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ABSTRACT. In this paper, we present the complex factorizations of
the Jacobsthal and Jacobsthal Lucas numbers by determinants of
tridiagonal matrices.

1. INTRODUCTION

Over the years, many number and polynomial sequences have been de-
fined, characterized and evaluated. They have fascinated both amateurs
and professional mathematicians. They appear, often surprisingly, as an-
swers to intricate problems, in conventional and in recreational mathemat-
ics. In this paper, we illustrate the relationships between Chebyshev poly-
nomials and the Jacobsthal numbers and Jacobsthal Lucas numbers by
considering the determinants of a sequence of tridiagonal matrices . We
then obtain the complex factorizations of the Jacobsthal and Jacobsthal
Lucas numbers by using these relationships.

We present the well known following lemma that is used to obtain de-
terminants of tridiagonal matrices.

Lemma 1. Let {H(n), n =1,2,...} be a sequence of tridiagonal matrices
of the form H = [hijlnzn 1 < 4,5 < n. Then, the successive determinants
of H(n) are given by the recursive formula in the [2] :

[H(1)] = ha,
|[H(2)| = hiiho2— higha,
|H('n.)| = hn,n .H("’ - 1)| - hn—l,nhn,n—l |H(n - 2)’ .

2. COMPLEX FACTORIZATION OF THE JACOBSTHAL
NUMBERS

In order to derive the complex factorization of the Jacobsthal numbers,
we introduce the sequence of matrices {J(n), n = 1,2,...}, where J(n) is
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the n x n tridiagonal matrix with entries jrxr = 1,1 < k < n, jr—14 =7 and
Jkk—1 = 2¢,2 < k < n. According to Lemma 1, the successive determinants
of J(n) are given by the recursive formula:

[J(1)] = land |J(2)}=12-2?=3

[J() = 1L|J(n-1)|-22[J(n-2)|=|J(n—1)|+2]|J(n—2)|.
Obviously, this sequence is the Jacobshal sequence, starting with Ja. Hence,
(2.1) Jnt1=|J(®0)], n=1.

Theorem 1. Let J,, be n** Jacobsthal number, then
n
Jne1 =11 - 2v/2i cos 1—;’%), n>1.
k=1

Proof. The determinant of J(n) can be found by taking the product of its
eigenvalues. Therefore, we will compute the spectrum of J(n). We now
introduce another sequence of matrices {G(n), n =1,2,...}, where G(n) is
the n x n tridiagonal matrix with entries

(22) grk=0, 1<k<n, grxp=land ggx—1=2, 2<k<n.

Note that J(n) = (I + iG(n)). Let A, k = 1,2,...,n, be the eigenvalues
of G(n) and z) be the eigenvectors corresponding to the eigenvalues Ay.
Then, for each k,

(2.3) J(m)zg = [I +iG(n))zk = (zk + idkzi) = (1 + Phg) Tk
Therefore, y;, = 1 + i\, k = 1,2, ...,n, are the eigenvalues of J(n). Hence,

(2.4) |J(n)] = k]i[l sy = in[l(l +id) n>l

We have known that each )y, is a zero the characteristic polynomial p,(\) =
|G(n) — AI|, thus we have to determine roots of the characteristic polyno-
mial p,(}). Since (G(n) — Al ) is a tridiagonal matrix,

(2.5) |G(n) — M| =0,

we use Lemma 1 to establish a recursive formula for the characteristic
polynomials of {G(n), n=1,2,..n}:

pi(A) —X and pp(A) = A% -2
Pa(}) “APn-1(A) = 2pp—2(X).

This family of characteristic polynomials can be transformed into another
family {23 U,(z), n > 1} by the transformation A = —2v/2z:

n(-2V2z) = 232z = 21U (),
p2(—2v2z) = 2% (42 —1) =2%Us(a),
(26)  pn(—2V2z) = 2% (2zUp-1(z) — Un—2(z)) = 2% Un(z)
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The family {U,(z), n > 1} is the set of Chebyshev polynomials of the sec-
ond kind. It is a well-known fact that defining = = cos 8 allows the Cheby-
shev polynomials of the second kind to be written as [1]:

_ sin[(n+1)0
(27) Un(z) = SelGrdl,
From (2.6) it follows that roots of the polynomial p,,(A) can be obtained
from the U, (z). Therefore, we can easily derive from (2.7) that the roots
of U,(z) = 0 are given by 8, = ;’f—ﬁ, k=12.nor z = cosly =
cos Z&, k =1,2,...n [1]. Applying the transformation A = —2v/2z, we now
have the eigenvalues of G(n) :

(2.8) Ax = —2v2cos 1::’_"1, k=1,2,..,n

From (2.3), we have known that u, = 1+iX, k= 1,2,...,n, are the eigen-
values of J(n) .Combining (2.1), (2.4), and (2.8), we obtain the following
identity:

n
Jns1 = |J(n)] = k]:[1(1 —2V2icos &), n>1.

This completes the proof of the complex factorization of the Jacobsthal
numbers. O

Theorem 2. Let J,, be nt* Jacobsthal number, then

AT sin((n+1)cos"(ﬁ5))
Jn+1 = (\/il) sin(cos“(:_;"ji)) s n Z 0.

Proof. From (2.5), we can see that Chebyshev polynomials of the second
kind are generated by determinants of successive matrices of the n x n
tridiagonal matrix A(n,z) with entries

Ak = 2\/§$, 1<k<n, apmip=landagp1 =2, 1<k n.

If we note that J(n) =1i.A(n, -—'\7%), then we have:
(29) | =i |Am 55| = (VE) Unlsh)-
Combining (2.1), (2.7) and (2.9) yields

AT sin((n+1)cos_l(ﬁ§))
Jn+1 = (\/51) sin(cos~1(575)) ’ nz1

Furthermore, the complex factorization of the Jacobsthal numbers yields
forn =0, i.e.,

A\O sin((0+1) C(’*‘_l(%i')
Ji=1= (\/57') sin(cos“‘(#;))z).
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3. COMPLEX FACTORIZATION OF THE JACOBSTHAL
LUCAS NUMBERS

The process shown in proof of Theorem 1 can be applied to obtain the
complex factorization of the Jacobsthal Lucas numbers. Firstly, we consider
the sequence of matrices {j(n), n =1,2,...n}, where j(n) is the n x n
tridiagonal matrix with entries

. 1 . , . .
g1y =35 Jkk = 1, jk—1,x =t and Jer—1 =2¢,2< k< n.

According to Lemma 1, the successive determinants of j(n) are given by
recursive formula:

. 1 1, B
Bl = 5, and [j@)] =5 2" =2

lim)| = Llitn-1)|-221i(n—-2)|=i(n - D) +2][i(n - 2)|.

Clearly, each number in this sequence is half of the corresponding Jacobsthal
Lucas number. We have

(3.1) Jn=2.]j(n})|, n21

Theorem 3. Let j, be nt* Jacobsthal Lucas number, then,
= [1(1 —2V2icos W(Lnl—!)), n>1
k=1

Proof. We will consider that determinant of j(n) can be written following

(32) i)l = 5 (7 + exe) ()|

where e; is the j* column of the identity matrix. Furthermore, we can
express the right-hand side of (3.2) in the following way:

S0 +ene]) i) = 5 |l +3(G) + ere]

where G(n) is the matrix given in (2.2). Let v,k = 1,2,...,n be the
eigenvalues of [G(n) + eie}] and y, be the eigenvectors corresponding to
the eigenvalues v,. Then, for each k,

[[+i(C(n) +e1el)yx = Tyx+i[G(n)+ered lux = (x+iveyn) = (1+E75)ys-
Therefore,

(3.3) l|1r+z Gn) + erel)| = = n(1+m)

In order to determine the 7,, we recall t.hat each 7y, is a zero of the char-

acteristic polynomial g,(7) = |G(n) + e1e] — I|. Since |I - {e1e]| = 3,
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we can alternately represent the characteristic polynomial as

2|({ - %elel ) (G(n) + ered —I)|.

(3.4) an(7) =

Since ¢, (7) is twice the determinant of a tridiagonal matrix, i.e.,

1 1
(3-5) §qn('¥) =|(I- 5616{) (G(n) + erel — 1)
we can use Lemma 1 to establish a recursive formula for %qn(fy):
1 .
sa(y) = -Fand 542(’7) =3"-2
%qn(’)') = —Yqn-1(7) — 2qn—2(7)-

The family {35 (¥),n > 1} of polynomials can be transformed into another
family {22T,(z), n > 1} by the transformation vy = —2v/2z:

_q1( 2\/5:1:) = 2%1‘=2%T1(z)7

§Q2(—2\/§m) = 2% (22 - 1) = 2iTy(a),

(3.6) %qn(—Qﬁa:) 2% . (22T 1(z) - Ta—s()) = 25 T ()

The family {T},(z), n > 1} is the set of Chebyshev polynomials of the first
kind. It is a fact that defining z = cos # allows the Chebyshev polynomials
of the first kind to be written as [1}:

(3.7) Tn(z) = cosnd.

From (3.7), we can see that the roots of T),(x) = 0 are given by

Op = W(k’—%), or T = cosb = COSEQ;FLL), k=1,2..,n[1)

n

From (3.6), it follows that roots of the polynomial ¢,(v) can be obtained
from T;,(z). Applying the transformation vy = —2\/_ 22 and considering that
the roots of (3.4) are also roots of |G(n) + e;e] — yI| = 0, we now have
the eigenvalues of [G(n) + eje]] :

(3.8) i = —2v/2 cos M, k=1,2,..,n.
k n
From (3.1), (3.3) and (3.8), we get

n
Jn = l.Hl(l — 2v/2i cos "—(’—:l;"’—l)), n>1,

which is identical to the complex factorization of the Jacobsthal Lucas
numbers. a
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Theorem 4. Let j, be nt* Jacobsthal Lucas number, then,
jn =275 4" cos (ncos‘l(-z‘7% ) , n>0.

Proof. From (3.5), we can think of Chebyshev polynomials of the first kind
as being generated by determinants of successive matrices of the n X n
tridiagonal matrix B(n,z) with entries

bk =2V2z, 1<k<n, bp—1p=land bpp1 =2, 2<k<m.
If we note that j(n) = iB(n, %), then we have

(3.9) i) =" | B, 55| = " Tu(55)-
Using (3.1), (3.7) and (3.9), we write following identity,
o = 2"F i cos (ncos'l(i%)) , n>1
Furthermore, the last identity yields for n =0, i.e.,
jo=2=2% 1 cos (0. cos-l(ij/—g)) .
Thus, the proof is completed. O
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