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Abstract

Let ¥ > 1,1 > 3 and s > 5 be integers. In 1990, Erdés and
Faudree conjectured that if G is a graph of order 4k with 6(G) > 2k,
then G contains k vertex-disjoint 4-cycles. In this paper, we consider
an analogous question for 5-cycles; that is to say if G is a graph
of order 5k with §(G) > 3k, then G contains k vertex-disjoint 5-
cycles? In support of this question, we prove that if G is a graph
of order 5! with Uz(G) 2 6l — 2, then, unless K;_3 + Kai+1,2141 C
G C Ki_2 + Ka41,2141, G contains ! — 1 vertex-disjoint 5-cycles and
a path of order 5, which is vertex-disjoint from the ! — 1 5-cycles.
In fact, we prove a more general result that if G is a graph of order
5k + 2s with o2(G) > 6k + 2s, then, unless Ky, + Koptsot4s CG C
K + K qs,20+5, G contains k+ 1 vertex-disjoint 5-cycles and a path
of order 2s — 5, which is vertex-disjoint from the k + 1 5-cycles. As
an application of this theorem, we give a short proof for determining
the exact value of ex(n,(k + 1)Cs), and characterize the extremal
graph.

1 Introduction

We consider only undirected, finite and simple graphs. Let G be a graph
with vertex set V(G) and edge set E(G), where e(G) denotes |E(G)|. For
v € V(QG), the degree of v in G is denoted by dg(v) (or simply by d(v)).
We define o2(G) to be the minimum of the sum of the degrees of two non-
adjacent vertices in G, i.e., 02(G) = min{d(z) +d(y) | =,y € V(Q), z #
¥, zy € E(G)}. In the case where G & K,, we take 02(G) = oco. The
minimum degree of G is denoted by §(G). For graphs G, and G» with
V(G1)NV(G2) =0, G, + G, denotes the join of G, and Gs, i.e., V(G +
G2) = V(G1) UV(G2) and E(Gy + G2) = E(Gy) U E(G2) U {ujus | u; €
V(G1),u2 € V(G2)}. Further we let G; UG, denote the union of G; and
G, ie., V(G1 UG2) = V(G1) UV(G2) and E(G, UG») = E(G1) U E(G»)
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(whenever we use the notation G; + G2 or G1 U Gy, it is assumed that
V(G1) NV (G2) = 0). For a graph G and an integer k > 1, kG denotes the
graph consisting of k vertex-disjoint copies of G; thus kG = G1 U - - UGk,
where G; = G for each 1 < i < k. We let Ky n,,...,n, denote the complete
k-partite graph with color classes of sizes ny,n2,--- ,n, and let Cy, and
P,, denote the cycle of order m and the path of order m, respectively.

The following conjecture is well-known.

Conjecture A (El-Zahar [8]). Let n, ! be integers with n > 3l and I > 1,
and writen =n; +ng+---+ny, wheren; >3 forall1 <i<!. Let Gbea
graph of order n, and suppose that §(G) > [34] +[8] +---+[%]. Then
G2ChUChU---UC,,.

El-Zahar [8] proved Conjecture A for | = 2, and Dirac’s theorem (6}
corresponds to the case I = 1. In 1998, Abbasi [1] proved that Conjecture
A holds for graphs with sufficiently large order. It is a difficult and an
interesting question to exclude the word “sufficiently large” from Abbasi’s
result. On the other hand, Wang [13] proved that if G is a graph of order
n > 3l > 6 with §(G) > 2#=1, then G 2 (! - 1)C5 U Cy_3¢—1)- This in
particular implies that Conjecture A holds in the case where n; = 3 for all
1 < i < 1. The cases where n; = 4 for all ¢ and n; = 5 for all ¢ of Conjecture
A can be stated in the following forms.

Conjecture B (Erdds and Faudree). Let I > 1 be an integer, and let
G be a graph of order 4! with §(G) > 2l. Then G D IC,.

Conjecture C. Let I > 1 be an integer, and let G be a graph of order
50 with 6(G) > 3l. Then G 2 ICs.

Conjecture B had already been mentioned in Erd6s and Faudree [9].
In connection with Conjecture B, Johansson [10] and Randerath etc. [11]
independently proved that if G is a graph of order 4/ > 8 with 4(G) > 21,
then G D (I — 1)C4 U P,. In this paper, we prove the following result.

Theorem 1.1. Let k > 1,5 > 5 be integers, and let G be a graph of order
5k + 2s with 02(G) > 6k + 2s = |V(G)| + k. Then one of the following
holds:

(i) K + Kakys2k+s € G C K + Kopts,2k4s; O7
(i) G2 (k+1)Cs U Pps-s.

If we let £ = !—2 and s = 5 in Theorem 1.1, then we obtain the following
result in connection with Conjecture C.
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Corollary 1.2. Letl > 3 be an integer, and let G be a graph of order 5l
with 02(G) > 6l — 2. Then one of the following holds:

(1) Ki—2+ Korg1,2141 C G C Ko + Kory1,2041; or
(i) G2 (- 1)CsUP;.

For a graph H and an integer n, the Turdn number ex(n, H) is the max-
imum possible number of edges in a simple graph of order n that contains
no copy of H. The Turdn graph T,.(n) stands for the complete r-partite
graph of order n whose color classes are as equal as possible. For any two
integers n > r > 1, Turdn’s theorem states that ex(n, K,41) = e(T»(n)),
with equality only for T,(n). In 1968, Simonovits [12] extended Turén’s
theorem for graphs of sufficiently large order as follows. For any r > 1,
t > 1 and m > 2rt and n sufficiently large (at least as large as exponential
in m), the Turdn number ez(n, T!(m)) is equal to e(T,(n)) when t = 1 and
e(Ky—) +T,(n—t+1)) when t > 2, with equality only for 7}.(n) when t = 1
and K; 1+ T (n~t+1) when t > 2, where T!(m) is a graph obtained from
T,(m) by adding ¢ independent edges to the same smallest color class of it.
As an application of Theorem 1.1, we give a short proof of determining the
exact value of ex(n, (k + 1)Cs) for all sufficiently large n, where k > 1. We
remark that the above theorem of Simonovits is much stronger than our
result for sufficiently large order graphs, since T3+ (6k+6) D (k+1)Cs and
Ky +To(n — k) 2 (k+ 1)Cs. However, our result has an advantage that it
significantly improves the minimum n for which the conclusion concerning
5-cycles holds. A precise statement is the following.

Corollary 1.3. Letk > 1 andn > 8k2+17k+10. Then ex(n, (k+1)Cs) =
e(Ki. + To(n — k)), with equality only when K\ + Ta(n — k).

Our notation is standard and taken from [4]. Possible exceptions are
as follows. Let G be a graph. The neighborhood of a vertex v € V(G)
is denoted by Ng(v) (or simply by N(v)); thus dg(v) = |Ng(v)|. For a
subset A of V(G), we define Ng(v, A) = Ng(v) N A, and set dg(v,A) =
|Ng(v, A)|. When there is no danger of confusion, we write N(v, A) and
d(v, A) for Ng(v,A) and dg(v, A), respectively. For A,B C V(G), we
denote by E(A, B) the set of edges of G with one endvertex in A and the
other in B, and let e(4, B) = |E(A, B)|. For a subset S of V(G), G[S]
and G — S denote the subgraph induced by S and V(G) — S, respectively.
We denote by e(S) the cardinality of E(G[S]). A subgraph of G is often
identified with its vertex set. For example, Ng(v, A) means Ng(v,V (4))
for a subgraph A of G and a vertex v of G, E(A, B) means E(V(A), B) fora
subgraph A of G and a subset B of V(G), etc. A cycle of order m is referred
to as an m-cycle for short. Let C = c¢jca--¢nep be an m-cycle. We set
¢t = i1, ¢t =cita, ¢ =iy and ¢ = ¢;_o (whenever we represent
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an m-cycle in the form c¢;c; - - - ¢m€), indices are to be read modulo m). We
use similar notations for a path P = p;ps---pr (except that indices are
not to be read modulo k). For a cycle C of G and for v € V(G), we also
introduce the following additional notations:
',C) = {ueV(EC)| {ut,u"} C N C)},
N%(v,C) = {u*,u” |u€ N(v,C)},
N*t(y,C) = {utt, v~ |u € N(v,C)}.

Finally if V,X,Y are sets such that V = XUY and X NY = 0, then we
write V=X UY.

2 Preliminaries

The main result of this section is Lemma 2.6. We start with simple
claims. The first claim, Claim 2.1, follows immediately from the definition
of N'(v,C) (see Figure 1 for pictorial descriptions of (ii) and (iii) of Claim
2.1).

(ii) (a) of Gil) (b) of (i)

v
Figure 1: Black vertices correspond to vertices in N'(v,C)

Claim 2.1. Let G be a graph of order at least 6. Let C = cicacscqcscy be
a 5-cycle in G, and let v € V(G) — V(C). Then the following statements
hold.

(i) If|N(v,C)| = 5, then |[N'(v,C)| = 5.
(ii) If [N(v,C)| =4, then |N'(v,C)| = 3.
(iii) If|N(v,C)| =3, then 1 < |N'(v,C)| £ 2, and the following hold.

(a) If|N'(v,C)| = 1, then there ezists i such that N(v,C) =
{ci-1,¢i,¢it1}-
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(b) If|N'(v,C)| = 2, then there ezists i such that N(v,C) =
{ci-2,¢i,ciy2}.

(iv) If[N(v,C)| =2, then |N'(v,C)| < 1, and the following hold.

(a) If [N'(v,C)| = 0, then there exists i such that N(v,C) =
{ci,cimr}

(b) If |N'(v,C)| = 1, then there ezists i such that N(v,C) =
{Cl'—la Cit+1 }

Claim 2.2. The following three statements hold.

(i) Let A,C be subgraphs of a graph G such that V(G) = V(A) U V(C),
A=2K, and C = Cs5. Write V(A) = {a1, a2} and C = cicaczcqcsey,
and suppose that e(A, C) > 7. Suppose further that N(a;,C) N
N'(az,C) = 0. Then N'(a;,C) N N(az,C) # 0.

(ii) Let A, C be subgraphs of a graph G such that V(G) = V(A) UV (C),
A = 2K, and C = Cs, and suppose that e(A, C) > 7. Then G D
Cs U K.

(iii) Let G be a graph of order 4. Write V(G) = AUB with |A| = |B| = 2,
and suppose that e(A,B) > 3. Then G D 2K,.

Proof. (i) From N(a;,C)NN'(a2,C) =0, we get d(a;,C) + |N'(a», C)| <
5. We also have d(a;,C) + d(a2,C) > 7 by assumption. Hence by Claim
2.1, we have either d(a;,C) = 5 and d(a2,C) = 2, or d(a,,C) = 4 and
d(az2,C) = 3 (see Figure 2). Then |N'(a;,C) N N(az,C)| > min{5 + 2 —
5,3+3 —5} > 0, and hence N'(a;,C) N N(ay,C) # 0.

Figure 2: Two cases such that N(a;,C)N N'(a2,C) =9
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(ii) Write V(4) = {a1, a2}. Then by (i), either N(a;,C) N N'(a2,C) # 0
or N'(a1,C) N N(az,C) # @ holds, which implies the desired conclusion.

(iii) From e(A, B) > 3, we get G D P,, and hence G D 2K,. O

Claim 2.3. Let A, C be subgraphs of a graph G such that V(G) = V(A) U
V(C), A = K, and C = (s, and write V(A) = {a1, a2} and C =
C1C2€3C4C5C1 -«

(i) If e(A,C) > 5, d(a1,C) > 0 and d(az,C) > 0, then there exists i €
{1, 2, 3, 4, 5} such that G[{ai, a2, ¢i, Ci+1, cit2}] 2 Cs.

(ii) Ife(A,C) > 7, then there ezists i € {1, 2, 3, 4, 5} such that
Gl{ci, cit1, Civo, a1, a2}] 2 Cs and G[{ci-2, ci—1, ¢i, a1, a2}] 2 Cs.

Proof. (i) We may assume that d(a;, C) > d(as, C), so d(a;,C) > 3. It
suffices to show that N**(a;, C)NN(az,C) # 0. Now if d(a;,C) = 3, then
[IN*¥%(ay,C)| > 4, and hence [N*¥%(a;,C) N N(az,C)| > (442) = 5> 0; if
d(ay,C) > 4, then [IN*%(q,,C)| = 5, and hence |N*%(a,,C)NN(az,C)| >
(5+1)-5>0.

(ii) We may assume that d(a;, C) > d(az2, C), so d(a;,C) > 4. It suffices
to show that there exists ¢ € N(ag,C) such that {z*+,2=~} C N(a,,C).
If d(a;,C) = 5, then any z € N(az,C) will do. Thus we may assume
d(a;,C) = 4. Write V(C) — N(a1,C) = {v}. Since d(az,C) > 3, we have
{v=,v,v*}NN(az,C)| > (3+3)—5> 0. Take z € {v~,v,vT}NN(ay,C).
Then {z**,z=~} C V(C) — {v} = N(ai1,C), and hence z has the desired
property. O

Claim 2.4. Let m > 3, and let A, P,C be subgraphs of a graph G such
that V(G) = V(A) UV(P)UV(C), A = Ko,P = P,_,,C = Cs. Write
P =p1ps - Ppm-1, and suppose that e(V(A) U {p1,Pm-1},C) > 13. Then
G 2 05 ) Pm+1'

Proof. Write V(A) = {a1, a2} and C = cjcacscscse;. We may assume
that d(a;,C) > d(az,C) and d(p),C) > d(pm-1,C). We divide the proof
into three cases according to the value of e(A4, C).

Case 1. 7<e(A,C) < 10.

By (ii) of Claim 2.3, there exists ¢ such that G[{ci,¢cit1,cit2,01,a2}] 2
Cs and Gl{ci-2,¢i~1,¢i,a1,a2}] 2 Cs. Since e({p1, pm-1},C) > 13 -
C(A, C) 2 37 we have d(p]_,C) > 2. Hence N(plsc) N {Ci+lici+2} #
O or N(p1,C) N {ci—1,ci—2} # 0. In the former case, G[{ci+1, Cit2} U
V' (P)] contains a path of order m + 1 which, together with the 5-cycle in

300



Gl{ci-2,ci-1,¢i,01,az}), forms a spanning subgraph of G having the de-
sired properties, and we can similarly find a desired spanning subgraph in
the latter case.

Case 2. 5 < ¢(4,C) < 6.

Subcase 2.1. d(a1,C) = 5 and d(as,C) = 0.

We have either d(p;,C) = 4 and d(Pm-1,C) = 4, or d(p,,C) = 5 and
d(Pm-1,C) > 3. Hence by (i) and (ii) of Claim 2.1, |N'(p;, C) NN (pm—1, C)
N N(a1;,C)| > min{(3+4+5)—2-5(5+3+5)—2-5} >0. We may
assume ¢; € N'(p1,C) N N(pp-1,C) N N(ay,C). Then pyeacsescspy and
P2P3 - Pm-1€10102 are subgraphs with the desired properties.

Subcase 2.2. Otherwise.

By (i) of Claim 2.3, there exists i such that G[{a1, az, ¢, ciy1, ciz2}] 2 Cs.
Since d(p1,C) > 4, N(p1,C) N {ci—1,¢i—2} # §. Hence G[{ci—1, c;_a} U
V(P)] contains a path of order m + 1 which, together with the 5-cycle in
Gl{a1,a2, ¢, ciy1,Cig2}], forms a desired spanning subgraph.

Case 3. 3<e(4,C) < 4.

We have d(p,,C) = 5, d(pm-1,C) > 4 and d(a;,C) > 2, and hence
IN'(p1,C) N N(pm-1,C) N N(a1,C)| > (5+4+2) — 10 > 0. Therefore
arguing as in Subcase 2.1, we can find desired subgraphs. 0

Claim 2.5. Letm > 1 and [ > 1, and let P,Q be subgraphs of a graph
G such that V(G) = V(P)UV(Q), P= P,, and Q = P,. Write P =
Pip2-pm and Q = quqy -+ - qu, and suppose that d(p,, P) + d(q1, P) > m.
Then G D Pyt

Proof. Set N~ (p1,P) = {v~ | v € N(p1,P)}. If qip., € E(G), then
PiP2 - "Pmqi1q2 -+ q is a path with the desired property. Thus we may
assume that N(qlaP) g {pl,p%"' ,I)m—l}- Then since N—(plip) Cc
{p1, p2, - »Pm—1}, and since |V~ (p1, P)|+d(q1, P) = d(p1, P)+d(q, P) 2
m by assumption, we get N~ (p;, P)NN(q1, P) # 0. Take p; € N~ (p;, P)N
N(q,P). Then qqi—y - qipipi—1 -+ PrPi+1Pit2 - Pm i a desired path

(see bold edges in Figure 3). O
q qi-1 [43]
@, O
O 9 — n®)
Y4 Di-1 Pi Pi+1 Pm

Figure 3: ququ—1...1pipi—1...p1Pit1..pm is a path of order m + I
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We now prove the main lemma of this section.

Lemma 2.6. Let k > 1 and s > 5, and let G be a graph with |V(G)| =
5k + 2s and 02(G) > 6k + 2s. Then the following two statements hold.

(i) If G D kCs, then G D kCs U Pas.
(ii) IfG2 (k+ 1)Cs, then G 2 (k+ 1)C5 U Pas—s.

Proof. We prove (i) and (ii) simultaneously. Let € € {0, 1} and g(s,€) =
| 2225¢|. Note that g(s,€) > 2. Suppose that G 2 (k + €)Cs, and let C =
{CY, C?, ---, C**<} be a collection of k + € vertex-disjoint 5-cycles in G.
First we show that G D (k+¢€)C5Ug(s,€)K2. For this purpose, we suppose
that we have chosen C so that the maximum number of independent edges
in G—Uf:fV(Ci) is as large as possible, and let M = {ey, €2, -+ , €gr(5,)}
be a maximum collection of independent edges in G — U V(C*). What
we want to show is g'(s,€) = g(s,¢). By way of contradiction, suppose that

g(s,€) < g(s,€). Set L = V(G) — UV(CF) — ULV (e;). Note that
|L| = (25 — 5¢) — 2g'(s,€) > 2. By the maximality of M, we have e(L) =0,
which implies that ) ., d(v) > 12—‘102(6’). On the other hand, by (ii) and
(iii) of Claim 2.2,

Y d@w) = {3 d(v, U V(CH) + d(, ULV (e0))} + 2e(L)
veL veL

< %{G(k +€) +2g'(s,€)} +0

< |2£|(6k +28)

L
<o),
which is a contradiction. Thus ¢'(s,€) = g(s,€), and hence G 2 (k+¢€)Cs U
g(s,€)Ka.

Next we show that G D (k+¢€)CsUP;. By way of contradiction, suppose
that G does not contain (k + €)Cs U P;. Then with C and M as above, we
have E(G — Uk V(C?)) = M (because otherwise G — UiV (C?) contains
P;). This in particular implies that there is no edge between V'(e;) and
V(ez), and hence 3~ cy (e, )uv(eq) G0 (¥) 2 202(G). On the other hand,
applying Claim 2.4 with m = 3, we obtain

Yo dw)={ Y dw,UEV(CY) +dw, OV (en))
vEV(e1)UV(e2) vEV(e1)UV (e2)

< 2(6k + 10)
< 202(G)s
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which is a contradiction. Thus G 2 (k + ¢)C5 U Ps.

Finally, we show that G D (k+¢€)C5UPs,_5.. Suppose now that we have
chosen C = {C*, C?, --- , C*+¢} so that a longest path in G — UV (C?) is
as long as possible. Let V(C) = USTfV(C?), and let P = pop; - - - Prm—2Pm—1
be a longest path in G — V(C). By way of contradiction, suppose that
m < 2s — B¢, i.c., V(P) # V(G) — V(C). Take v € V(G) = V(C) = V(P),
and let F = V(G) -V (C)-V(P) - {v} (it is possible that ' = @ and, in the
case where F = §), we take Ng(z, F) = 0 and dg(z, F) = 0 for z € V(G)).
Note that m > 3 and |F| = 2s — 5¢ —m — 1. Applying Claim 2.5 with ! = 1,
we obtain

d(v,P) +d(pe,P) <m -1 (1)

by the maximality of P. On the other hand, it immediately follows from
the maximality of P that

d(po, F U {v}) =0, (2)
and we clearly have
d(v, F) < |F| = 2s —5¢ —m — 1. 3)
Since
d(v) + d(po) = d(v, V(C)) + d(po, V(C)) + (d(v, P) + d(py, P)) + d(v, F)
+ d(po, FFU {v})
and vpy € E(G), it follows from (1), (2), (3) that

d(v, V(C)) + d(po, V(C)) 2 02(G) — {(d(v, P) + d(po, P)) + d(v, F)
+ d(po, F U {v})}
> (6k +25) — {(m — 1) + (2s — 5¢ — m — 1) + 0}
=6k + 5e+2
> 6(k +¢).

Hence, there exists i such that d(v, C?)+d(po, C*) > 7. We may assume that
i = 1. By the maximality of m, N(po, C') N N'(v,C") = 0. Hence by (i) of
Claim 2.2, we see that N'(py,C') N N(v,C') # §. Take ¢ € N'(py,C') N
N(v,C"). Now set C' = G[(V(C') = {c}) U{p}] 2 Cs, P' = p1pa- - Pm—-1
and C' = (C — {C*'}) U {C"}. Also set V(C') = (V(C) = V(CY))u V(C).
Then by Claim 2.4, it follows from the maximality of m that

> d(u, V(C")) < 12(k + ¢).

ue{c5"| Phpm—l}
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Po
Figure 4: Partition of V(G) P’

By Claim 2.5, we have
d(c,P') +d(py,P') < [V(P)| - 1=m -2
and
d(v, P') + d(pm-1, P') < [V(P')| - 1=m - 2.
Consequently,
> d(u, VIC)UV(P)) < 12(k+€) +2(m—2).  (4)

“G{CyV:Pl-Pm—l}

By the maximality of m, we also have

e({c’v}’ {Pl,pm—l}) =0 (5)

and
N(c, F)NN(py,F) =0, N(v,F)NN(pm-1,F) =0. (6)

Since (6) implies d(c, F) + d(p1, F) < |F| and d(v, F) + d(pm-1, F) < |F|,
it follows from (5) that
> d(u, FU {c,v}) = > (d(u, F) + d(u, {c,v}))
u€{e,v, p1,Pm-1} u€f{c,v,p1,Pm-1}
< 2|F| +2
=4s — 10e — 2m. (7
By (4) and (7),
Y. dw={ > dV({)UV(P))
u€{c, v, P1,Pm-1} u€{c,v,p1,Pm-1}
+d(u, FU{c, v})}
< {12(k + €) + 2(m — 2)} + (45 — 10e — 2m)
=12k +4s + 2¢ — 4.
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Since (5) implies that 3. {c, v p1,pm1} G(8) > 202(G), this contradicts
the assumption that 2(G) > 6k + 2s, and this contradiction completes the
proof of Lemma 2.6. O

3 Existence of Two Disjoint 5-Cycles

In this section, we prove several results concerning the existence of two
disjoint 5-cycles. The main result of this section is Lemma 3.10. We start
with sufficient conditions for the existence of a 5-cycle.

Claim 3.1. Let s = 5 or 6, and let A, P be subgraphs of a graph G such
that V(G) = V(A)UV(P), A= K, and P = P,. Write V(A) = {a} and
P =p,---p,. Then the following hold.

(i) If s =5, d(a, P) > 3 and aps &€ E(G), then G D Cs.
(ii) If s =5 and d(a, P) > 4, then G D Cs.
(iii) If s =6 and d(a, P) > 4, then G D Cs.

Proof. (i) Since d(a,P) > 3 and ap; & E(G), we have N(a, P) D {p1, pa}
or N(a, P) D {p2, ps}, which implies that G D Cs.

(ii) As in (i), we have N(a,P) 2 {p1, p1} or N(a,P) D {p2, ps}, which
implies that G D Cj.

(iii) We have N(a’ P) 2 {P11P4}, N(a) P) 2 {p2’p5} or N(O., P) :_) {p31p6}a
which implies that G D Cs. m]

Claim 3.2. Let s = 3,4 or 5, and let A, P be subgraphs of a graph G such
that V(G) = V(A)UV(P), A= K, and P = P,. Write V(A) = {ay, a»}
and P = p, ---p,. Then the following hold.

(i) Ifs =3 and e(A, {p1,p3}) > 3, then G D Cs.

(ii) If s =4 and e(A,P) > 5, then G D Cs.

(iii) If s =5 and e(A, P) > 6, then G D Cs.

Proof. (i) In view of Claim 2.2 (iii), we may assume a;p;,asps € E(G).
Now a,pi1papsaza, is a 5-cycle in G.

(ii) We have e(A, {p1,p3}) > 3 or e(A,{p2,,}) > 3. We may assume
e(A,{p1,ps}) > 3. Then by (i), G D Cs.
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(iii) We may assume d(a;, P) > d(az, P), so d(a1,P) > 3. If d(a:, P) > 4,
then G O Cs by Claim 3.1 (ii). Thus we may assume d(a,,P) = 3.
Then d(a;,P) = d(az,P) = 3. In view of Claim 3.1 (i), we may as-
sume p3 € N(a;,P) and ps € N(ag,P). If pp € N(a1,P)U N(aq, P),
then G[{a1,a2,p1,p2,p3}] 2 Cs. Thus we may assume p, € N(a;,P)U
N(az, P). Similarly we may assume ps € N(a;, P)UN(a2, P). Now we have
g(al,P) = N(asz,P) = {p2, p3, pa}, and hence G[{a1, a2, ps, p3, pPa}] 2

5- a

Claim 3.3. Let s = 4 or 6, and let A, P,C be subgraphs of a graph G
such that V(G) = V(A)UV(P)UV(C), A= K,, P> P, and C = Cs.
Write V(A) = {a1, a2}, P = pip2---ps and C = cicacscacscyr. Then the
following hold.

(i) Ifs=4, e(A,C) > 7, and e(P,C) 2 13, then G 2 2Cs.
(ii) Ifs=6, e(A,C) > 7, and e(P,C) > 19, then G D 2C5.

Proof. By Claim 2.3 (ii), there exists j such that G[{c;, ¢j+1, ¢j+2, a1, a2}]
2 Cs and G[{cj, ¢j_1, ¢j—2, a1, az}] 2 Cs.

(i) We have e({cj—2, ¢j-1, Cj+1, Cj+2}, P) = e(C, P)—d(cj, P) > 13—4 = 9.
Hence e({¢j—2, ¢j—1}, P) 2 5 or e({¢j+1, ¢j+2}, P) > 5 holds. By symme-
try, we may suppose that e({¢;—2, ¢j—1}, P) > 5. Then by Claim 3.2 (ii),
G[{cj-2, ¢j—1}UV(P)] contains a 5-cycle, which is disjoint from the 5-cycle
in G[{cj, cjr1,Cis2,01,02}).

(ii) As in (i), e({Cj_2, Cj—1, Cj+1, cj+2}’P) = e(C’P) - d(Cj,P) > 13.
Hence there exists 2 € {cj—2,¢j—1,¢j41,Cj+2} such that d(z, P) > [13] = 4.
We may assume that € {¢j—2, ¢j—1}. Now by Claim 3.1 (iii), G[{z} U
V(P)] contains a 5-cycle, which is disjoint from the 5-cycle in G[{c;, ¢j41,
Cjt+2,01,02}]. a

Claim 3.4. Let P,C be subgraphs of a graph G such that V(G) = V(P)U
V(C), P = P; and C = Cs, and write P = p1paps and C = c1cacacacsey.

(i) If d(p1,C) + d(p3,C) > 5, d(p1,C) > 0 and d(ps,C) > 0, then there
erists i € {1, 2, 3, 4, 5} such that G[{p, p2, ps, ¢i, ci+1}] 2 Cs.

(ii) Ifd(p1,C)+d(ps,C) > 7, then there ezistsi € {1, 2, 3, 4, 5} such that
Gl{ci, cix1, P1y D2, 3}] 2 Cs and G[{ci-1, ¢, P1, P2, P3}] 2 Cs.

Proof. (i) We may assume that d(p;,C) > d(ps,C), so d(p1,C) > 3. It

suffices to show that N*(p;,C) N N(p3,C) # 8. Now if d(p1,C) = 3, then
[N%(p;,C)| > 4, and hence |[N*(p;,C) N N(p3,C)| > (4+2) =5 > 0; if
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d(p1,C) > 4, then [N*(p,,C)| = 5, and hence |[N*(p,,C) N N(ps, C)| >
B5+1)-5>0.

(ii) We may assume that d(p;,C) > d(ps,C), so d(p1,C) > 4. It suf-
fices to show that N'(p;,C) N N(p3,C) # 0. Now if d(p,,C) = 5, then
|N'(p1,C)NN(p3,C)| 2 5+2-5> 0;if d(py,C) = 4, then |N'(p;,C)| = 3
by Claim 2.1 (ii), and hence |N'(p;,C) NN(ps;,C)>3+3-5>0. a

Claim 3.5. Let P, Q, C be subgraphs of a graph G such that V(G) = V (P)U
V(QUV(C), P=P;, Q= P; and C = Cs, and write P = pypspspaps,
Q = 0192939445 and C = cycacscqcsey. Then the following hold.

(i) If N(p1,C)N N(ps,C) # 0 and e(C, Q) > 16, then G D 2Cs.

(ii) If there exists m € {0, 1, 2, 3} such that e(P,C) > 12+ m, d(p3,C) <
1+m and e(C,Q) > 16, then G D 2Cs.

Proof. (i) Let ¢; € N(p;,C) N N(ps,C). Since e(V(C) — {:},Q) >
16 — 5 = 11, we have e({ci-1, ci-2},Q) > 6 or e({ci+1, cir2}, Q) > 6. By
symmetry, we may assume that e({c;—_1, ¢i—2},@Q) > 6. Then by Claim 3.2
(iii), G[{ci-1, ci—2} U V(Q)] contains a 5-cycle, which is disjoint from the
5-cycle ¢;p1papspaci.

(ii) Since d(p3, C) < 14+m, e({p1, p2, Pa, P5},C) > (124+m)~(1+m) = 11,
which implies that either e({p1, pa},C) > 6 or e({p2, ps},C) > 6 holds.
By symmetry, we may assume that e({pi, p4},C) > 6, which implies that
N(p1,C)N N(p4,C) # . Since e(C, Q) > 16, the desired conclusion now
follows immediately from (i). o

Claim 3.6. Let P, Q,C be subgraphs of a graph G such that V(G) = V(P)U
V(Q)UV(C), where P = P;, Q = Ps and C = Cs. Write P = pypaps,
Q = Q192030495 and C = cjcacscacscr, and suppose that e(C,Q) > 18,
d(pl,C) + d(p;;,C) > 5, d(pl,C) >0 and d(pa,C) >0. Then G 2 2C;.

Proof. By Claim 3.4 (i), there exists 1 < j < 5 such that G[{pi,p2,ps,¢;,
ci+1}] 2 Cs. If max{d(cjy2,Q), d(cj+3, Q) d(cjt4,Q)} > 4 or max{d(cj+»
)Q) + d(cj+37 Q)! d(Cj+3,Q) + d(cj+47Q)} > 6) then by Claim 3.1 (1i) or
Claim 3.2 (iii), G[{¢;j+2,¢j+3,Cj+4}UV(Q)}] contains a 5-cycle, which is dis-
Joint from the 5-cycle in G[{p1, p2,ps,¢j, ¢j+1}]- Thus we may assume that
max{d(c;+2, @), d(cj+3, Q), d(cj+1,Q)} < 3 and max{d(cjs2, Q) +d(cj+3,Q
),d(cjt3,Q) + d(cj+4,Q)} < 5. This implies d(cj42,Q) + d(cjr3,Q) +
d(cj+4,Q) < 8. Consequently, from the assumption that e(@,C) > 18,
it follows that d(cj’ Q) = d(C]‘+1,Q) = 5 and d(Cj+2, Q) + d(Cj+3, Q) +
d(cj+47 Q) = 8, and hence d(cj+2’Q) =3, d(cj+3’ Q) =2 and d(Cj+4, Q) =
3. In view of Claim 3.1 (i), we may assume g3 € N(cj+2,Q) N N(cjiq, Q).
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Now if (N (cj+2, QQUN(¢j+4, Q))N{g2, ¢a} # 0. then G[{cjt2,¢j43, ¢4, 2,
g3,q4}] 2 Cs, which is disjoint from the 5-cycle in G{{p1,p2,p3,¢j,¢j+1}}-
Thus we may assume N(cj42, Q) = N(¢j+4,Q) = {a1,4s,5}. Then ¢;q10
g3gscj and ¢j4+1¢;j4+2€j4+3Cj+495Cj+1 are vertex-disjoint 5-cycles. 0

Claim 3.7. Let P, Q, C be subgraphs of a graph G such that V(G) = V(P)U
V(Q)UV(C), where P = P;, Q = P; and C = Cs. Write P = pypaps,
Q = q1G293q4qs and C = cjcac3cacscy, and suppose that e(C,Q) > 16.
Then the following hold.

(i) If there ezists i such that G[{ci,Cit1,P1,P2,p3}] 2 C5 and
G[{ci,ci~1,p1,p2,p3}] 2 Cs, then G 2 2Cs.

(ii) If there exists i such that G[{c;,cit1,p1,P2,p3}] 2 Cs and
G[{ci+2,Cit3,P1,02,p3}] 2 Cs, then G 2 2Cs.

(iii) If max{d(p:,C),d(ps,C)} > 4 and min{d(p;,C),d(p3,C)} > 2, then
G D 2Cs.

Proof. (i) Since e({ci—l7ci—2,ci+laci+2}’ Q) = C(C, Q) - d(Ci,Q) 2 117
e({ci—1,¢i—2},Q) > 6 or e({ciy1,¢i42},Q) > 6 holds. By symmetry,
we may assume that e({ci—1,ci—2},Q) > 6. Then by Claim 3.2 (iii),
Gl{ci-1,ci—2} UV (Q)] contains a 5-cycle, which is disjoint from the 5-cycle
in G[{ci, cir1, P1, P2, P3}.

(ii) Since e({ci, cit1, Ciy2, Cir3}, Q) = e(C, Q) —d(ci+4, Q) > 11, e({ci, Cit1}
,Q) > 6 or e({cit+2,ci+3}, @) > 6 holds. By symmetry, we may assume that
e({ci,ci+1}, Q) > 6. Then by Claim 3.2 (iii), G[{ci, ci+1} U V(Q)] contains
a 5-cycle, which is disjoint from the 5-cycle in G[{ci+2, Ci+3,P1, P2, P3}]-

(iii) By symmetry, we may assume that d(p;,C) > 4 and d(ps3, C) > 2. Now
we may assume N(p1,C) D {co,c¢3, ¢a,¢5}. Then N'(p1,C) 2 {c1,¢3,¢1}.
Since d(p3,C) > 2, N(p3,C) N N'(p;1,C) # @ or N(ps,C) = {c2,¢5} holds.
If N(p3,C) N N'(p1,C) # 0, then P and C satisfy the assumption of (i),
and hence the desired conclusion follows from (i); if N(ps,C) = {e2,¢5},
P and C satisfy the assumption of (ii) with ¢ = 2, and hence the desired
conclusion follows from (ii). 0

Claim 3.8. Let A, P, C be subgraphs of a graph G such that V(G) = V(A)U
V(P) UV(C), A2 Ky, P2 Ps and C = Cs;. Write V(A) = {0.1, 0.2},
P = pipapspaps and C = cycacscqcsey, and suppose that e(C,P) > 16.
Then the following hold.

(i) If there ezists i such that G[{ci, Cit1,Ci+2,01,02}] 2 Cs and
Gl{ci, ci-1,Ci—2,01,a2}] 2 Cs, then G 2 2Cs.
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(ii) If max{d(a,,C),d(as2,C)} > 4 and min{d(a;,C),d(az,C)} > 2, then
G 2 2Cs.

Proof. (i) Since e({ci—1, ci—2, Cit1, Ci+2}, P) = e(C, P) — d(c;, P) > 11,
e({ci-1, ci—2},P) > 6 or e({cit1, Ci+2},P) > 6 holds. By symmetry,
we may assume that e({ci_1, ¢i-2},P) > 6. Then by Claim 3.2 (iii),
G[{ci-1, ci—2} U V(P)] contains a 5-cycle, which is disjoint from the 5-
cycle in G[{ci, ¢is1, Ciy2, a1,a2}).

(ii) By symmetry, we may assume that d(a;,C) > 4 and d(as,C) > 2. We
may also assume N(a;,C) D {ca2,¢3,¢4,¢5}. Then N'(a,,C) 2 {¢1,¢3,¢4}
If N(az, C)N{ec1,c2,c5} # 9, then letting ¢; € N(az,C)N{c1,c2,c5}, we see
that G[{ci, ciy1,Cive,a1,02}]) 2 Cs and G[{c;, ¢i—1,¢i—2,a1,a2}] 2 C5, and
hence G 2 2Cs by (i). Thus we may assume N(az2,C) N {c1, ¢2, ¢s} = §.
Then N(a2,C) = {c3, cs}. Since e(C,P) > 16, there exists [ such that
d(ci, P) > [%£] = 4. Then by Claim 3.1 (ii), G[{c;} U V(P)] contains a 5-
cycle. If ¢; € {c1,¢3, ¢4}, then ayci—yci—2¢142¢141 a1 is a 5-cycle, which is dis-
joint from the 5-cycle in G[{¢;} UV (P)]. Thus we may assume ¢; € {cz,¢s5}.
Now if ¢; = ¢o, then a)c5cqc3a2a, is a 5-cycle, which is disjoint from the
5-cycle in G[{a} UV (P)]; if ¢ = cs, then ajcaczeqaza, is a 5-cycle, which
is disjoint from the 5-cycle in G[{c;} U V(P)]. |

Claim 3.9. Let P,C be subgraphs of a graph G such that V(G) = V(P)U
V(C), P= P5 and C = C5. Write P = DrD2P3P4aPs and C = C1C3C3C4C5C,
and suppose that e(P,C) > 20, d(p;,C) > 0 and d(ps,C) > 0. Then
G 2 2Cs.

Proof. We first prove four subclaims.

Subclaim A. If d(p;,C) + d(p2,C) = 9, d(p3,C) + d(p5,C) > 5 and
d(ps,C) > 0, then G D 2Cs.

Proof. By Claim 3.4 (i), there exists j such that G[{ps, ps,ps,¢j, cj+1}] 2
Cs. Since d(p1,C) + d(p2,C) > 9, we have e({p1,p2},{¢j-1,¢j+2}) > 3.
Hence by Claim 3.2 (i), G[{p1, p2, ¢j-1, ¢j—2, ¢j4+2}] contains a 5-cycle,
which is disjoint from the 5-cycle in G[{ps, ps, ps, ¢;j, cj4+1})- a

Subclaim B. If d(p;,C) + d(ps,C) > 8 and d(ps, C) + d(ps,C) > 7, then
G 2 2Cs.

Proof. By Claim 3.4 (ii), there exists j such that G[{c;, ¢j+1, P3, Pa, Ps}] 2
Cs and G[{Cj_l, Cj, D3, P4, p5}] 2D Cs. Since d(pl,C) + d(pz,C) > 8, we

have e({p1,p2}, {¢j-1,cj+2}) > 8 or e({p1, 2}, {cj-2,¢j11}) > 3. We may
assume e({p1, p2}, {¢j—1,¢;j4+2}) = 3. Then by Claim 3.2 (i), G[{p1, p2, ¢j-1,
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¢j—2, Cj+2}] contains a 5-cycle, which is disjoint from the 5-cycle in G[{c;,
Cj+1,P3,P4aP5}]- o

Subclaim C. If d(p1,C) + d(p2,C) > 7 and d(ps3,C) + d(ps,C) > 8, then
G D 2Cs.

Proof. By Claim 2.3 (ii), there exists j such that G[{¢;,¢j—1,¢j-2,P1,p2}]
D Cs and G[{c;j, ¢j+1,¢j42,P1,p2}] 2 Cs. Since d(p3, C) +d(ps,C) 2> 8, we
have e({ps,ps}, {¢j—1,¢j—2}) > 3 or e({ps, s}, {cj+1,Cj+2}) 2 3. We may
assume e({ps,ps}, {¢j-1,¢j—2}) > 3. Then by Claim 3.2 (i), G{{cj-1,cj-2,
D3,P4,Ps }] contains a 5-cycle, which is disjoint from the 5-cycle in G[ {c;,

Cj+1>Cj+2,P1, P2} a

Subclaim D. If d(p,C) + d(p2,C) > 5, d(p2,C) > 0 and d(ps3,C) +
d(ps,C) > 9, then G D 2Cs.

Proof. By Claim 2.3 (i), there exists j such that G[{c;, ¢j+1, Cj+2,P1,P2}] 2
Cs. Since d(ps,C) + d(ps,C) > 9, we have e({ps,ps}, {¢cj-1,¢j-2}) = 3.
Hence by Claim 3.2 (i), G[{¢;j-1,¢j—2,P3,P4,Ps}] contains a 5-cycle, which
is disjoint from the 5-cycle in G[{c¢;, ¢j+1,¢i+2,P1,P2}]- 0

We return to the proof of Claim 3.9. We distinguish two cases whether
d(p3,C) > 0or d(ps,C) =0

Case 1. d(ps,C) > 0.

By symmetry, we may assume d(p2,C) > d(ps,C). Then d(p2,C) > 0.
Since e(P,C) > 20, d(p1,C) + d(p2,C) + d(p3,C) + d(ps,C) > 15. This
in particular implies that we have d(p;,C) + d(p2,C) > 5 and d(p3,C) +
d(ps,C) > 5. Thus if d(p;, C)+d(p2,C) > 9, then G 2 2C5 by Subclaim A.
If d(p,, C) + d(p2, C) = 8, then d(p3, C) +d(ps,C) > 7, and hence G 2 2Cj5
by Subclaim B. If d(p, C) +d(p2, C) = 7, then d(ps3, C) + d(ps,C) > 8, and
hence G D 2C5 by Subclaim C. Finally if 5 < d(p;,C) + d(p2,C) < 6, then
d(ps,C) + d(ps, C) 2 9, and hence G 2 2Cs by Subclaim D.

Case 2. d(ps,C)
We have d(p,,C) = d(pg,C) = d(p4,C) = d(ps,C) = 5. Thus for any J,
P1p2p3pac;p1 and PscjpiCjpacj—2¢j—1Ps are disjoint 5-cycles.

Lemma 3.10. Let s > 5, and let P,C be subgraphs of a graph G such that
V(G) =V(P)UV(C), P2 Py, and C = C5. Write P = p1p2*+* P2s—1P2s
and C = c;cacacacscy, and suppose that e(P,C) > 6s+ 1. Then G D 2Cs.

Proof. Let P() = p;py---p, and P?® = p,y1pesa - - - p2s. We may assume
that e(P(1),C) < e(P(?,C). Then e(P®,C) > 3s + 1. We first show that
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the lemma holds when s = 5. We consider two cases separately.

Case 1. ¢(P®,C) > 20.

If d(ps,C) > 0 and d(p1o,C) > 0, then the desired conclusion immedi-
ately follows from Claim 3.9. Thus we may assume either d(pg,C) = 0 or
d(p10,C) = 0 holds. Then there exists 6 < ¢ < 7 such that d(p;,C) =
d(piy1,C) = d(pir2,C) = d(piy3,C) = 5. Since e(P),C) > 11, there
exists 1 < j < 5 such that d(p;,C) > [§] = 3. Then |N'(p;,C)| > 1
by Claim 2.1 (iii). Let c € N’(pj,C). Then PiCl+1C142C1-2C1—1Pj and
PiPi1Piv2Pi+3CD; are disjoint 5-cycles.

Case 2. 16 < e(P?®),C) < 19.

Write e(P®),C) =19 —m. Then 0 < m < 3 and (P, C) > 124+ m. If
4 < d(p3,C), then there exists j € {1,2,4,5} such that d(p;,C) > 2 be-
cause [ﬂ&ﬁ){—d(w] > 2. Hence by Claim 3.7 (iii) or Claim 3.8 (ii), we
obtain G D 2C5. If d(ps,C) < 1+m, then G D 2C5 by Claim 3.5 (ii). Thus
we may assume 2 +m < d(ps, C) < 3. This implies 0 < m < 1, and hence
e(P?,C) > 18, ¢(PM,C) > 12 and d(ps, C) > 2. If d(p1, C)+d(p3,C) > 5
or d(ps, C) + d(ps,C) > 5, then G D 2Cs by Claim 3.6. Thus we may as-
sume d(p1,C) + d(p3,C) < 4 and d(p3,C) + d(ps,C) < 4. Conscquently,
d(p2,C)+d(p4,C) = e(P"),C) - (d(p1, C) +d(ps, C) +d(ps,C)) > 12-6 =
6, and we therefore obtain G 2 2C5 by Claim 3.6. This completes the proof
of the lemma for s = 5.

Next we consider the case s = 6. If Y12, d(p;,C) > 31, then the
desired conclusion follows from the case s = 5. Thus we may assume

i3 d(p:, C) < 30. Then d(py,C) +d(p2,C) > e(P,C) - T;2;d(pi,C) >
37— 30 = 7. Since e(P®,C) > 19, we now obtain G D 2C; by Claim 3.3
(ii). Thus the lemma holds for s = 6.

Now we complete the proof of the lemma by induction on s. Thus
let s > 7, and assume that the lemma holds for s — 2 and s — 1. If
Z?ia d(pi,C) > 6(s — 1) + 1, then G D 2C;s by the induction hypothesis.
Thus we may assume Zf; d(p;, C) < 6(s—1). Then d(py, C) +d(p2,C) >
e(P,C) - Zfis d(p;,C) > (6s + 1) — 6(s — 1) = 7. Similarly, we may as-
sume Y7o 7* d(pi,C) < 6(s — 2), which implies that 32, . d(p:,C) >
6s+1—6(s —2) = 13. Therefore we obtain G O 2C5 by Claim 3.3 (i). This
completes the proof. ]

4 Proof of Theorem 1.1

In this section, we prove Theorem 1.1. A graph G is called pancyclic
if G 2 C; for each 3 < ! < |V(G)|. We recall that T»>(n) stands for the
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complete bipartite graph of order n whose color classes are as equal as
possible; that is to say, To(n) = K|z |,r21. We make use of the following
three theorems in the proof of Theorem 1.1.

Theorem 4.1 (Dirac [6]). Let G be a graph of order n with 6(G) > 3.
Then G is a hamilton graph.

Theorem 4.2 (Bondy [3]). Let G be a hamilton graph of order n with
e(G) > %ﬁ. Then either G is pancyclic or n is even and G = K3 5.

Theorem 4.3 (Woodall [14]). Let G be a graph of order n with e(G) >
C(T2(n)) = l'nsz. Then G _D_ C2r+l for every 1 <r< l!n:l!J-

We first deduce the following result from Theorems 4.1, 4.2 and 4.3.

Lemma 4.4, Letr > 2 and n > 4r,2and let G be a graph of order n.
Suppose that G 2 Carq1 and e(G) > |5-|. Then G = Ta(n).

Proof. Write V(G) = {v1.v2,:+,vn}. Suppose that G ¥ Ta(n). We
may assume that d(v,) = 6(G). If 6(G) > %, then G is hamiltonian by
Theorem 4.1, and hence G O Cs,.41 by Theorem 4.2. Thus we may as-
sume that 6(G) < 231, so d(v;) < 27t. First we show that the case
n is even, and let n = 2s. Then [V(G — {n1})] = 2s -1 > 4r - 1,
and e(G — {n1}) > s — s+ 1 > e(T2(2s — 1)). Hence by Theorem 4.3,
G 2 G - {v1} D Ca2r41. Finally we consider the case n is odd, and let
n = 2s41. Then |V(G—{v1})| = 25 > 4r and e(G~{v1}) > s(s+1)—s = 5.
Hence by the case n is even, G—{v;} = K, s and d(v1) = 5. By the assump-
tion that G 2 T>(n), v; is adjacent to some vertex in both color classes of
G — {v1}, we therefore obtain G 2 Car41. ]

It is worth mentioning that the assumption n > 4r in Lemma 4.4 is sharp
as the following example shows. Let H be the graph Ky + (Kor—1 UK p—2,)

of order n < 4r — 1. Then H 2 Czr41, and e(H) > e(Ta(n)) = I_"Tz_l when
n<4r —3 and e(H) = e(T2(n)) = [%J when dr —2<n < d4r—1.

In order to state Claim 4.5, for each s > 4, we define a graph H, of
order 2s + 5 as follows (see Figure 5):

(l) V(Hs) = {cla Ca2,C3,C4, C5}LJ'{aflya'3’ as,:**, a2s—1}u{02) a4,06,° ", a?s}
(let Al = {al,a3,a5)" : )a2a—l} and A2 = {02,04,06, te aa28});

(i1) {c1,c2,c3,¢4,¢5} induces a 5-cycle cicacacscscy;

(iii) A; U A2 induces a complete bipartite graph K, ; with bipartition
(AI) A2);

(iv) Ny, (c1,A1UA2) = A1 UAg, Ny, (co, A1 UA2) = Np, {ca, A1 UAs) =4
and Ny, (3,41 U A2) = Np,(c5, A1 U Az) = Ag.
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Figure 5: Hy

Claim 4.5. Let s > 4, and let A,C be subgraphs of a graph G such that
V(G) = V(A)UV(C), A= K, , and C = Cs. Let (A, A2) be the bipartition
of A and write C = cjcacscqe5¢), and suppose that e(A,C) > 6s and G 2
2Cs. Then there existm € {1,2,3,4,5} andl € {1,2} such that N(cm, A) =
AjUA,, N(Cm+1 , A) = N(Cm+3, A) = A; and N(Cm+2, .4) = N(Cm+4, A) =
As—i(s0 G 2 H;).

Proof. Write A; ={a1, az, 0z, ***, ags_l} and A2={a2, a4, Qg, " , a'_)s}.
For v € V(C), define

¢'(v) = min{d(v, A1), d(v, A2)}.
Then ¢§'(v) > d(v, A) — s.

Subclaim E. If there ezist u,v € V(C) with u # v, and there exist
ai,,a;, € Ay and ai,,a;, € Ax with a;, # a; and a;, # aj, such that
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ai,, i, € N(u,A) and a;,,a;, € N(v, A), then G 2 2C5.

Proof. Take aiy,aj, € A; — {a;,,a; } and a;,,a;, € Az — {ai,,a;,} with
a;; # a;; and ai, # aj,. Then wa; ai,ai;0:,u and vaj, aj,a;,a;,v are dis-
joint 5-cycles. a

Subclaim F. If there ezist u,v € V(C) with u # v such that §'(u) > 2 and
&' (v) > 1, then G D 2Cs.

Proof. This follows immediately from Subclaim E and the definition of
o' (v). 0O

We return to the proof of Claim 4.5. By symmetry, we may assume that
d(c1,A) = max{d(c1, A), d(cz, A), d(c3, A), d(cs, A), d(cs,A)}.

Since 5‘%&2 > %’ > s, we have d(¢;, A) > s + 1. We divide the proof into
two cases according to the value of d(¢;, 4).

Case 1. d(c1,A) = 2s.

In view of Subclaim F, we have §'(¢;) = 0 for each 2 < 7 < 5, and hence
d(e;, A) < s for each 2 < i < 5. Since d(cz, A) + d(cs, A) + d(cq, A) +
d(cs, A) = e(A,C) — d(ci, A) > 4s, this implies that for each 2 < i < 5,
d(ci, A) = s and we have N(c;, A) = Ay, or N(c;, A) = Az. Suppose that
there exist ¢ € {2,4} and j € {3,5} such that Ng(ci, A) = Ng(cj, A). By
symmetry of the roles of A; and A,, we may assume that Ng(c;, A) =
Ng(cj, A) = A;. Now if (i,7) = (2,5), then ¢;a102a3a4¢1 and caczescsascy
are disjoint 5-cycles; if (¢, ) € {(2,3),(4, 3), (4,5)}, then c;a;02a3a4¢; and
cicjasagarc; are disjoint 5-cycles. This contradicts the assumption that
G 2 2Cs. Thus Ng(ci, A) # Ne(c;, A) for each i € {2,4} and each j €
{3,5}, which implies the desired conclusion.

Case 2. s+1<d(e;,A) <2s5~-1.

Since d(cz, A) + d(c3, A) + d(cq, A) + d(cs, A) > 4s + 1, there exists [ with
2 < ! < 5 such that d(c;,A) > s+ 1. Thus §(c;) < 1 and §'() < 1
by Subclaim F, we see that d(c1,A) = d(c;, A) = s + 1. Since e(4,C) >
6s > 5(s + 1) — 1, this implies that there exists m with 2 < m < 5 such
that d(c;,A) = s+ 1foreach m+1 < j < m + 4. By Subclaim F,
&'(c;) =1 for each m + 1 < j < m + 4. By Subclaim E and by symmetry,
we may assume that N(c;,A) 2 A; foreachm+1 < j < m+4. Then
Cm+1Cm+2010203Cm+1 ANd Cy4+-3Cm +4050607Cm+3 are disjoint 5-cycles. This
contradicts the assumption that G 2 2C5, which completes the claim. 0O

Claim 4.6. Let m > 8, and let P be a subgraph of a graph G such that
P = P,. Write P = p1p2 - - Pm, and suppose that G[V(P)] 2 Cs. Then
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YiZ1 d(pi) > Bo2(G).

Proof. We proceed by induction on m. Since G[V(P)] 2 Cs, pipi+a €
E(G) for each 1 < i < m — 4. Hence if m = 8, we obtain Y i, d(p;) =
Z;l(d(pi)-i-d(p,-“)) > 402(G). Thuslet m > 9, and assume that the claim
holds for m — 1, I p\pm € E(G), then pm_3p1, Pm—2P2,Pm—1P3, PmPs &
E(G), and hence

id(]’:) - 21";:4 (d(p:) + d(piya)) +22;=1 (d(Pm—-4+j) + d(p]))
i=1

5 (m=4)03(G) +405(G)

. 2

= ‘Z‘Laz(G’).

Thus we may assume that p;p,, € E(G). Then by the induction hypothesis,

3 dpy = 12 e} + 5T 203)) + W) +dio)

i=1

S 22165(G) + 257202(G) + 02(G)
- 2
= Z02(0)-
a

Lemma 4.7. Let k > 1 and s > 5, and let G be a graph of order 5k + 2s
with 02(G) > 6k + 2s. Suppose that G 2 kC5 U Py, and G 2 (k + 1)Cs.
Then Ky + Koksakts C© G C Ki + Kokys 2k4s-

Proof. Let C = {C!, C?, ---, C*} be a collection of k vertex-disjoint
5-cycles in G such that G — V(C) has a hamilton path, where V(C) =
UL, V(CY). Let A = ajaz---az, be a hamilton path in G — V(C). Since
G[V(A)] 2 Cs, it follows from Claim 4.6 that 3;° d(a) > s - 02(G) >
5(6k + 2s). On the other hand, by Lemma 3.10 and Lemma 4.4,

2s 2s
D dlar) = (Y d(ai, V(C))} + 2e(V(4))
=1 =1
k
={D_e(4,C"} +2e(V(4))

i=1

< s(6k + 2s).
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Hence e(A,C?) = 6s for each 1 < i < k, and e(V(A4)) = s*. In view of
Lemma 4.4, this implies that G[V(A)] = K, with bipartition (4, A2),
where A; = {a1, a3, as, --- ,a2,—1} and Ay = {a2, a4, ag, - - ,a2,}. From
Claim 4.5, it also follows that for each 1 < i < k, we can write Ct =
DD ek 50 that the following hold:

i) N(cf?, 4) = 41 U 45;
(ii) N(cy), 4) = N(c?, 4) = Ay;
(iii) N(c{?, 4) = N(c?, A) = As.

Since G[V(4)] & K,,, we see from (i), (i), (iii) that d(a)) = 3k + s
for every 1 <1 < 25. Let R = Uk {1, B, = Uk {d?, P} and
By = Uk {c", ).

Claim G. Both B, and B> are independent sets.

Proof. Suppose that B)(resp. B:) is not an independent set. There
are two possibilities.

Case 1. There exists j with 1 < j < k such that cgj)cgj) € E(G) (resp.
&e € E@)). o . o

In this case, {g:(,’ Vel azazascyy’, ¢ asagaragc? Ju(C—{C7}) (resp. {c§c)
alagaacg ) cg" )a5a6a7agc§’) }U(C - {C7})) forms a collection of k+1 vertex-
disjoint 5-cycles, a contradiction.

Case 2. There exist ji,j2 with 1 < ji < j2 <k, and there exist p, q with
1< p, ¢ <2 such that cgﬂ_,)_lc%fll € E(G) (resp. cg;)cg’:) € E(G)).

In this case, {cg,‘_,)_lc(z’:_,)_lazagaf,cg,f_')u, el aqascg’ f)cg’ 1) {72 )q7a3qgalog§”2)}
U (C — {C7,C#2}) (resp. {cg’;)cgf)alagaacg),cg")a,,ag,ascg")c(l"),c(l’z)a7

asagaoci’®} U (C — {C#,C7}) forms a collection of k + 1 vertex-disjoint
5-cycles, a contradiction. ]

Claim G implies the following facts:

() For all i, N(c?,V(C)) € RU By = UL {d, &, V)
(ii") for all 4, N(c{”, V(C)) € RU By = Uk {c?, &, P}
(iii") for all 4, N(c),V(C)) C RUBy = Uk, {e}), ), o}
(iv’) for all i, N(c{?, V(€)) € RUBz = UL {c{?, &, &I}

On the other hand, for each 1 < 7 < k, since cgi) as, c,(f)az, c:(,i)al, cgi)al &
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E(G) and d(a;) = d(as) = 3k + s, we obtain d(c$?) > 02(G) — d(az) >
(6k +25) — Bk +s) = 3k +s, d(cl?) > 3k +s, d(c{?) > 3k +s and
d(cl”) > 3k + s. Therefore it follows from (ii),(iii),(i"),(ii"),(iii’) and (iv*)
that for every 1 < ¢ < k, we have

N(c$)=N(?)=RU A UB; and N({?)=N(c{))=RU A UB,. (8)

It immediately follows from (i) and (8) that N(c{”) D A; U 4, U B, U B,
for all 1 <4 < k. Hence G = G[R] + G[U-,(A; U B;)]. Since (8) also im-
plies that G[UZ_, (A; U B;)] is a complete bipartite graph Koj4y 24+s With
bipartition (4; UB,, 42U B5), and since we clearly have K C G[R] C K,
this completes the proof of Lemma 4.7. a

We are now ready to prove Theorem 1.1. We restate it here in the
following form (note that Kj + Kakys2kt+s € G C Ki + Kopys2k+s 18
equivalent to G C K + Kor4s,2k+s under the assumption of Theorem 1.1).

Theorem 1.1. Let k > 1,5 > 5 be integers, and let G be a graph of
order 5k + 2s such that 02(G) > 6k + 25 and G € K + Kopys 264+s- Then
GOk +1)C5UP, 5.

Proof of Theorem 1.1. Suppose that the statement is false, and let G be
an edge maximal counterexample. Then G D kCs, and hence G D kCsUPs,
by Lemma 2.6 (i). Since G € Ky + Kopts,26+5 by the assumption, this to-
gether with Lemma 4.7 implies G 2 (k + 1)C5, and we therefore obtain
G 2 (k+1)Cs U Py,_5 by Lemma 2.6 (ii). This contradicts the assumption
that G is a counterexample, and this contradiction completes the proof of
Theorem 1.1. ]

5 Proof of Corollary 1.3

In this short section, we prove Corollary 1.3. We start with the following
simple lemma, which is an easy consequence of Theorem 1.1.

Lemma 5.1. Let k > 1 and s > 4k®> +6k+5, and let G be a graph of order
n = 5k + 25 with e(G) > (K + Kokts,2k+5)- Suppose that G 2 (k+1)Cs.
Then G 2 K. + Kopy3,2643-

Proof. Suppose that G 2 K\ + Kar+3,2¢+3. We may assume that 2(G) <
Ug(I(k + I(2k+3,2k+3) = 6k + 2s. If not, G = K;, + I(2k+3,2k+s 2 Ky +
Kopy30n+3 or G D (k + 1)Cs holds by Theorem 1.1, which is a contradic-
tion. Set G, = G. Then the same argument works for G,—; = G, — {a, b}
for any pair of nonadjacent vertices a and b of degree sum strictly less than
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02 (K + Kokqs2r+s). In view of this fact, we get a sequence of graphs
Gn—m of order n — 2m with at least e(K + Kogts—m,2k+s—m) + m edges,
where G,,_,, is obtained from G,_,,+1 by removing a pair of nonadjacent
vertices of degree sum at most o3 (K + Kok+s—m+1,2k+s—m+1) — 1. Since
G 2 Ky + Kak3,21+3 and by Theorem 1.1, there exists a graph Gp,_(,—9)
of order 5k + 4. Then e(Gn_(s-2)) 2 e(Ki + Kari22k42) + (8 — 2) >
55—"1‘-%""“—"'91 = e(Ksk44), which is a contradiction. This contradiction im-
plies the desired conclusion. ]

We are now ready to prove Corollary 1.3. We restate it here in the
following equivalent form.

Corollary 1.3. Let k > 1, and let G be a graph of order n > 8k®+17k+10.
Suppose that G 2 (k + 1)Cs and e(G) > e(Ky + To(n — k)). Then G =
Ky +To(n—k).

Proof of Corollary 1.3. Suppose that G ¥ Ky, +T2(n — k). We first show
the case where n—>5k is even, and let n—5k = 2s. By Lemma 5.1, G contains
a subgraph H of order 5k+6 such that H D Ki+ Kogy3,25+3. We can write
V(H) =RU B, UBg such that R = {7‘1,' .- ,Tk}, B, = {bl,b3," . ,b4k+5}
and By = {by, b4, - ,bsxt+6}, where G[R] = K and G[B, U B;] con-
tains a complete bipartite graph Kog43,25+3 With bipartition (Bq, By). Set
G- V(H)=U. Since H D K. + Kat32t+3 2 kCs, U does not contain a
5-cycle.

Claim H. Both B; and B, are independent sets, i.e., H = K+ Kop+3 2k+3-

Proof. Suppose that B;(resp. B:) is not an independent set. We may
assume that b4k+3b4k+5 € E(G) (resp. b4k+4b4k+5 S E(G)). Then U§=1 {'I’i
bai—3bai—2b4i—1b4iri} U {Dak+3bak+5Dak+20ak+1b4k+4baks3} (resp. UL, {r;
bai—3b4i—2bai1b4i7i } U {bsr4+4bar+6bart1bar+2b4k+3bakt4}) forms a collec-
tion of k + 1 vertex-disjoint 5-cycles, a contradiction. m|

Claim 1. For any v € V(U), min{d(v, B;),d(v, B2)} = 0.
Proof. Suppose that there exists v € V' (U) such that min{d(v, B), d(v, Ba)}
> 1. We may assume that vbsgts,vbarss € E(G). Then UL, {ribsi—_3bsi—2

b4i_1b4,"l‘i} U {’Ub4k+5b4k+2b4k+3b4k+sv} forms a collection of k£ + 1 vertex-
disjoint 5-cycles, a contradiction. 0O

Claim J. For any v € V(U), d(v,H) < 3k + 3 and equality holds if and
only if either N(v,H) = RUB; or N(v,H) = RU By holds.
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Proof. The claim follows immediately from Claim I. (]

We return to the proof of Corollary 1.3. By Claim H, J and Lemma 4.4,

e(G) = e(V(H)) + e(H,U) + e(V(U))
k(k—1)
2
= k(k; DN k(4k + 25) + (2k + 5)*

= e(Ki + Ta(n — k).

Hence e(G) = e(K; + To(n — k), d(u, H) = 3k + 3 for each u € V(U), and
e(V(U)) = (s — 3)%. In view of lemma 4.4, this implies that U = K,_3 s_3
with bipartition (U;,Us).

<{ + k(4k 4+ 6) + (2k + 3)*} + (3k + 3)(2s — 6) + (s — 3)?

Claim K. For any edge uv € E(U), N(u)NN(v) = R.

Proof. Suppose that there exists an edge uv € E(U) such that N(u) N
N(v) # R. Sinced(z,H) = 3k+3foreachz € V(U) and U = K,_3 ,_3, we
may assume that N(u)NN(v) = RUB, by Claim J. Then UX_, {ribsi—3bsi—>
bai—1b4i7i JU{uvbsr4abap+5bar4eu} forms a collection of k+1 vertex-disjoint
5-cycles, a contradiction. m]

By symmetry and Claim J, we may assume that N(u;,H) = RU B,
for some u; € U;. Then using repeatedly Claim K, we conclude that
N(ve,H) = RU By for each v» € Uz and N(v,,H) = RU B, for each
vy € U;. Therefore we obtain G = K}, +Ts(n — k), which is a contradiction.
This contradiction implies the case n — 5k is even.

Finally we consider the case n — 5k is odd. Let s be an integer so that
n—>5k = 2s+1. We may assume that d(v) = §(G). If §(G) > 6(Kr+To(n—
k)) +1 then, we see that §(G — {v}) > 6(Ki +T2(n—1—k)). Then by The-
orem 1.1, G — {v} contains a complete tripartite graph K, + Ta2(n — 1 — k).
Since §(G) > §(K+T2(n—k))+1, v is adjacent to at least one vertex in each
of two large color classes of this complete tripartite graph. We clearly have
that G D (k+1)Cj5, which is a contradiction. Therefore we may assume that
0(G) 0K +To(n—k)). If 8(G) < 8(Ki + To(n — k)), then (G — {v}) >
e(Ky + To(n — 1 — k)), which implies that G D G — {v} D (k+1)Cs, a
contradiction. Hence we may assume that §(G) = §(K +T2(n—k)). Since
e(G—{v}) =e(G) —d(v) =e(K; +To(n—1-k)) and G 2 (k +1)Cs, we
have G — {v} = K + T>(n — 1 — k). Now similarly to the case for n — 5k is
odd and §(G) > §(Kr+T2(n—k))+1, we see that G = K +To(n—k). This
contradicts the assumption that G % K +T2(n—k), and this contradiction
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completes the proof of Corollary 1.3. a
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