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Abstract

For integers k,60 > 3 and B > 1, an integer k-set S with the
smallest element 0 is a (k; 3, 8)-free set if it does not contain distinct
elements a;; (1 < j < 0) such that 2;11 ai; = flai,. The largest
integer of S is denoted by max(S). The generalized antiaverage num-
ber A(k; 8,0) is equal to min{max(S) : S is a (k°; 8, 6)-free set}. We
obtain (1) If 8 ¢ {#—2,0—1,6}, then A(m;3,8) < (6—1)(m—2)+1;
(2) 1182 0-1, then A(k;,6) < min {A(m; $,0)+BA(n; 5,6)+1},
where k = m +n with n > m > 3; and A\(2n;3,8) < A(n; 8,6)(B +
1) +¢€, where e = 1 for 8 = 3, and € = 0 otherwise.
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1 Introduction and concepts

‘The sum-free problem has been investigated by Erdés in 1965 (cf. [1]). A
subset S of an Abelian group G is sum-free if (S +S)NS = O, i.e., if there
are no a,b,c¢ € S such that a + b = c.

Theorem 1. (Paul Erdés, 1965) Every set of k non-zero integers contains
a sum-free set of size not less than k/3.

Alon and Kleitman proved in 1990 that the constant 1/3 in Theorem
1 cannot be replaced by 12/29 (or any bigger constant). The best possible
constant is not known up to now.

In this paper any element of a set under consideration is a non-negative
integer, unless it is explicitly stated. The shorthand symbol [m, n] stands
for a set {m,m +1,...,n}, where m and n are non-negative integers with
m < n. A set S is called a k-set if it contains k elements, also & is the
cardinality |S|. The largest integer and the least integer in S are denoted
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by max(S) and min(S), respectively. The dual set S* of a k-set S is defined
as $* = {max(S) + min(S) —z : x € S}. A set S is self-dual if $* = S.

For integers k,0 > 3 and 8 > 1, a k-set S is (k; 8, 0)-free if it does not
contain distinct elements a;; (1 < j < ) such that

ai, +a; +-ctay, = Bai,- (1)

A (k% B, 0)-free set is a (k; B, 8)-free set S whose smallest element min(S) =
0. The notation S(k; 3,8) denotes the class of (k%; 3, 8)-free sets. The gen-
eralized antiaverage number, denoted by )\(k B,0), is equal to min{max(S) :
S € S(k;3,0)}. A set S € S(k;8,0) is optimal if max(S) = A(k;5,0).
Consldermg the equation (1), we define A(k;3,8) = k if k < 6. Some
(k% B, 6)-free sets are shown in Table 1.

Table 1
(8,0) | (K% B, 6)-free sets
(1,3) | {0,1,2}
{0,1,2,4}
{0}u{2i-1:1<i<k-1}
(23) | {0,1,3}
{0, 1, 3,4}, self-dual
{0,1,3,7,8}
{0,1,3,7,8,10}
{0,1,3,8,9,11, 12}
{0,1, 3,4,9,10,12, 13}, self-dual
{0,2,5,6,11, 13, 14, 18,19}
{0,1,4,6,10,15,17,18, 22, 23}
(24) | {0,1,3,4}
{0,1,3,4,6}
{0,1,2,4,8,9}
{0,1,3,4,9,10,12}
3,3) | {0,1,2}
{0,1,2,4}
{0,1,4,5,6}
{0,1,4,5,6,8}
{0,1,2,4,7,8,9}
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Some generalized antiaverage numbers A(k;2,3) for k € [3,12] are
shown in Table 2.

Table 2
k 3 4 5 6 7 8 9 10 11 12
AM%2,3)[3 4 8 10 12 13 19 23 25 29

In researching graph labellings (cf. {2], [4]), we have a generalized anti-
average problem that is similar with the sum-free problem in the following.
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The generalized antiaverage problem For integers &, 0 > 3 and
B > 1, determine A(k; §,8) and optimal (k%; B, 8)-frec sets.

Example 1. For a complete graph K,, there is a one-one mapping
7 : V(Kp) « S, where S is a (n°;2,3)-free set such that cach cdge uv
of K, is labeled by |r(u) — w(v)]. Then, a graph obtained by deleting
duplicated edges with the same labels from the labeled K, is graceful (see
[3] for the definition of a graceful graph).

2 Main results

Lemma 2. For integers k,0 > 3 and 8 > 1, we have

(1) € < XMk;8,0) < Ak + 1;8,0), wheree =2 ifk =3, ande = k
otherwise.

(%) Any r-subset of a (k; 3, 0)-free set is (r; 8, 0)-free, where r > 3.

Lemma 3. Let S be a (k; 3,8 + 1)-free set with k > 3 and 8 > 1. Then
(?) The set {sa+t :a € S} is also (k; 8,8 + 1)-free, where s,t are
integers.

(¢t) The dual set of S is (k; 8,8 + 1)-free.

Proof. (i) Let us assume that there arc distinct elements ¢; ; =8a;; +t€
{as+t:a € S} for j € {1, + 1] such that ¢;, +ci, + -+ + ¢i, = Beiy,,-
Then

Bt + s(ai, +ai;, +-+- + ain) =pt+ ﬂsaiﬁ"’l:

and moreover a;, + @i, + -+ + ai; = Baiz41, which contradicts with the
choice of S.

(¢2) This assertion is a consequence of the assertion (¢) by taking s = —1
and ¢ = max(S) + min(S). O

Theorem 4. Let integers m > 3 and 3 > 1. Then
A(m; 8,0) < (0 —€)(m—-2)+1 (2)

for € =1 if there exists one of the following conditions
(1) 0>3,8¢ {0 —-2,0-1,0}; and
(a2)02>3,3¢{6-2,0—1} andm >4+ 36(9 - 3).
The inequality (2) holds for € = 2 if there exists one of the following
conditions
(b1) 6 >5 and B ¢ {6 — 2,0 — 1,0}; and
(b2)6>5,¢{6—2,0—-1} andm <1+ 16(6 -1).
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Proof. We, first, prove the inequality (2) for € = 1 under the condition
(al). Let C = [(6 — 2)k + 1,(6 — 1)k + 1] for k > 1. First, consider
case 1 < B < 6 — 3. Assume that Zf;f ¢; = PBe for distinet ¢;,¢c € C
(1 €i<6-2), thus,

0-2 92

SO -2k +i) <Y e =Pe < BlO -1k +1],

i=1 i=1

and moreover
0-2)%+ 9‘%‘?"—2) < (8 -3)[(0 -1k +1], (3)

because 3 < 0 — 3. From (3) we have that k + (6 — 2)(¢ — 3) < —1, which
is absurd since 8 > 3. By the analogous method, we have that there is no
Zf;ll ¢; = fe for distinct ¢;,c€ C (1 <i <0 -1).

Now, we consider case 8 > 6 + 1. Suppose that there are distinct
ci,¢ € C such that Y77, ¢; = Be. In this case, we have

i((a- Dk+2-1)> ic, — Be> B0 -2k +1),
i=1

i=1

and furthermore
m((0 = Dk +2) + %m(m +1) > A6 2k +1). (a)
Taking m =9 — 2 and 8 =0+ 1 in (4) gives us that
20-2)— 2(6-1)(62) 2 26— Dk+0+126(0-2)

a contradiction. Next, letting m = @ — 1 and 8 = 6 + 1 in (4) products
3k+ 60— 10(6 — 1) > 0k + 3 > 3k + 3, and moreover 6(3 — 8) = 6, which
conflicts tof > 3.

Therefore, the set C is (k + 1;8,8)-free for B ¢ {0 — 2,6 — 1,6}.
Immediately, the set {0} U C is ((k + 2)°; B, 0)-free, which shows that
Mk +2;8,60) < (8 — 1)k + 1, that is the inequality (2) when m = k + 2.

While using the hypothesis (a2), we will obtain contrary forms if we
takem=60—2and 8 =6, or m=8—1and 8 =40 in (4), respectively. In
other words, the set C is (k + 1; 3,8)-free under the hypothesis (a2), as a
result, it implies the inequality (2) when & = 1.

To show the inequality (2) for ¢ = 2, we take an integer set B =
[((0—3)k+1,(0—2)k+ 1] with k > 3. Tt is easy to see that AM(k+2;6,0) <
(0 — 2)k + 1 if the set {0} U B is ((k + 2)°; 8,0)-free. The rest of proof is
very similar with that of proving the inequality (2) with € =1, so we omit
it. (m]

248



Lemma 5. Let k,0 >3 and 8 > 1.
(?) Let k = sy + so such that s; > s2 2 3. Then

max {A(sy; 8,8+ 1)+ A(s2; 8,8+ 1)} < Mk; 8,8 +1). (5)

k=s1+33

(i) Letk=m+n withn >m >3. I[f3>6—1, then
M#k;B8,6) < min {Am;B,0) +BX(n; 3,6) +1}. (6)

(i4i) Given Mno;B,8) = o for an integer ng > 3. If f> 0 — 1, then
A(2n0; 8,8) < a(B +1) +, )

where € = 1 for § = 3, and € = 0 otherwise.

Proof. (i) To show the inequality (5), we take a (k%; 3,8 + 1)-free set S =
{0,a1,...,ak-1} € S(k; 3,8 + 1), where k = s; + 52 and 8, > s3 > 3.
Clearly, the proper subset S; = {0, a1, az,...,as,—1} C S is (s%; 8,6+ 1)-
free by Lemma 2, so that A(s1;8,8 + 1) < as,—1. If there are distinct
Gsy4j; — s, € So = {as,4; —as, : j €[0,50—1]}, 1 <i < B+1, such that

B
Z(asl +ii — asl) = IB(asl +ig+1 — @sy )a

=1

however, the above form conflicts to the choice of S since S; C S. Notice
that Sp is (s3; 8, B + 1)-free, thus, we have A(s2; 3, 8+ 1) < @y, 45,1 — Gs, -
1t is not hard to see A(s1; B, 8+1)+A(s2; 8, 8+1) < a5, —1+ 85, 45,—1— s, <
Qg +s5—-1 = A(s) + s2; 8,8 + 1), thus, it implies the inequality (5).

(iz) We take two optimal sets S = {ag,a1,...,am-1} € S(m;L,0)
with max(S1) = am—1 = A(m; 8,6) and S2 = {bg, b1,...,bn—1} € S(n;5,0)
with max(S2) = b,—y = A(n; B,0). So am—1 < by from n > m, by the
assertion (i) of Lemma 2.

We, now, define a new set S = SoU {c; = a; + Bbu—1 +1:a; € S1}.
Clearly, max(S) = am—-; + Bb,—1 + 1. Our goal is to show that S is
((m +n)% B, )-free in the following. Let z +y = @ — 1 > 2, where integers
z,y 2 0.

Suppose first that there exist distinct ¢;,b;,¢;, € S, 1 £ 1 < 2 and
1 < k <y, such that Bc; = Y, bi, + > b= ¢y, equivalently,

T Yy
Bon-1+ Baj +1) = yBbu_y + D by + > (as, +1). ®

I=1 k=1
Immediately, from (8), we have
B2bn-1 + Bla; +1) < (2 + yB + y)bu-y 9)
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since max(S;) < max(Sz) = bp—1. By the hypothesis 8 >0 — 1 (= z + y),
wehavezf > B> z+yifz > 1and yB > 8 > z+yify > 1. Furthermore,
8% > (z+y)B = (z+y)+yB. Then, the inequality (9) products B(a;+1) <
0, a contradiction because a; > min(S) = 0 whenever a; € S.

We consider the following case

6-1 9-1
BPba1+ Blaj+1) =Pec; =Y ci = (0 — 1)Bbn_1 + Y_(ai, +1). (10)
k=1 k=1

Notice that 8 > 8 — 1. If 8 = @ — 1, thus, the form (10) leads to a
contradiction with the choice of S;. If -1 2> 8-1 = 0+ y, then
B=(B-1+1)8>(0-1)8+ (6 —1). From (10) we have

BPbn_1 + Blaj + 1) < (6 = 1)Bba_y + (8 — 1)bn—1,

furthermore B(a; + 1) < 0, which is absurd.

The case B2b,_1 + B(a; + 1) = Bec; = Y poy by, will product F2b,_;1 +
B(a; + 1) < (6 — 1)b,_;. By the hypothesis § > 8 — 1, we still get this
ridiculous inequality 8(a; +1) < 0.

Now, suppose that there are distinct b;,b;,,¢;, € Sfor 1 <! < z and
1 < k < y such that 8b; = Y7, b, + > 7, ci,. Then y > 1 since S» is
(n% B, 0)-free. We have

z y

> by + Y (ai, +1) = Bbj — yBbn—1 < B(bj — ba-1) <0,

=1 k=1
which is false. Therefore, S is ((m + n)%; 3,0)-free. The inequality (6)
follows since A(m + n; 3, 6) < max(S).

(443) Let S) = {ao,a1,--.,@no—1} be an optimal (nd; 3, 6)-free set, that
is, max(S)) = @, where a > 2 by Lemma 2. Let M = a(8 + 1) + ¢, where
€ =1for 8 =3, and € = 0 otherwise. We construct a set § = S, U Sy,
where S; = {M — a; : a; € 51}. Let integers z > 0 and y > 0 such that
z+y=60-1.

Case 1. Suppose that there is an element a; € S; such that

x Y
Ba; = ai, + Y (M —aj), (11)
s=1 t=1

where distinct a;, € S\ {a;} for 1 < s < z and distinct (M —a;,) € S for
1<t<y.
There is an obvious mistake when y = 0 in (11). Taking =0 in (11),
immediately, we have
0-1
af +(0—1)a > fa;+) aj;, =(0—-1)M > (6 -1)a(B+1),
t=1
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and moreover

Yy z
af+za+li<zM+y< a:M+Zaj, =ﬁaj+2ai, < aff + za,
t=1 s=1
a contradiction.
Case 3. Suppose that (M —a;) = :);11 (M —a;,) for distinct M —a;, €
S\{M —a;},1<t<0-1.
Notice the hypothesis 8 > 8 — 1. This case never occurs if § = 6 — 1
because S is (n; 8, 0)-free. For 8> ¢ — 1, we have
61
aB+1)=M < [B-(8-1)]M =Ba; — ) _a; < fa; < af,

t=1

which causes a contradiction from a > 2.
The above three cases show that S is (2n; 8, 8)-free. It follows max(S) =
M that the inequality (7) holds. a

Theorem 6. Let integers k,0 > 3 and 8 > 1.
() For integersng >3 andt > 1, if B> 0 — 12> 3, we have

gt -1
A(tno; 6,8) < /\(no;ﬁ:e)ﬁ- (12)

(ii) For integersm >3 andn > 1, if B ¢ {6 — 2,0 — 1,6}, then

n-3 n—2
Mnm; 6,6) < (6 - 1) (2(m -1+ (m—2)) /3‘) +y 6. (13)

=0 =0
Proof. (i) Let M = A(ng; 8,0). Using the induction on parameter m. By
Lemma 5 and the condition 8 > 8 — 1 > 3 we have
p-1

A(3ng; 8,0) < M + fX(2n0; 8,0) < M + B(B+1)M = M F-1

According to the inductive hypothesis,

Atnoi ,6) < M+ (¢~ Dnos 3,0) < M+ puE 22 < B =1,

now the assertion (%) is proofed.
(43) Let Ay = A(m; B, 0) and Xo = A(2m; B,0) with m > 3. By Theorem
4 and Lemma 5, we have
3-3
M3m; 8,8) < Ay + Bra =M ) B + 22672,

=0
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and furthermore

Mnm; B,8) < Mm; B,6) + BM((n — 1)m; 8, 6)
n—4
<M+8 (/\1 > 8+ z\zﬁ"‘a)

=0
n-3
=\ ) B+ Mpm2,
(=0

by the inductive hypothesis. The inequality (13) follows since A(m; 3,8) <
(0—=1)(m—2)+1and A(2m;B3,0) < 2(0 — 1)(m —1)+ 1. O

Corollary 7. (1) A(2™;2,3) < (3™ - 1) form > 4.
(2) Mmno; 8,3) < B2 + A(no; 8,3) XL, B form > 2.

Lemma 8. Let S = {ay,a,...,ax} be a (k; B,0)-free set such that min(S) =
0 andmax(S)=N. If3>60-12>2,and2 < a; < N-2 fora; € S\{0,N},
we have A(2k;3,0) < (8+ 1)N =1, and A(2(k — 1);8,0) < (B+1)N — 4.

Proof. We make aset U = SUT, where T' = {8N +a;—1: a; € S}. Clearly,
max(U) = (+1)N-1,and2 <z < (B+1)N-3forz € U\ {0,N}. Our
goal is to show that U is ((2k)%; 3, 6)-free. Clearly, the second inequality
follows from the structure of U. Let integers z,y > O hold z +y =8 — 1.

Case 1. Suppose that there exist distinct aj, a;,, (BN + aj, —1) e U
such that

x Yy x v
Baj =3 ai,+D (BN +aj, =1) = ai, + Y a; +y(BN —1). (14)
s=1 t=1 s=1 t=1

Ifz=1and y = 1in (14), we may meet fa; = BN — 1, but no a; € U
can keep this equality.

In(14)ifz=0andy > 2,orz+y >3, wehave 2 < 37_ a;, +
>ot=19j, = Ba; —y(BN — 1) < 1 from (14) since 2 < a;,, a;, for i, # 0 and
Je # 0, a contradiction. And = > 2 and y = 0, which contradicts with the
choice of S.

Case 2. Suppose that there exist distinct (BN +a; — 1), a;,, (BN +aj, —
1) € U such that (BN +a; — 1) =3 5_, ai, + > v (BN +aj, — 1), or

x Y
BBN +a;—1)=) ai, + Y aj +y(BN - 1). (15)
t=1

s=1

Case Al. If 2 =0 in (15), thus, y =0 — 1. For 8 =0 — 1, we are done
since the form (15) contradicts with the choice of S. So, we consider case
B > 6 —1,that is, 8 > 6. From (15) we obtain

BN+B(a;=1) S N+(0-2)(N-2)+(6-1)(BN-1) < (8+1)6—B)N. (16)
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Notice that 32 = (8—-1)8+ 8 = (0 —1)8+ 0 from 8 > 6. Hence, by
inequalities (16), we have B(a; — 1) < 0, and moreover 6N + B(N — 1) <
(8 + 6)N + B(aj — 1) £ 0, which is impossible.

Case A2. If z = 1 and a; = 0 in (15), so a;, # 0 for t € [1,6 — 2], and

we have
0-2

(B-0+2)(BN ~1)=a; + Y _aj,. (17)
t=1

Subcase A2.1. If 8 = 0 — 1, thus, the equation (17) gives us

B-1
BN = (a;, + 1)+ ) _aj,
t=1

<KN-1424+N+{N=-2)+(N-3)+---+(N-8-1)
=2+ﬁN_B(ﬁ2+1)

that is, B(8 + 1) < 4, a contradiction because 8 > 3.
Subcase A2.2. If 8 > 0 in (17), thus,

0-2
2BN —1)< (B-0+2)(BN —1)=a;, + ) _a;, S (- 1)N < (B-1)N,

t=1

and furthermore BN < 0, which is impossible since 8> 8 >3 and N > 2.
Case A3. If z = 1 and a; # 0 in (15), we have

v
BN +B(a; — 1) = ai, + Y aj +y(BN = 1)

=1 (18)
<2N +(0-3)(N —-2)+ (8 —-2)(BN -1)

< ((8—2)8+6-1)N.
Since 8> 6—-1,s0 82 = (8—1)8+ = (6 —2)B+9, using (18), we obtain a

wrong inequality N + B(a; —1) < 0, accordingtoe; >2and 8> 6—-12>2.
Case A4. Consider z > 2 in (15). If a; = 0, from (15) we have

T Yy
2(BN-1) < =(BN-1) < (B-y)(BN-1) =Y ai,+)_ a; < (9-1)N < BN,

g=1 t=1

that is, BN < 2, an absurd inequality because § > 6 —12>2and N > 2.
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If a; > 2, we have

T Y
BN +B(a;—1)=> ai, + 3 _aj, +y(BN - 1)
s=1 t=1 (19)
<2N +(0-3)(N —-2)+y(BN -1)
< (8+yB—-1)N.
Notice that 82 > (0 —1)8 = (z—1+9)8 > B+ yB > 0 — 1 + yB since
z 2 2and B > 60— 1. Therefore, the form (19) leads to B(a; — 1) < 0, a

contradiction.
The discussion through all above cases is the proof of this therorem. [

Example 2. § = {0,2,3,7,8,10} is a (6°;2,3)-free set. We have
—{20+a—1:a€S} {1921 22262729}suchtha.tSUT1s
((12)°; 2, 3)-free, which means that A(12;2, 3) £29 and A(10;2,3) < 26.

Corollary 9. Let S = {ay,a,...,ar} be a (k; 8, 0)-free set such that 0 =
@1 <2<ag;<ap—-2fori€[2,k—-1). If3>0-12>2, then

m-—1

A2™k; 8,8) S an(B+1)™ = D (B+ 1)

=0

3 Problems

Clearly, the result in Theorem 4 is not the best one. To improve it may be
very interesting. Thereby, we propose the following problem.

Problem 1. Find bounds of A(k; 3, 0) for integers 8 > 1 and k,8 > 3.

Notice that n > 4 + 16(f — 3) as n — oo and > 3. From Lemma 2
and Theorem 4 we have 0 < A(n+1;3,0) — A(n; 8,6) < 6 -1, immediately,

lim 2 +16,0) — Mn; 8,06)

n—oo n

for 8 ¢ {6 — 2,0 — 1}. Naturally, we ask

Problem 2. For f € {#—2,6~1}, does hm L(A(n+1;8,0)— A(n; 8,6))
converge?

=0,

We are working on finding A(k; 3,8) by computer for some particular
values of k, B and 8. Some ((4m)°; 2, 3)-free sets support the following
conjecture:
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Conjecture 3. S(k;B3,0) denotes the class of (k% B,0)-free sets. Then
|S(4m;2,3)| =1 for m > 1.

We will define a particular class of sets before proposing the last prob-
lem. For non-negative real numbers rq,72,...,79—1 (f > 3), an integer
k-set S ={a;:1<i<k}with0O=a; <ap<---<a;andk2>0is called
a f(k;r1,...,79-1)-free set if it holds

T105, + 7204, + -0+ Te-18iy_, ¥ Giy (20)

for distinct a;; € §, 1 < j < 8. The flk;r1,...,Te—1)-number, de-
noted by A(k;71,...,7e—1), is equal to ming{ay} over all f(k;r,...,79-1)-
free k-sets S. A f(k;ri,...,mo—1)-free k-set S is optimal if max(S) =
Mk; 71y To-1)-

Problem 4. Let integers k > 6 > 3, and let ry,72,...,79—1 be non-negative
real numbers. Determine the f(k;ry,...,79—1)-numbers A(k;71,...,79-1),
and optimal f(k;r1,...,re—1)-free sets.
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