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1 Introduction

Since the investigation of maximum genus was introduced by
Nordhaus et al. [1] in 1971, the upper embeddability of graphs
has received great emphasis. Nordhaus et al.[l], Nebesk[2],
Ringeisen(3],and Skoviera[4] have shown that various classes of
graphs are upper-imbeddable. In particular, every 4-edge con-
nected graph is upper-imbeddable in Kundu[5]. However, there
are examples of 3-edge connected graphs that are not upper
imbeddable in Jungerment|[6].

Combining with some invariants of a graph, many papers
have provided distinct kinds of upper embeddable graphs with
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edge-connectivity < 3 or have given the lower bounds of the
maximum genus of graphs.

Recently, combining with the specific degrees or edges of a
graph, Huang [7] gives some special upper embeddable graphs.

In this paper, we improve Huang’s results as follows:

(1) Let G be a bipartite graph. If dg(v) = a(mod2a) holds
for every vertex v € V(G), then G is upper embeddable, where
a = 0(mod2),a > 4.

(2) Let G be a k(k > 4)-regular and 3-connected bipartite
graph, then G is upper embeddable.

(3) Let G be a graph(loops and multiple edges are permitted).
If G has at most two cut-vertices and every edge e(not a loop)in
G is triangular edge, then G is upper embeddable.

(4) Let G be a graph(loops and multiple edges are permitted)
and every edge e(not a loop)in G is a triangular edge. If £(G) >
2, then the inequality £(G) < k(G)—1 holds, where k(G) denotes
the number of cut-vertex in graph G.

2 Some definitions and notations

A graph, which may have multiple adjacencies or loops, is
always assumed to be connected unless the context requires.
The general background of this paper can be seen in White [8]
or Liu [9], Huang [7).

Embedding a graph G in S means that the vertices and the
edges of the graph are placed in the surface, and the edges may
meet only at mutually incident vertices. A 2-cell embedding, or
in other words, cellular embedding, of a graph G is the one in
which each of the components of the complement of G in the
surface is homeomorphic to an open disk. The components of
the complement of G are called faces or regions.

The genus, denoted by ¥(G), of a connected graph G, is the
smallest value of (), where S is a surface in which G has a
2-cell embedding.

The maximum genus of a connected graph G, marked by
Yu(G), is defined to be the maximum genus & of the orientable
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surface where a cellular embedding of G into the orientable sur-
face of genus % exists.

From the Euler polyhedral formula, it can be seen obviously
that y(G) has the upper bound

(@) < | £

where B(G) = |E(G)| — |[V(G)| + 1 is the cycle rank (or
Betti number) of the graph G. A connected graph G is upper

embeddable if vy (G) = l_@_‘ holds exactly.

The deficiency £(G,T) of a spanning tree T in a graph G
is the number of components of G\E(T) which have an odd
number of edges. The Betti deficiency £(G) of the graph G is
defined as the minimum of £(G,T) over all spanning tree T of
G. Note that £(G) = B(G)(mod2).

For a subset A C E(G),c(G\A) denotes the number of all
components of G\A, and b(G\A) denotes the number of com-
ponents of G\ A with odd circle ranks.

G is a k-regular graph if and only if the degree of every vertex
in the graph is k.

A cut-vertex is such a vertex that it will disconnect the graph
when it is removed from the graph. A graph G is k—connected
if the removal of any k£ — 1 vertices in G does not disconnect the
graph.

3 Some basic theorems

Firstly, two characterizations of the upper embeddability of
graphs were stated. Their proofs can be seen in Liu [9] and
Nebesky [10] respectively. Here, they were expressed in the fol-
lowing theorems:

Theorem A(Liu [9]) Given a graph G, then

(1) vm(G) = 3(B(G) - £(G));
(2) G is upper embeddable if and only if £(G) < 1 holds.
From the Theorem A(1), it shows clearly that the maximum
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genus of G is mainly determined by the Betti deficiency £(G), for
which Nebesky [10] has given another combinatorial expression.

Theorem B(Nebesky [10]) Given a graph G, then we have
&(G) = mazacec){c(G\A) + b(G\A) — |A| - 1}

. Let F and H be two disjoint subgraphs of the graph G. Let
E(F, H) denote such edges that one endpoint is in V(F) and
the other in V(H). Let E(F,G) denote such edges that one
endpoint is in V(F') and the other not in V(F).

The following theorem in [11] provides a structural charac-
terization for a non-upper embeddable graph, i.e., graph G with
£(G) > 2, and plays a fundamental role throughout this paper.

Theorem C(Huang [11}) If the graph G is not upper em-
beddable, i.e., £&(G) > 2, then there exists an edge subset A of
G satisfying the following properties:

(1) ¢(G\A) > 2, and furthermore for any component F' of
G\A, B(F) = 1(mod2);

(2) For any component F' of G\A, F is a vertex-induced
subgraph of G;

(3) For any k(> 2) different connected components Fi, F, - - -,
Fk; then |EG(F1aF27"' )Fk)l < 2k_3,

(4) £(G) =2¢(G\A) — |A| - L.

Supposed A is such a chosen edge subset of G as in theorem
C above, the following result can be obtained, as a continuation
of Theorem C:

Theorem D(Huang [11]) Under the conditions and the con-
clusions of Theorem C, then we have

(1)For any connected component F' of G\ A, let G be a graph
with k-connectivity(k > 1), then |E(G, F)| = k;

(2)|A| = 1 X" f |E(G\F, F)|, where the sum is taken over all
connected components F of G\ A.
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4 Upper embeddable bipartite graphs with
specific degrees

In this section, we investigate the upper embeddability of
bipartite graphs. Firstly, the following lemma can be proved:

Lemma 1 Let G be a bipartite graph, and dg(v) = a(mod2a)
holds for every vertex v in V(G), where a = 0(mod2),a > 4. If
there exist such two edges e;,e2 € E(G) that making G\{ej, e2}
disconnected, then |V (F')| = 0(mod2) and B(F) = 0(mod2) hold
for any connected components F' of G\{e;, e,}.

Proof G has no cut-edge, for it is Eulerian. If G\{e;,e2}
is disconnected, then it has two connected components exactly.
Let one be F' and the other be H. Then, without loss of gen-
erality, let e, = z,y; and ey = zays, where x,,75 € V(F) and
Y1,¥2 € V(H). Because G is a bipartite graph, F' is too. Let
V(F) = V1 UV, be the bipartite partition of V' (F).

Claim 1 For the two vertices 1,9, one of them is in V}
and the other in V.

Proof By contradiction, without loss of generality, we as-
sume that 2, z; € V;. Because F'is a bipartite graph, ) .. de(z)
=2 =3 v, do(y) could be obtained easily. However, dg(v) =
a(mod2a)holds for every vertex v € V(G), so the above equality
implies —2 = 0(moda), whilst a = 0(mod2),a > 4. A contra-
diction appears.

Claim 2 |V(F)| = 0(mod2)

Proof Since F is a bipartite graph and Claim 1 holds, so
[E(F)| = 3"ser, de(x) = 1 = 3 v, do(y) — 1 could be derived,
then ..y, do(z) = X-,cy, do(y) holds. As dg(v) = a(mod2a)
holding for every vertex v € V(G), where a = 0(mod2),a > 4, it
follows that V1| = |Va|(mod2). Thus |V (F)| = 0(mod2) holds.

Claim 3 B(F) = 0(mod?2)

Proof Since the Claim 2 and |E(F)| =} .y, deo(z) =1 =
1(mod2) hold. So we could obtain B(F) = |E(F)|-|V(F)|+1 =
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0(mod2).
Since the arbitrariness in the choice of F, the claim is ob-
tained.

Theorem 1 Let G be a bipartite graph. If dg(v) =
a(mod2a) holds for every vertex v € V(G), then G is upper
embeddable, where a = 0(mod2),a > 4.

Proof Assuming G is not upper embeddable. By Theorem
C, there exists A C F(G) making G\A satisfied all the proper-
ties (1)-(4) of Theorem C . Let Fy, F3,- -+, Fy(l > 2) be all the
connected components of G\ A, where [ = ¢(G\A) > 2. Because
G is Eulerian, then |E(F;,G)| is even for any F;. Since G is
connected, obviously, |E(F;, G)| # 0 for any F;. And, we could
claim that |E(F;, G)| # 2 for any F;. Otherwise, if there exists
some Fi(1 < i < I) makes |E(F;,G)| = 2 hold, then, we have
B(F) = 0(mod2) by Lemma 1. This contradicts to the prop-
erty(1)of Theorem C. Hence for any F;, |E(F;,G)| > 4 holds.
Because every Fi(1 < i < I) is an induced subgraph of G, we
have |A] = 1 3°._, |E(F;,G)| > 2l. Finally we could obtain a
contradictory that £(G) = 2l — |A] = 1 < —1 from Theorem
C(4). So the theorem 1 is proved.

Remark 1 If ¢ = 2 in Theorem 1, then 2a should be
equal to 4n,n € N, and the condition of “bipartite graph”can
be removed, we obtain the same conclusion.

Proof Details of the proof can be seen in Huang [7].

Remark 2 If ¢ = 0 in Theorem 1, then 2a should be
equal to 2n,n € N, and the condition of “bipartite graph”can
be removed, but we should strengthen the connected condition
of the graph G with 3-connected, we obtain the same conclusion.

Proof Details of the proof can be seen in Huang [12].

Corollary 1(Huang [7]) Let G be a bipartite graph. If
dc(v) = 4(mod8) for every vertex v € V(G), then G is upper
embeddable.

Proof It is a direct result of Theorem 1.
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On the upper embeddability of regular bipartite graphs, we
obtain the theorem 2 below.

Theorem 2 Let G be a k-regular and 3-connected bipartite
graph, then G is upper embeddable, where k& > 4.

Proof We only need to prove that a k-regular 3-connected
bipartite graph is 4-edge connected. Assuming B = {ej, ez, e3}
is a set G, F is one of the connected components of G\B.
Clearly, F' is a bipartite graph and V(F;) = V; UV,, where(V} U
V,) is the bipartition. Supposed that the cut-edges set B has z;
end points in V;, ¢ = 1,2. As F'is a bipartite graph,then

Z de(v) —x) = Z de(v) — o

veW veEVy

i.e.

kIVi| — 21 = k|Va| — o
ie.

(il = [Val) = 21 — 22
But this is impossible, for £ > 4 and 1 < |z; — 29| < 3, Hence,
G is 4-edge connected and upper embeddable. So Theorem 2 is
proved.

Remark 3 If k£ is odd, then the condition “G is 3-connected
"can be weakened. An example of graph G, is shown in Fig.1.
Obviously, G, is a 4-regular and 2-connected bipartite graph.
Let T be a spanning tree of G, where V(T') = V(G;) and E(T)
is the set of red edges in Gy, then £(G;,T) = 1 holds. Therefore,
according to the definition of £(G), £(G;) < 1 can be obtained.
So the graph G, is upper embeddable.

Remark 4 If k is even, then the condition “G is 3-connected
"can not be weakened. An example of the graph G, is shown
in Fig.2. Obviously, G, is a 5-regular and 2-connected bipartite
graph. Let A = {ey, e2, €3}, then we could obtain ¢(G2\A) = 3,
b(G2\A) = 3 and |A| = 3. Thus ¢(G2\A) +b(G2\A) — |A] -1 =
343 —3—1 = 2. Therefore, according to Theorem B, we could
obtain £(G2) > 2, that is to say, the graph Gs is not upper
embeddable.
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Figure 1: G,

5 Graphs with specific edges

If the length of a circuit C in G is three (or four), C is called
triangle (or quadrangle). Furthermore, if there exists a triangle
(or quadrangle) C in G which the edge e € E(G)(not a loop)
belongs to, e is called triangular (or quadrangular) edge.

Theorem 3 Let G be a graph(loops and multiple edges are
permitted). If G has at most two cut-vertices and every edge
e(not a loop)in G is triangular edge, G is upper embeddable.

Proof Assuming G is not upper embeddable. Then, there
exists A C E(G) which makes G\ A satisfy all the properties (1)-
(4) of Theorem C. Let Fy, Fy, .-+ , Fy(l > 2) be all the connected
components of G\ A, where [ = ¢(G\A) > 2. Since every edge
e(not a loop)in G is a triangular edge, G has no cut-edge. Thus,
|E(G, F})| > 2 holds for any F;(1 <i<1).

The following conclusion would be proved: if V(F}) has no
cut-vertex of G, then |E(G, F;)| > 4 holds for any F; (1 <1 <1).
Otherwise, let us assume that |E(G, F})| = 2 or 3, the following
cases are dealt with:

Case 1 |E(G,F)| = 2. Let E(G,F;)) = {e1, ez} and
€1 = T1Y1,e2 = ToYe. Without loss of generality, let z;,z2 €
V(F),y1,y2 not in V(F;). According to the property (4) of
Theorem C, there exist two distinct connected components, do-
nated them by F; and Fj of G\A, such that y; € V(F}) and
yo € V(F)(1 < 4,5,k < ;i # j # k). On the condition of
|E(G, F})| = 2, if 1 # x2, the edge e; = ¥ is not a triangular
edge of G. This is a contradiction to the given condition; how-
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ever if £, = x5, the vertex z, is a cut-vertex. It is a contradiction
to the assume of V(F;) having no cut-vertex of G.

Case 2 |E(G,F;)| = 3. Similar to the analysis of Case
1, the same contradictions will be obtained: either existing an
edge e € E(G, F;) is not a triangular edge of G; or V(F;) having
cut-vertices of G.

Consequently, according to the discussions above, we obtain
|E(G, F)| > 4 for any F; without cut-vertices of G. Since the
graph G has at most two cut-vertices, there are at most some two
Fy and F, satisfied the equality |E(G, F;)| = 2 or 3. Therefore,
we obtain |A| = %Zﬁ |E(G, F;)| > 2l — 2 via Theorem D(2).
Finally, we obtain £(G) = 2/ — |A| — 1 < 1 via Theorem C(4).
A contradiction as well. So the graph G is upper embeddable.

Moreover, we further discuss about the general relationship
between the Betti deficiency £(G) and the number of cut-vertices
of a graph. Before obtaining the main result, some related lem-
mas are proved first.

Lemma 2 Let G be a graph, the edge e € E(G)(not a loop),
then £(G - e) < £(G) holds, where G - e is a graph obtained by
shrinking the edge e in E(G).

Details of the proof can be shown in Liu [9].

Lemma 3 Let G be a graph and the edge e be a cut-edge
of G, then £(G) = £(G4) + £(G2) holds, where G; and G, are
the two connected components of G\e.

Details of the proof can be seen in Liu [9] also.

Lemma4 Let G; and G, be two graph, then £(G1{v1, 12} G5) <
£(G1)+€(G2) holds, where G, {v1, v2}G> denotes a graph formed
through conglutinating the two vertices v; and v, together to one
vertex, where v; € V(G;)(z = 1, 2).

Proof Let G’ be a graph obtained by adding such an edge €
that one endpoint is v; and the other is vy, where v; € V(G;)(i =
1,2). Obviously, the edge €’ is a cut-edge of G’, meanwhile, G,
and G are the two connected components of G’\¢e’. By lemma
3, we obtain £(G’) = &(G1) + £(G2). In addition, the graph
G1{v1,v2}G2 can be obtained by shrinking the edge ¢’ of &,
then £(G1{v1,v2}G2) < £(G') = £(G1) + £(G2) holds via lemma
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2. So the lemma 4 is proved.

Under the conditions of the theorem 3, if the number of cut-
vertices in graph G greater than or equal to 2, the following
result can be obtained:

Theorem 4 Let G be a graph(loops and multiple edges
are permitted) and every edge e(not a loop)in G is a triangular
edge. If k(G) > 2, then &(G) < k(G) — 1 holds, where k(G)
denotes the number of cut-vertex in graph G.

Proof If k(G) < 2, it is just the result of Theorem 3.
Here, we assume that k(G) > 3 and take a cut-vertex v from G
randomly. Let G’ and G” be two subgraphs of G as follows: G’
is a union composed of such all blocks having the vertex v, while
G” is a union composed of such all blocks without the vertex
v. Obviously, the two graphs G’ and G” have the following
characters: G’ has one cut-vertex at most, whilst the number of
cut-vertices in G” is no more than k(G) — 1. Let V = {z|z €
V(G)NV(G"),z € V(G)} and |V| = m(m € N,m > 1), then V
can be expressed by set: V = {z1,%s,"-- ,Zm},and G” is a union
composed of these blocks G7, G5, -+ , G, including the vertices
Z1,Ta, -+ , Tm respectively. Evidently, the two graphs G’ and G”
satisfy the condition that every edge of G’ and G” is a triangular
edge. Because G’ has one cut-vertex v at most, {(G') < 1 holds
via Theorem 3. Meanwhile, we obtain £(G”) < k(G") — 1 from
the inductive assumption of k(G") < k(G) — 1 < k(G). The
graph G can be seen as a graph formed by conglutinating the
vertices Z1,T2, - ,Zm in V(G') and the vertices z;, %2, ,Tm
in V(G") correspondingly. The detailed process construction of
graph G as follows: by conglutinating vertex z; in V, G’ and G
can be formed a new graph Gj first, then conglutinating vertex
z2in V, G} and GY can be formed the graph G3. Repeating the
similar process until the graph G, is formed, so the the graph
G can be expressed as G'{z1,Z2," - ,Zm}G". Via Lemma 4, we
obtain the following relations:

£(Gs) S €(GY) +€(G3) < k(GY) + k(Ga) — 15
£(G3) < €(Gs) + £(G3) < k(GY) +K(Gg) + k(G3) — 1;

.........
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§(G) = &(Gr,) < &(Grmy) +E&(Gr) S k(G +K(Gy) +- -+
k(Gr) — (m —1);
then
§(G) SKG)-1—(m—1) <kG) -1
Therefore the theorem is proved.
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