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Abstract

A connected graph is highly irregular if the neighbors of each
vertex have distinct degrees. We will show that every highly irregular
tree has at most one nontrivial automorphism. The question that
motivated this work concerns the proportion of highly irregular trees
that are asymmetric, i.e., have no nontrivial automorphisms. A d-
tree is a tree in which every vertex has degree at most d. A technique
for enumerating unlabeled highly irregular d-trees by automorphism
group will be described for d > 4 and results will be given for d = 4.
It will be shown that, for fixed d, d > 4, almost all highly irregular
d-trees are asymmetric.

1. Introduction

Beginning with Cayley’s work in 1857, enumeration problems have been
solved for trees in general and for trees of many different types. In fact, the
counting technique used by Pélya and Otter was generalized as a twenty
step algorithm for counting various types of trees by Harary, Robinson
and Schwenk [6]. In 1987, Alavi, Chartrand, Chung, Erdés, Graham and
Oellermann [2] introduced a new class of graphs, highly irregular graphs.
A connected graph is defined to be highly irregular if for each vertex v, the
neighbors of v all have distinct degrees. This paper addresses the problem
of enumerating unlabeled highly irregular trees by automorphism group.
This work was motivated by the conjecture by P. R. Christopher [4] that
almost all highly irregular trecs have no nontrivial automorphisms. Alavi
and Ruiz [3] showed that for any finite group I' and positive integer n,
there exists a highly irregular graph of order n with automorphism group T'.
However, the type of symmetries that can occur in a tree together with the
highly irregular restriction result in the fact that all highly irrcgular trees
have at most one nontrivial automorphism. We will prove this result and
illustrate a method for enumerating highly irregular trees by automorphism
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group. A d-tree is a tree in which every vertex has degree at most d. We
will show that, unlike ordinary trees, almost all of which have nontrivial
automorphisms [5], almost all highly irregular d-trees have no nontrivial
automorphisms.

2. Preliminaries

Let T'(T") denote the automorphism group of the tree T. If [T| = 1, then
we say T is asymmetric; otherwise, T is symmetric.

Theorem 1 The order of the automorphism group of a highly irreqular tree
is at most 2.

PROOF. First we show that a rooted tree with a nontrivial automor-
phism has a vertex with at least two neighbors of the same degree. Let T
be a rooted tree with root v and suppose ¢ is a nontrivial automorphism
of T. Since the root must be a fixed point of any permutation, there must
be a vertex that is fixed by ¢ and that has at least two neighbors, say a
and b that are permuted by . Then these two vertices must have the same
degree.

Now let T be a highly irregular tree. The center of any tree consists of
either 1 or 2 vertices. Suppose the center of T' consists of one vertex, v.
Since v must be a fixed point of any permutation of the vertices of T', we
can view T as a rooted tree with root v. Thus, by the above argument, if
T is highly irregular and has one central vertex, then T' has no nontrivial
automorphisms.

Suppose the center of T consists of two vertices, v and v. Then T is
formed by adding an edge between the roots of two rooted trees, 77 and
T5, rooted at u and v, respectively. If T} had a nontrivial automorphism,
then, as a rooted tree, some vertex of T; would have two neighbors, neither
of which is the root of T3, that have the same degree. This contradicts the
highly irregular property of T. Similarly, 75 cannot have any nontrivial
automorphisms. Therefore, 7" has a nontrivial automorphism if and only if
T, and T3 are isomorphic. Then the edge uv is a symmetry edge and the
only nontrivial automorphism of T' permutes 7} and T5. O

Now we will enumerate highly irregular d-trees by automorphism group
order. The highly irregular 3-trees must be dealt with as a special case.
The only highly irregular trees with maximum degree at most 2 are Ko and
Py, both of which have a nontrivial automorphism. Therefore, every highly
irregular 3-tree of order at least 4 has maximum degree equal to 3. In [1]
Alavi, Buckley, Shamula and Ruiz showed that there is exactly one highly
irregular tree of maximum degree 3 and order n if and only ifn > 8 and n is
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congruent to 2, 3, or 4 modulo 6 and that there are none if n is congruent to
0, 1, or 5 modulo 6. They also described a process for obtaining all highly
irregular trees of maximum degree 3. The following theorem follows from
the process for obtaining all highly irregular trees of maximum degree 3.

Theorem 2 The highly irregular trees of maxzimum degree 3 and order
congruent to 2 or 4 modulo 6 are symmetric. The highly irregular trees of
mazimumn degree 3 and order congruent to 3 modulo 6 are asymmetric.

PRrooF. If n is congruent to 3 modulo 6, then n is odd. Therefore, by
Theorem 1, a highly irrregular 3-tree whose order is congruent to 3 modulo
6 is asymmetric.

Figure 1: T3, the unique highly irregular 3-trec of minimum order.

T;, the tree in Figure 1, is the highly irregular tree with maximum
degree 3 and minimum order 8 and is symmetric. Alavi, Buckley, Shamula
and Ruiz [1] showed that each highly irregular tree T' of maximum degree
3 and order congruent to 2 modulo 6 can be formed by linking & > 1 copies
of T3. It can easily be checked that the symmetry of T follows from the
construction of T together with the symmetry of T3.

Now let T" be a highly irregular tree of maximum degree 3 and order
n congruent to 4 modulo 6. Alavi, Buckley, Shamula and Ruiz [1] showed
that T can be obtained from the highly irregular maximum degree 3 tree
of order n — 2, T'. The symmetry of T follows directly from the symmetry
of TV and the construction of 7. 0

In the following section, we will describe a general technique for enu-
merating highly irregular d-trees with d > 4.

3. Enumeration Technique

The method for counting highly irregular d-trees will be described for d = 4
and results will be given for d = 4. Note that since 2¢ is the minimum
order of a highly irrcgular d-tree that actually has a vertex of degree d [1],
applying this technique to count highly irregular d-trees of order at most
24+1 _ 1 actually counts all highly irregular trees of those orders.
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The standard enumeration technique for trees [6] relies on the fact that
all planted, rooted and edge-rooted trees of many types may be formed
using planted trees of the specified type as building blocks. For example,
taking two planted 4-trees and identifying their roots results in a rooted 4-
tree while then joining a new vertex adjacent to the root of this rooted tree
results in a planted 4-tree. Because of the highly irregular degree restriction,
two difficulties occur when this approach is attempted with highly irregular
trees.

In the case of forming rooted highly irregular trees, only rooted highly
irregular trees in which the vertices adjacent to the root have no neighbors
of degree 1 can be built from planted highly irregular trees. Suppose Tj
and T, are two planted highly irregular trees with u adjacent to the root of
T, and v adjacent to the root of T>. Let T be the rooted tree resulting from
identifying the roots of T and T%. Since both u and v each have a neighbor
of degree 1 in T} and T respectively, neither will have a neighbor of degree
1in T. The rooted tree in Figure 2 is an example of a rooted highly irreg-
ular tree that cannot be built from planted highly irregular trees. To deal
with this difficulty, we define planted almost highly irregular trees which
will serve as the building blocks. In a planted almost highly irregular iree,
every vertex except the vertex adjacent to the root must satisfy the highly
irregular condition. The vertex adjacent to the root may have two neigh-
bors of degree 1, the root and one other vertex; all its other neighbors must
have distinct degrees.

Figure 2: A rooted highly irregular tree.

However, not all planted almost highly irregular trees can be combined
to form a tree in which the highly irregular property is maintained. If, in
the above example, deg(u) = deg(v), or either » or v has a neighbor of
degree 2 in T} or T5 respectively, then T is not highly irregular. To deal
with this problem, we must keep track of the degree of the vertex adjacent
to the root and the degrees of its neighbors other than the root. To each
planted almost highly irregular d-tree, we assign a vector X, a d-tuple in
which the ith component X; is 1 if the vertex adjacent to the root has a
neighbor (other than the root) of degree i and is 0 otherwise (see Figure 3).
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d
Then the degree of the vertex adjacent to the root is 1 + Z X; and since
i=1
each vector has at least one zero, there are 2¢ — 1 vectors which correspond
to the planted almost highly irregular d-trees.

Observe that planted almost highly irregular d-trees and rooted highly
irregular d-trees can be formed from planted almost highly irregular d-
trees. A rooted tree in which the root has degree m is formed by taking
an appropriate collection of m planted almost highly irregular d-trees and
identifying their roots to form the root of the new tree. Adding a new
vertex adjacent to the root of this rooted tree results in a planted almost
highly irregular d-tree in which the degree of the vertex adjacent to the
root is m + 1. To illustrate the role the vectors play in determining when
a collection of planted almost highly irregular d-trees can be combined to
form planted almost highly irregular or rooted highly irregular d-trees, con-
sider the three 4-trees in Figure 3. If we identify their roots to form the
rooted tree T in Figure 4, the root u has degree 3. However, since X3
= 1, one of the vertices adjacent to u already has a neighbor of degree 3.
Consequently, the rooted tree in Figure 4 is not highly irregular. If we then
add a new vertex adjacent to u to form the planted tree 75 in Figure 4,

the result is highly 1rregular This can be confirmed with the vectors X,
d

Y and Z. Since 1 + ZX;, 1+ ZY,, and 1 + ZZi are all distinct,
=1
the degrees of the nelghbors of the vcrtcx adjacent to the vertex u are all

distinct. X4 = Y4 = Z4 = 0 indicates that none of the vertices adjacent
to u have another neighbor of degree 4.

X=(1,1,1,0) Y =(1,0,0,0) Z=(1,1,00)

Figure 3: Planted almost highly irregular trees and their vectors.
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Figure 4: Trees formed from planted almost highly irregular trees.

Using this method, recurrence relations for the number of planted almost
highly irregular d-trees with a given vector and rooted highly irregular d-
trees are now derived for d = 4.

Let Py (n) be the number of planted almost highly irregular d-trees with
vector V and order n.

Theorem 3 For d=/,
(i) if n = 2, then Py(n) = 1,

(i) if n > 8 and V has ezactly one entry equal to 1, then
Py(n) = ZPx(n — 1), where X ranges over all vectors such that
X

4
X2 =0 and the position of the 1 in V isd; =1+ in
i=1
(iit) if n > 5 and V has ezactly two entries equal to 1, then
n—2
Py(n) = Z ZPx(r)Py(n —7) , where X and Y range over all
X, Y r=2
sets of two vectors such that X3 =Yg =0 and the positions of the

I'sinVared, = 1+ZX and dy _1+2Yi
=1 i=1

() if n > 9 and V has ezactly three entries equal to 1, then

n—-3n—1~r

= > Y ) Px(r)Py(s)Pa(n+1—r7—s), where X,Y
X,Y,Zr=2 s=2
and Z range over all sets of three vectors such that
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X4 =Yy =724 = 0 and the positions of the I's in 'V are
4 4 4
dy =1+) Xidp =1+ Yiandds =1+ Z:.

=1 i=1 i=1

ProoFr. Let T be a planted almost highly irregular 4-tree of order n,
vector V, and root w. The four formulas given above correspond to the
cases that u, the vertex adjacent to the root of T has degree 1, 2, 3 or 4.
The case of degree 1 is simply a planted K5. If the degree of u in T ism =
2, 3 or 4, then T is formed from a set of m- 1 planted almost highly irregular
4-trees, Ty, 15, ..., T,,—1 whose orders sum to n — 1. Thé restrictions on
the T}’s are described by the restrictions on their vectors in the formulas
given above. For each i = 1, 2, ..., m - 1, let v; be the vertex adjacent to
the root of T;. In T, u is a neighbor of each v; and has degree m. So for
cach i =1, 2, ..., m, v; cannot have a neighbor of degree m in 7;. Hence,
for each T, the m** coordinate of its vector must be zero.

Also the neighbors of u, excluding w, must have distinct degrees. These

degrees are determined by the coordinates of V that are nonzero. If the
d

vector of T; is X, then the degree of v; (in T; and in T) is d; = 1+ E Xj.
=1
Thus,{d,,da, ...,dn—1} must be distinct and form the set of the positions
of V that are nonzero.
0

Let P(n) be the total number of planted almost highly irregular d-trees
of order n. Clearly, P(n) = ZPv(n) , where V ranges over all 2¢ — 1

v
vectors which correspond to the planted almost highly irregular d-trees.
Relations expressing Root(n), the number of rooted highly irregular d-
trees of order n, in terms of the Py (i)’s are derived in a similar manner.

Theorem 4 For d = 4, Root(n)=

pr n)+ZZPx(I)Py(n+1—r)
XY r=2

n—-2n-r

+ Y SN Px(r)Py(s)Pa(n+2 -1 — 5)
X,Y,Z r=2 s=2

n—3n—-l-rnt+l—r—s

> 2> Z u(r)Pv(s)Px(t)Py(n+3~—r1—5s—1)

U VXY r=2 3=2

+
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Again, the four terms correspond to the four cases that the root has
degree 1, 2, 3 or 4. The first sum in each term is taken over all appropriate
sets of vectors that will result in a tree that is highly irregular. For example,
in the third term the three vectors X, Y Z must satisfy X3 =Yg = Zg =

0,and 1+ Z X, 1+ ZY,, and 1+ Z Z; are all distinct. In general, if
i=1
the root has degree m, then the sum lS ta.ken over all sets of m vectors in

which the m®" coordinate of each vector is zero and each of the m vectors
has a different number of 1’s.

Observe that these planted almost highly irregular d-trees can also be
used to form unrooted or free highly irregular d-trees that have a nontrivial
automorphism. Recall that these symmetric trees consist of two isomorphic
subtrees that are joined by a symmetry edge. Thus, a symmetric highly
irregular d-tree can be formed by taking two copies of a planted almost
highly irregular d-tree and identifying the edges incident to the roots of the
two planted trees. However, this identification does not always result in a
highly irregular tree. This is illustrated in Figure 5. The tree T formed
from two copies of T} is not highly irregular while the tree T' formed from
two copies of T5 is highly irregular.

" —0—0—0
Ty Ty
0—0—e——0—0
T T

Figure 5: Symmetric trees formed from planted trees.

Let T be a planted almost highly irregular d-tree with vector X. Let
T’ be the tree formed by identifying the edges incident to the roots of two
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copies of T. Then if u is a central vertex of T, the degree of w in T” is
d

1+ Z X;. Hence, T” is highly irregularly if and only if » has no neighbor

i=1

d d
of degree 1 + in inT. Let j =1+ in' T" is highly irregular if and
i=1 i=1
only if X; = 0.
This gives the following relation that expresses Sym(n), the number of
symmetric highly irregular d-trees in terms of the Py(i)’s. Note that n
must be even.

Theorem 5 For n even, Sym(n), the number of highly irreqular d-trees
with a nontrivial automorphism and order n satisfies

Sym(n) = ZPx(g +1),
X

d
where X ranges over all vectors with 0 in position j = 1 +Z X;.
i=1
Let Asym(n) be the number of asymmetric highly irregular d-trees of
order n. Since the number of different ways to root a graph at a vertex is
the number of orbits of the vertices under the automorphism group of the
graph, we have the relation

Root(n) = nAsym(n) + gSym(n)

which can be solved to express Asym(n) in terms of Root(n) and Sym(n).
Then, clearly, Free(n), the number of (unrooted) highly irregular d-trees
of order n is just the sum of Asym(n) and Symn(n).

Theorem 6 (i) Asym(n), the number of highly irreqular d-trees with no
nontrivial automorphisins and order n, satisfies

Asym(n) = &?;—(Q - %Sym(n)

(ii) Free(n), the number of highly irregular d-trees of order n, satisfies

Free(n) = ___Roc‘)t(n)

+ %S'y'rn(n).

Table 1 contains the values for P(n), Root(n) and Free(n) for 4-trees.
Note that 16 is the smallest order for which there is a highly irregular 4-tree
with a vertex of degree 4; however both such trees are symmetric. In Table
2, the numbers of (free) highly irregular 4-trees are broken down according
to the automorphism group. Since Sym(n) = 0 if n is odd, the values are
given only for even orders.
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Vertices || Planted | Rooted | Free
16 24 16 2
17 41 34 2
18 73 72 5
19 124 133 7
20 196 250 14
21 286 399 19
22 414 572 28
23 607 828 36
24 878 1176 51
25 1270 1700 68
26 1824 2509 99
27 2553 3456 | 128
28 3553 4494 | 164
29 5008 5887 | 203
30 7213 7980 | 272

Table 1: Numbers of planted almost highly irregular, rooted highly irregular and
free highly irregular 4-trees.

Vertices || Asymmetric | Symmetric | Per Cent Asymmetric
18 3 2 60.00
20 11 3 78.57
22 24 4 85.71
24 47 4 92.16
26 94 5 94.95
28 157 7 95.73
30 260 12 95.59
32 553 22 96.17
34 1339 35 97.45
36 3393 54 98.43
38 8427 79 99.07
40 19833 109 99.45
42 43573 162 99.63
44 91372 251 99.73
46 189584 375 99.80
48 400687 554 99.86
50 888756 802 99.90

Table 2: Number of (free) highly irregular 4-trees by automorphism group order.

4. Conclusion

 As is illustrated for d = 4 in Table 2, the proportion of highly irregular
d-trees that are asymmetric is approaching 1 as the number of vertices
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increases. The enumeration technique provides the tools for verifying this
result.

Theorem 7 For fired d > 4, almost all highly irregular d-trees have no
nontrivial automorphisms.

PRrROOF. We show that the proportion of all highly irregular d-trees of
order n that are symmetric approaches 0 as n increases. Let Hj, be the set
of all highly irregular d-trees of order 2k. Let Sy be the set of symmetric

highly irregular d-trees of order 2k and, for each appropriate vector V with
d

a 0 in position j = 1 +Z Vi, let S v be the subset of trees in Sy that are
i=1

formed by combining two copies of a planted almost highly irregular d-tree

of order k + 1 and vector V. Then S =J Sk,v where the union is taken

over all appropriate vectors V and the proportion of all highly irregular

d-trees of order 2k that are symmetric is

I_S_k_l = Z ISk,v|. (1)
Hel ~ 2 TH]

Now let A v be the set of asymmetric highly irregular d-trees of order
2k that are formed by identifying the edges incident to the roots of two
non-isomorphic planted almost highly irregular d-trees with vector V and
order k£ + 1. For cach vector V with [Si v| # 0,

| S| < 1Se.v] _ Py(k+1) 3 2
|Hi| ~ |Akv]  §Pv(k+1)[Pv(k+1)—1]  [Pv(k+1)—1]

which approaches 0 as k goes to infinity since Py (k + 1) increases with k.
Thus, {-}“;—’;% approaches 0 as & goes to infinity and almost all highly
irregular d-trees are asymmetric. (]

For any positive integer N, the enumeration technique presented in this
paper can be applied to count all highly irregular trees of order at most N
since such trees are highly irregular d-trees with d = |log, N|. However,
the proof of Theorem 7 does not hold if the degree restriction is removed.
In order to show that almost all highly irregular trees are asymmetric, we
must let d, the bound on the maximum degree, increase along with n, the
number of vertices. Then the number of vectors increcases also and the
sum (1) in the proof of Theorem 7 becomes an infinite sum. Consequently,
information about how each term of the sum is approaching 0 is required
before we may conclude that the infinite sum is equal to 0.
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There is a jump in the number of highly irregular trees when the order
is a power of 2 and the maximum possible degree goes up by 1, i.e., at 32
vertices trees with maximum degree 5 are introduced, at 64 vertices trees
with maximum degree 6 are introduced, etc. It appears that the behavior
of the number of asymmetric trees relative to the total number of trees of
these and slightly larger orders must be studied further to determine if the
stronger conjecture that almost all highly irregular trees are asymmetric is
true. Numerical data that has been produced for highly irregular trees on
up to 54 vertices does support this stronger conjecture.
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