutions a;,as(= 1).

a1 + “2 =1
q(2;n+q) (Ln+q)2—m2 4 (15)
ug—m2 + ug—mg =1

By the first equation of Egs.(15), we deduce a; = ¢(2m + ¢)[ag + my —
(m+q)?)/[m2 — (m+g)?. Since ([ag +m2— (m+q)?, [ma2— (m+¢)?]) =1,
we obtain (my — (m+4¢)?)|(g(2m+¢)) must hold. So, let ms —(m+¢)? = u,
q(2m + q) = uv, where u, v are positive integers. Then all positive integral
solutions of the first equation of Egs.(15) are a; = v(u + 1), ax = 1. By
Corollary 5 (2), we know r = Y2 a; = "2 w2 — % ,m;. Then we
deduce u3—m; = ud—-m? = a;+az+mo—u} = v(ut1)+14+my—(m+q)? =
(u+1)(v +1). By Eq.(14), we get

my—m?  u+q(@m+q)

2
e = - 1.
YTy~ (m + q)? u v

Therefore, a; = v(u + 1), ag = 1 are also all positive integral solutions of
the second equation of Egs.(15).

Hence, when ma(> m? 4+ 2m + 1) is not a perfect square, m; = m2,
me = (m+q)?+u, a; = v(u+1), az = 1, u; = m + q, where integers
q(= 1), m(> 0), u(> 1), v(> 1), ua(= 1) satisfy Eqgs.(10), and such that
0 < my(=m?) < ui(= (m+q)?) <mp < u3,

Case 3. For s = 2, when ms is a perfect square, then we choose
my =m? mog=(m+k)? uy=m+gq wherem >0,k >2 1<qg<k,
0 < mi(=m?) < ud(= (m + q)?) < ma(= (m + k)? < u3. From Theorem
4, we have

(w3 — mq)(ud —my) _ 9(2m + q)(uj — m?)

ma — my k(2m + k) ’ (16)

a) =
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and

(u} —mo)(uf —ms) _ (k—q)(2m +k+q)(u] — (m +k)?)
mp; — Mo - k(2m + k‘) )

From (16), we get

az =

(17)

ul= k(2m + k)ay m2.
q(2m +g)
So, when m, ms are perfect squares, by Theorem 4, then the tree S(r;m;)
= S(ay+az; m1,m2) of diameter 4 is integral if and only if a;, as are positive
integers and %‘I‘)’u + m?(= u2) must be a perfect square. From (16)
and (17), we can get the following Diophantine equation (19) in a1, as.

(18)

a) as
a@m+q) (k—q)2m+q+k)

Assume that (g(2m+q), (k—q)(2m+q+k)) = d, and let ¢(2m+q) = da,
(k—q)(2m + g+ k) = dB, (o, B) = 1. Thus, Eq.(19) can be changed into

=1 (19)

Bay — aay = daof. (20)

From elementary number theory knowledge, all positive integral solu-
tions of Eq.(20) are given by a1 = at + da = at + ¢(2m + q), a2 = S,
where t is a positive integer. Hence, by Corollary 5(2), we get u3 =
a1 + ag + my +mg —u} = (m+k)? + (a + B)t. Then (m +k)? + (a+ f)t
must be a perfect square.

Hence, when mg is a perfect square, m; = m?2, mp = (m + k)2, m >0,
k> 2, let (g(2m-+q), (k—g)(2m+g+k)) = d, g(2m-+q) = da, (k—q)(2m+
g+k)=dB, (a,8) =1, a1 = at+q(2m +q), az = Bt, u; = m+gq, and
integers m(> 0), k(> 2), t(= 1), ua(> 1), a(= 1), B(> 1) satisfy Eq.(11),
and such that 0 < m;(= m?) < v(= (m + g)?) < ma(= (m + k)?) < u3,
where m>0,k>2,1<¢g<k.

Thus the theorem is proved. 0

Corollary 13. (i) For s = 2, let my = m?, mg = (m+ ¢ +u, ) =
v(u+1), az =1, uy = m+gq, then the tree S(a) + az; my1, m2) of diameter
4 is integral with nonsquare number my if one of the following cases holds
where m(> 0), ¢(> 1), u(= 1), v(= 1) are integers:

(1) ([16]) u=q, v=2m +q, whereug =m+q+1.
(2) ({16]) v =2m +q, v=q, whereuz =m+q+ 1.

(3) ([11]) u = k, v = g(2m + q)/k, where integers k(> 1), (= 1), m(> 0),
ug(> 1) satisfy the following Diophantine equation

ku3 — (k+1)(m + q)* + m® = k(k + 1). (21)
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(4) v = q(2m + q)/k, v = k, where integers k(> 1), g(> 1), m(> 0),
ug(> 1) satisfy Eq.(21).

(5) Let m;, a; (i =1,2) be positive integers as in Table 1, and let q, m, u,
v, Uy, up be as in Theorem 12 (1), they are different from those of (1)
and (2) in Corollary 13 (i).(Table 1 is obtained by computer search,
where 1 < us < 25 for Egs.(10).)

(i) For s = 2, when d = (¢(2m + q),(k — ¢)(2m + ¢ + k)) = 1, let
mi=m2 me=(m+k)? m>0,k>2 a =q2m+q)t+1),a =
(k—q)(2m+qg+k)t, t 21,1 < q <k, and integers m(> 0), k(> 2), t(> 1),
ua(> 1) satisfy the following equation.

u3 = (m+ k) + k(2m + k)t. (22)

Then the tree S(ay + ag;my, ma) of diameter 4 is integral.

(iii) For s = 2, when d = (¢(2m + q),(k — ¢)(2m + q + k)) = 1, let
m1 =m?, ma = (m+k)?, a1 = q2m+q)(t+1), ap = (k—q)(2m+q+k)t,
where uy = m+q, m >0,k >2,¢t>1,1<q < k. Then the tree
S(a1 + ag;my, m2) of diameter 4 is integral if one of the following cases
holds where I(> 1), m(> 0), k(> 2), p(= 1), ¢(= 1), v(> 1) are integers:

(1) m=0, t =p>—1>0, where uy = kp.

(2) Let m;, a; (i = 1,2) be positive integers as in Tuble 2, and let ay,
a2, My, ma, ua, t, m, k be as in Corollary 13 (ii), they are different
Jrom those of (1) in Corollary 13 (ii).(Table 2 is obtained by computer
search, where 1 < us < 12 for Eq.(22).)

(3) ([16]) t = [k(2m + k)v+2(m + k)]|v, where us = k(2m+k)v+ (m+k).
(4) t = [k(2m+k)v—2(m+k)]v > 0, where uy = k(2m+k)v—(m+k) > 0.
(5) t =k(2m + k)v? + 2mv — 1 > 0, where ug = k(2m + k)v +m.
(6) t = k(2m + k)v? — 2mv — 1 > 0, where up = k(2m + k)v —m > 0.
() t=1,m=2p—-12~1>0, k=2p, where ug = 2p*>—1> 0.
(8) t =2p, m =pl, k =2, where us = 3pl + 21.
(9) t=p, m=pl, k =4l, where uy = 3pl + 4.
(10) t = Ap, m = pk, where ug = 3pk + k.
(11) t=3p, m =4dp+ 1, k = 2, where up = 8p + 3.
(12) t = v(l+v)—1—1 >0, m = pl, k = 2pv, where uz = p(2v%3+2vl-1) > 0.
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(18) t = 2p+p*—21—1 >0, m = lv, k = pv, where uy = v(2lp+p*—1) > 0.

(iv) For s = 2, when d = (g(2m + q),(k — ¢)(2m + ¢ + k)) > 1, let
a(2m + q) = da, (k- )(2m +q+k) = dB, (@ f) = 1, my = m?, my =
(m+k)?, a1 = at +q(2m + q), az = Bt, whereu; =m+q, m >0,k > 2,
t>1,1<q< k. Then the tree S(ay + a2;my, mp) of diameter 4 is integral
if one of the following cases holds where a(> 1), B(=> 1), m(=> 0), k(> 2),
(= 1), t(= 1), v(= 1) are integers:

(1) Let ai, az, my, Mz, Ui, uz, M, k; q, e(= q(2m+q)): f(= (k_q)(2m+
g+k)), d be positive integers as in Table 3, and let a;, az, m1, ma, uz,
m, k, q, d be as in Theorem 12 (2), where uy =m+q, m >0, k > 2,
1< g < k. (Table 3 is obtained by computer search, where 1 < uz <9,
d > 1 for Eq.(11).)

(2) t = (a+ B)v? + 2(m + k)v, where up = (a + B)v + (m + k).

(3) t = (a + B)v? — 2(m + k)v > 0, where up = (@ + B)v — (m + k) > 0.
(4) m=1,k=3,g9g=1,t=>50%+8v >0, where up =5v+4>0.

(5) m=0,k=4,q=2,t=1v?—4>0, where ug = 2v.

(6) m=1,k=4,g=1,t=2v>150>0, where up =4v+£5> 0.

(7) m=1,k=4,q=2,t=23v%+£10v > 0, where ug =3v £ 5 > 0.
(8) m=1,k=4,q=3,t=2v>+50>0, whereus =4v£5>0.

(9) m=3,k=4,9=2,t=>5v+14v > 0, where ug =5v+ 7 > 0.

(10) m=2,k=5,4¢g=2,t=1502£14v >0 ort =150+ 4v -3 >0,
where ug = 15v 7> 0 orug =150+ 2 > 0.

(11) m=1,k=5,¢g=3,t=Tv> £ 120> 0, where ug = Tv £ 6 > 0.

(12) m=2k=5¢g=3,t=152+14v >0 ort = 150> £ 4v -3 > 0,
where ug = 150+ 7> 0 orus =150 £ 2 > 0.

(13) m=0,k=6, ¢g=3,t=1v2-9>0, where ug = 2v.

(14) m=2,k=3,g=2,t="Tv2+10v >0, where up = Tv+ 5> 0.
(15) m=1,k=6,9g=1,t=4v>+v—-3>0, whereug =8v+£1>0.
(16) m=0,k=6,q=2,t=v>—4>0, where up = 3v.

(17) m=1,k=6,q=3,t=4v2+v—-3>0, whereug =8v+1>0.

(18) m=0,k=6,qg=4,t=2v>—4>0, where uy = 3v.
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m) ms al as uj u u v m q
9 656 110 1 8 11 1 5 3 5
9 119 56 1 8 11 55 1 3 5
1 171 252 1 13 16 2 84 1 12
1 253 170 1 13 16 &4 2 1 12
1 145 286 1 12 17 1 143 1 11

16 198 270 1 14 17 2 90 4 10

16 286 182 1 14 17 90 2 4 10
1 287 144 1 12 17 143 1 1 1

16 170 306 1 13 18 1 183 4 9

64 259 256 1 16 18 3 64 8 8
4 260 315 1 16 18 4 63 2 14
4 319 256 1 16 18 63 4 2 14

64 320 195 1 16 18 64 3 8 8

16 322 154 1 13 18 153 1 4 9

121 363 360 1 19 22 2 120 11 8
4 364 476 1 19 22 3 119 2 17
4 480 360 1 19 22 119 3 2 17

121 481 242 1 19 22 120 2 11 8

121 325 406 1 18 23 1 203 11 7

25 403 500 1 20 23 3 125 5 15

25 525 378 1 20 23 125 3 5 15

121 527 204 1 18 23 203 1 11 7
4 200 570 1 17 24 1 285 2 15
4 574 286 1 17 24 285 1 2 15

256 325 598 1 18 25 1 299 5 13

25 623 300 1 18 25 299 1 5 13

Table 1: Integral trees S{a; + az;m1,m2) of diameter 4.

(19) m=1,k=6,qg=4, t = 20>+ 14v > 0, where ug = 20+ 7 > 0.

Proof. (i) We only prove (4). The results in (1)-(3) and (5) can be proved
similarly by Theorem 12 (1).

When s = 2, m; < mg, ma(> m? + 2m + 1) is not a perfect square,
by Theorem 12 (1), we know the tree S(a) + az;m;,m2) of diameter 4 is
integral if and only if my = m2, my = (m+¢)%2 +u, a; = v(u+1), a3 =1,
and integers m (> 0), ¢(> 1), u(> 1), v(=> 1), ua(> 1) satisfy Eqs.(10).

Because u = ¢(2m + ¢)/k, v = k, we have

uwv =q(2m+q)/k -k =q(2m + q),
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my mg up t m k|lm mg ux t m k
1 9 5 2 1 2|1 25 7 1 1 4
1 9 7 5 1 2(4 16 8 4 2 2
1 9 9 9 1 2|4 36 10 2 2 4
4 16 10 7 2 2|25 49 11 3 5 2
1 25 11 4 1 4 9 25 11 6 3 2
1 16 11 7 1 3|1 9 11 14 1 2
9 36 12 4 3 3| - - - - - -

Table 2: Integral trees S(a; +ag;m;, m2) of diameter 4, where a; = ¢(2m+
Qt+1), a0 =(k—-q)2m+qg+kit,k>21<qg<k

m; mg o1 a u us m k q e f d
1 16 7 16 2 6 1 3 1 3 12 3
0 6 9 15 2 6 0 4 2 4 12 4
1 25 6 21 2 7 1 4 1 3 21 3
1 25 16 16 3 7 1 4 2 8 16 8
1 25 30 9 4 7 1 4 3 15 9 3
0 16 16 36 2 8 0 4 2 4 12 4
1 25 21 26 3 8 1 4 2 8 16 8
9 49 22 9 5 8 3 4 2 16 24 8
4 49 16 11 4 8 2 5 2 12 33 3
1 36 27 16 4 8 1 5 3 15 20 5
4 49 28 8 5 8 2 5 3 21 24 3
0 36 16 21 3 8 0 6 3 9 27 9
1 16 16 52 2 9 1 3 1 3 12 3
4 25 4 24 4 9 2 3 2 12 9 3
1 25 10 49 2 9 1 4 1 3 21 3
1 25 50 21 4 9 1 4 3 15 9 3
1 49 5 30 2 9 1 6 1 3 45 3
0 36 9 40 2 9 0 6 2 4 32 4
1 49 25 22 4 9 1 6 3 15 33 3
0 36 36 25 4 9 0 6 4 16 20 4
1 49 40 16 5 9 1 6 4 24 24 24

Table 3: Integral trees S(a; + ag;mi,m2), where e = g(2m +gq), f =
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and  uj = l+utv+(m+q)? = 14+q(2m+q)/k+k+(m+q)2.
= kul—(k+1)(m+q)*+m? = k(k+1).

Hence, by Theorem 12 (1), when m; = m?, my = (m+q)%+u, ¢) = v(u+1),
az = 1, u = q(2m + ¢)/k, v = k, and integers k (> 1), ¢(> 1), m(> 0),
ug(> 1) satisfy Eq.(21). Then the tree S(a; + aa;my, ms) of diameter 4 is
integral.

(i) For s = 2, when d = (¢(2m+¢q), (k—g)(2m+q+k)) = 1, m; = m?,
mg =(m+k)?>, m>0,k>2 1< q<k, by Theoreml?2 (2), we obtain
a = q(2m+q), B = (k—q)(2m+g+k), a1 = at+q(2m+q) = q(2m+g)(t+1),
ax=PBt=(k—-q)(2m+q+k)t, wherem >0, k>2,t>1,1<q <k,
and integers m(> 0), k(> 2), ¢(> 1), u2(=> 1), a(=> 1), B(= 1) satisfy
uj = (m+ k)% + (@ + B)t = (m + k)2 + k(2m + k)t. Thus, by Theorem 12
(2), the tree S(a; + az;m;, m2) of diameter 4 is integral.

(iii) We only prove (1). The results in (2)-(13) can be proved similarly
by Corollary 13 (ii) or Theorem 12 (2).

When s = 2, m; < mg, mo is a perfect square, d = (q(2m + q), (k —
q9)(2m + g + k)) = 1, by Corollary 13 (ii) or Theorem 12 (2), then the
tree S(r;m;)=5(a;1 + az;m;, m2) of diameter 4 is integral if m; = m?,
ma = (m + k)2, a1 = ¢(2m + ¢)(t + 1), az = (k — q)(2m + ¢ + k)t, where
m2>0,k2>21<¢g<k, t2>1,and integers m(> 0), k(= 2), {(> 1),
up(> 1) satisfy Eq.(22).

Because m =0, t = p® — 1 > 0, we have

ud = (m+k)? + k(2m + k)t = (0 + k) + k(0 + k)(p? — 1) = k?p2.

Hence, when m; =m? =0, mg = (m+ k)2 =k%, k>2,t =p*—1> 0,
a1 = q(2m+g)(¢ + 1) = p?¢®, ag = (k= q)(2m + g+ k)t = (k- ¢)(g +
k)(p* = 1), 1 < q < k, by Corollary 13 (ii) or Theorem 12 (2), the tree
S(a1 + az;my, mg) of diameter 4 is integral.

(iv) We only prove (10). The results in (1)-(9) and (11)-(19) can be
proved similarly by Theorem 12 (2). Here integral trees S(ay + a2; m1,ms)
of diameter 4 in (3)-(19) are constructed from Table 3 by Theorem 12 (2).

When m3 is a perfect square, m; < ma, my is a perfect square, d =
(q(2m + q),(k — q)(2m + g + k)) > 1, by Theorem 12 (2), then the tree
S(ay + ag;m1, mo) of diameter 4 is integral if m; = m?, mo = (m + k)?,
m 20, k> 2, let q2m +q) = da, (k— q)(2m + q + k) = dB, (o, 8) = 1,
a) = at+q(2m+q), as = Bt, where t > 1, 1 < ¢ < k, and integers m(> 0),
k(2 2), 62 1), ua(> 1), a(> 1), B(> 1) satisfy Eq.(11).

Sincem =2, k=25q¢g=2,d=(qg2m+q),(k—-q@2m+q+k)) =
(12,33) = 3, Thus, o = 4, 8 = 11. Hence, Eq.(11) can be changed into

u3 = (m+ k) + (o + B)t = 15t + 49. (23)

From elementary number theory knowledge, all positive integral solu-
tions of Eq.(23) are given by (¢,u2) = (15v? £ 14v,15v £ 7) or (t,us) =
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(1592 £ 4v — 3,15v + 2), where v, t, ug are positive integers.

Hence, when m =2, k=5, g = 2, m; = m? =4, my = (m + k)% = 49,
ag = at+q(2m+q) = 46 +12 > 0, a3 = ft = 11t > 0, where t =
15024+ 14v > 0ort = 15v%°+4v—3 > 0, u; = m+q =4, us = 1507 > O or
ug = 15v%2 > 0, and v(> 1) is an integer. Then the tree S(a; +ag; m1, mp)
of diameter 4 is integral. Thus we can construct infinitely many integral
trees S(a; + as; my, ma) of diameter 4 from the ninth row in Table 3. O

Next we shall give a method by the following cases for finding the solu-
tions of the Diophantine equation (21). We discuss k and m. Choosing (1)
k=1,m=m,(2)k=k m=k, 3) k=k, m=k+1,.., where k(> 1),
m(> 0) are integers, we get the following corollary.

Corollary 14. For s = 2, let m; = m?, mg = (m+ q)®> + u, a; =

v(u+1), a2 =1, uy = m+gq, where (i) u =k, v=q(2m + q)/k, or (@)
u=q{2m + q)/k, v = k. Then the tree S(a; + az;m1,m2) of diameter J
is integral with nonsquare number my if one of the following cases holds
where m(> 0), k(= 1), ¢(= 1), u(> 1), v(= 1), ua(= 1) are integers:

(1) When k = 1, and integers g(> 1), m(> 0), ua(> 1) satisfy the following
Diophantine equation

u? — 2(m +q)* =2 —m?. (24)

(2) When k =k, m = k, and integers g(> 1), k(= m > 0), ua(> 1) satisfy
the following Diophantine equation

uf ~ k(k+ 1)[(k+q)/k)? = 1. (25)

(3) When k = k, m = k + 1, and positive integers q,k,us satisfy the
following Diophantine equation

[(k+ 1) + )2 = k(k + Dua/(k+ 1)]Z = 1. (26)

Proof. We can check the validity by Theorem 12 (1) or (3) and (4) of
Corollary 13 (i). (]

Using Lemma 9 and elementary number theory knowledge, all positive
integral solutions of the Diophantine equations (24), (25) and (26) are given
respectively by

uz+(m+q)V2=(3+2v2)"[(m+2)+(m+1)v2], n=0,1,2,.., (27)

up +[(k+q)/E]VEE+ 1) = [(2k+ 1) +2EE+ D", n=1,2,..., (28)
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(k+1+q)+ [uo/(k+1)]Vk(k + 1) = [(2k+1)+2k(k + 1)]*, n = 1,2, ....
(29)
The authors of [2,8,11,12,14-17] constructed integral trees S(a; + as +
...+ as; my, my, ..., ms) of diameter 4 which the number of nonsquares
among mp,ma,...,ms is 1 and 2 respectively. We shall give a kind of
integral trees S(a; + a2 + ...+ as;my, mo,. .., m,) of diameter 4 which the
number of nonsquares among my, ma, ..., ms is 2. This result generalizes
a result of Zhang at el. [17].

Theorem 15. For s = 3, let integers m; (> 0), a; (> 1), w; (1) (i =

1,2,3) be those of Theorem 4, given in the following items (i) or (i), where
n n-—1

ay = Z_[,Z]O 83n—2% ( 21; ), Bn = 22£=Tol gign—2i-1 < 22.7_:_ L ) andn

is a positive integer. Then the tree S(ai+az+as; my, ma, m3) of diameter 4

is integral with nonsquares my and my.(Note that the identity o = 262 +1

holds for any positive integer n.)

(i) my = a?, ma = [(a+ L)an + (2a+ 1)B.)* — [(2a + 1), + 2(a + 1)8n],
m3 = [(a+ 1)on + (2a + 1)Bu)% + [(2a + 1o + 2(a + 1)Bn), a1 =
[le+Nan+(2a+1)B.)% —a?, a2 =az =1, up = (a + V)ay, + (2a +
1)Bn,u1 = ug — 1, ug = ug + 1, where a is a nonnegative integer.

(i) mi = @, my = [(a— 1)an + (2a — 1)B,]* — [(2a — 1)ar, + 2(a — 1)8,),
my = [(a — 1)ay + (2a = 1)Ba]* + [(2¢ — V)ow, + 2(a — 1)B,], a1 =
[(a+1)an+(20+1)8,)2 - a?, uz = (a— Do+ (2a—1)8,,u; = ug—1,
uz =up + 1, as = ag = 1, where a (> 2) is an integer.

Proof. For s = 3, assume that m; = a®, my = &2 — k, mg = d? + k,
uy =d-1,u =d, us =d+1, whered > a+2, 1<k < 2d-2.
By Corollary 5, we get that a; = Y 5,42 — 32 m; — 3 ,a;. From
_ Theorem 4, we know that the tree S(a1 + a2 + as;m;, mg, m3) of diameter
4 is integral if and only if

_(2d-1-k)2d+1+k)

_(d—1+k)(2d+1-k) o,
= 2(d® + k — a?) =1 (31)

From (30) and (31), we get the same Diophantine equation

k% —2d% = 2a® — 1. (32)

For any given nonnegative integer a, let K be any associate class of so-
lutions of the Diophantine equation (32), and let k*, d* be the fundamental
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solution of the class K of Eq.(32), by Lemma 9, we get that all positive
integral solutions of the class K of Eq.(32) are given by

k+dv2 = (3 +2V2)" (k* +d*V2). (33)

From (33), it deduces that k + dv2 = (@, + BnV2)(k* + d*V2), where
n n-1
an = Y12 893n-2 ( 2"] ) and B, = 25\.3 | gign-2i-1 ( 0t ) and
it is not difficult to prove that the identity a2 = 262 + 1 holds for any
positive integer n.
Hence, we get all positive integral solutions of the class K of Eq.(32)
are given by

k = apk™ + 28,d",
d = Bpk* + and®.

Next we discuss the following two cases.

Case 1. Because k* = 2a+1, d* = a+ 1 is the fundamental solution of
one associate class K’ of Eq.(32), all positive integral solutions of Eq.(32)
are given by

(34)

{ k = (20 + L)on +2(a + 1)Bn, (35)

d=(2a+1)Bn+ (a+ 1o,

for any positive integer n. Clearly, it is easy to prove that k, d of (35)
satisfy the conditions d >a+2and 1 <k <2d-2.

Hence, when my = a2, mg = d2 —k = [(a+ 1)an+ (20 + 1)B,)% — [(2a+
1)an+2(a+1)B,], ma = d>+k = [(a+1)an+(2a+1)B)*+[(2a+1)an+2(a+
1)Bal, a1 = Yooy uf = Tis mi — Licg @i = [(a+1)an + (2a+1)Ba]* - a?,
as = a3 = 1,up = d = (a+1)an+(26+1)Bn,u; = u2—1, uz = u2+1, where
n (> 1) and a (> 0) are integers. Then the tree S(a; + a2+ a3; m1, m2, m3)
of diameter 4 is integral with nonsquares mo and ms3.

On the other hand, although k* = 2a + 1, d* = a + 1 is a solution
of the associate class K’ of Eq.(32), they do not satisfy the conditions
d*>a+2and 1< k* < 2d* —2. So we cannot construct such integral
trees with nonsquares mo and ma from k* = 2a+1,d* =a+ 1, where a
is a nonnegative integer.

Case 2. Similarly, because k* = 2a — 1, d* = a — 1 is the fundamental
solution of the other associate class K” of Eq.(32), where a (> 2) is an
integer, all positive integral solutions of Eq.(32) are given by

k= (20— T)on + 2(a - 1),
o it (36)

for any positive integer n.
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Hence, when m; = a%, ma = &% —k = [(a — L)an + (2¢ — 1)B)? ~ [(2a —
Dan+2(a—1)B,], mg = d? + k = [(a — D)oy + (2a — 1)B,)? + [(2a — 1)an +
2(a—1)B,), a1 = Z?:l "?‘E?—.—l mi“E?:z = [(a+1)an+(2a+1)B,]*—a?,
ug =d=(a-1)a,+(2a~1)Bnu1 = u2—1, u3 = up+1, ag = az = 1, where
n (2 1) and a (> 2) are integers. Then the tree S(a; + a2 +as; my, ma, m3)
of diameter 4 is integral with nonsquares ms and ms.

On the other hand, although k* = 2¢—1, d* = a—1 is a solution of the
associate class K" of Eq.(32), they do not satisfy the conditions d* > a+ 2
and 1 < k* < 2d* — 2. So we cannot construct such integral trees with
nonsquare numbers mg and mg3 from k* = 2a—1, d* = a—1, where a (> 2)
is an integer. a

Remark 16. In fact, Zhang and Tan [17] constructed such integral trees
S(ay + a2 + as; my, ma, m3)=S(a; + 1+ 1;my, ma, m3) of diameter 4 with
nonsquares ms and mg from some positive integral solutions of Eq.(32).
Here, Theorem 15 is obtained from all positive integral solutions of Eq.(32).
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1 Introduction

Since the investigation of maximum genus was introduced by
Nordhaus et al. [1] in 1971, the upper embeddability of graphs
has received great emphasis. Nordhaus et al.[l], Nebesk[2],
Ringeisen(3],and Skoviera[4] have shown that various classes of
graphs are upper-imbeddable. In particular, every 4-edge con-
nected graph is upper-imbeddable in Kundu[5]. However, there
are examples of 3-edge connected graphs that are not upper
imbeddable in Jungerment|[6].

Combining with some invariants of a graph, many papers
have provided distinct kinds of upper embeddable graphs with
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edge-connectivity < 3 or have given the lower bounds of the
maximum genus of graphs.

Recently, combining with the specific degrees or edges of a
graph, Huang [7] gives some special upper embeddable graphs.

In this paper, we improve Huang’s results as follows:

(1) Let G be a bipartite graph. If dg(v) = a(mod2a) holds
for every vertex v € V(G), then G is upper embeddable, where
a = 0(mod2),a > 4.

(2) Let G be a k(k > 4)-regular and 3-connected bipartite
graph, then G is upper embeddable.

(3) Let G be a graph(loops and multiple edges are permitted).
If G has at most two cut-vertices and every edge e(not a loop)in
G is triangular edge, then G is upper embeddable.

(4) Let G be a graph(loops and multiple edges are permitted)
and every edge e(not a loop)in G is a triangular edge. If £(G) >
2, then the inequality £(G) < k(G)—1 holds, where k(G) denotes
the number of cut-vertex in graph G.

2 Some definitions and notations

A graph, which may have multiple adjacencies or loops, is
always assumed to be connected unless the context requires.
The general background of this paper can be seen in White [8]
or Liu [9], Huang [7).

Embedding a graph G in S means that the vertices and the
edges of the graph are placed in the surface, and the edges may
meet only at mutually incident vertices. A 2-cell embedding, or
in other words, cellular embedding, of a graph G is the one in
which each of the components of the complement of G in the
surface is homeomorphic to an open disk. The components of
the complement of G are called faces or regions.

The genus, denoted by ¥(G), of a connected graph G, is the
smallest value of (), where S is a surface in which G has a
2-cell embedding.

The maximum genus of a connected graph G, marked by
Yu(G), is defined to be the maximum genus & of the orientable
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surface where a cellular embedding of G into the orientable sur-
face of genus % exists.

From the Euler polyhedral formula, it can be seen obviously
that y(G) has the upper bound

(@) < | £

where B(G) = |E(G)| — |[V(G)| + 1 is the cycle rank (or
Betti number) of the graph G. A connected graph G is upper

embeddable if vy (G) = l_@_‘ holds exactly.

The deficiency £(G,T) of a spanning tree T in a graph G
is the number of components of G\E(T) which have an odd
number of edges. The Betti deficiency £(G) of the graph G is
defined as the minimum of £(G,T) over all spanning tree T of
G. Note that £(G) = B(G)(mod2).

For a subset A C E(G),c(G\A) denotes the number of all
components of G\A, and b(G\A) denotes the number of com-
ponents of G\ A with odd circle ranks.

G is a k-regular graph if and only if the degree of every vertex
in the graph is k.

A cut-vertex is such a vertex that it will disconnect the graph
when it is removed from the graph. A graph G is k—connected
if the removal of any k£ — 1 vertices in G does not disconnect the
graph.

3 Some basic theorems

Firstly, two characterizations of the upper embeddability of
graphs were stated. Their proofs can be seen in Liu [9] and
Nebesky [10] respectively. Here, they were expressed in the fol-
lowing theorems:

Theorem A(Liu [9]) Given a graph G, then

(1) vm(G) = 3(B(G) - £(G));
(2) G is upper embeddable if and only if £(G) < 1 holds.
From the Theorem A(1), it shows clearly that the maximum
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genus of G is mainly determined by the Betti deficiency £(G), for
which Nebesky [10] has given another combinatorial expression.

Theorem B(Nebesky [10]) Given a graph G, then we have
&(G) = mazacec){c(G\A) + b(G\A) — |A| - 1}

. Let F and H be two disjoint subgraphs of the graph G. Let
E(F, H) denote such edges that one endpoint is in V(F) and
the other in V(H). Let E(F,G) denote such edges that one
endpoint is in V(F') and the other not in V(F).

The following theorem in [11] provides a structural charac-
terization for a non-upper embeddable graph, i.e., graph G with
£(G) > 2, and plays a fundamental role throughout this paper.

Theorem C(Huang [11}) If the graph G is not upper em-
beddable, i.e., £&(G) > 2, then there exists an edge subset A of
G satisfying the following properties:

(1) ¢(G\A) > 2, and furthermore for any component F' of
G\A, B(F) = 1(mod2);

(2) For any component F' of G\A, F is a vertex-induced
subgraph of G;

(3) For any k(> 2) different connected components Fi, F, - - -,
Fk; then |EG(F1aF27"' )Fk)l < 2k_3,

(4) £(G) =2¢(G\A) — |A| - L.

Supposed A is such a chosen edge subset of G as in theorem
C above, the following result can be obtained, as a continuation
of Theorem C:

Theorem D(Huang [11]) Under the conditions and the con-
clusions of Theorem C, then we have

(1)For any connected component F' of G\ A, let G be a graph
with k-connectivity(k > 1), then |E(G, F)| = k;

(2)|A| = 1 X" f |E(G\F, F)|, where the sum is taken over all
connected components F of G\ A.
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4 Upper embeddable bipartite graphs with
specific degrees

In this section, we investigate the upper embeddability of
bipartite graphs. Firstly, the following lemma can be proved:

Lemma 1 Let G be a bipartite graph, and dg(v) = a(mod2a)
holds for every vertex v in V(G), where a = 0(mod2),a > 4. If
there exist such two edges e;,e2 € E(G) that making G\{ej, e2}
disconnected, then |V (F')| = 0(mod2) and B(F) = 0(mod2) hold
for any connected components F' of G\{e;, e,}.

Proof G has no cut-edge, for it is Eulerian. If G\{e;,e2}
is disconnected, then it has two connected components exactly.
Let one be F' and the other be H. Then, without loss of gen-
erality, let e, = z,y; and ey = zays, where x,,75 € V(F) and
Y1,¥2 € V(H). Because G is a bipartite graph, F' is too. Let
V(F) = V1 UV, be the bipartite partition of V' (F).

Claim 1 For the two vertices 1,9, one of them is in V}
and the other in V.

Proof By contradiction, without loss of generality, we as-
sume that 2, z; € V;. Because F'is a bipartite graph, ) .. de(z)
=2 =3 v, do(y) could be obtained easily. However, dg(v) =
a(mod2a)holds for every vertex v € V(G), so the above equality
implies —2 = 0(moda), whilst a = 0(mod2),a > 4. A contra-
diction appears.

Claim 2 |V(F)| = 0(mod2)

Proof Since F is a bipartite graph and Claim 1 holds, so
[E(F)| = 3"ser, de(x) = 1 = 3 v, do(y) — 1 could be derived,
then ..y, do(z) = X-,cy, do(y) holds. As dg(v) = a(mod2a)
holding for every vertex v € V(G), where a = 0(mod2),a > 4, it
follows that V1| = |Va|(mod2). Thus |V (F)| = 0(mod2) holds.

Claim 3 B(F) = 0(mod?2)

Proof Since the Claim 2 and |E(F)| =} .y, deo(z) =1 =
1(mod2) hold. So we could obtain B(F) = |E(F)|-|V(F)|+1 =

225



