# Large sets of $\lambda$ -fold $P_3$ -factors in $K_{v,v}^*$

Guohui Hao and Qingde Kang Institute of Math., Hebei Normal University Shijiazhuang 050016, P.R. China

Abstract: Let G be a finite graph and H be an subgraph of G. If V(H) = V(G) then the subgraph H is called a spanning subgraph of G. A spanning subgraph H of G is called an F-factor if each component of H is isomorphic to F. Further if there exists a subgraph of G whose vertex set is  $\lambda V(G)$  and can be partitioned into F-factors then it is called a  $\lambda$ -fold F-factor of G, denoted by  $S_{\lambda}(1, F, G)$ . A large set of  $\lambda$ -fold F-factors in G is a partition  $\{B_i\}_i$  of all subgraphs of G isomorphic to F, such that each  $(X, B_i)$  forms a  $\lambda$ -fold F-factor of G. In this paper, we investigate the large set of  $\lambda$ -fold  $P_3$ -factors in  $K_{v,v}$  and obtain its existence spectrum. key words: Large set; Hamilton cycle;  $P_3$ -factor;  $LS_{\lambda}(1, P_3, K_{v,v})$ 

# 1 Introduction

A complete multigraph of order v and index  $\lambda$ , denoted by  $\lambda K_v$ , is a graph with v vertices, where any two distinct vertices x and y are joined by  $\lambda$  edges  $\{x,y\}$ . Let  $\lambda K_{n_1,n_2,\cdots,n_h}$  be a complete multipartite graph whose vertex set X consists of h disjoint sets  $X_1,\cdots,X_h$ , where  $|X_i|=n_i$  and any two vertices x and y from different sets  $X_i$  and  $X_j$  are joined by exactly  $\lambda$  edges  $\{x,y\}$ .

Let G = (V(G), E(G)) be a finite graph. A subgraph H of G is called a spanning subgraph of G if V(H) = V(G). Especially, H is called an F-factor if each component of H is isomorphic to a given graph F. Furthermore, if there exists a subgraph of G whose vertex set is  $\lambda V(G)$  and can be partitioned into F-factors then it is called a  $\lambda$ -fold F-factor of G, denoted

<sup>\*</sup>Research supported by NSFC Grant 10971051 and NSFH Grant A2007000230.

by  $S_{\lambda}(1, F, G)$ . A  $\lambda$ -fold F-factorization of G is a set of edge-disjoint  $\lambda$ -fold F-factors of G, whose edge sets partition the edges of G. For  $\lambda = 1$ , it is called an F-factorization of G. Particularly, if F is just an edge of G, then the F-factor is called a *one-factor* of G, and the corresponding F-factorization is called a *one-factorization* of G.

A t-wise balanced design  $S_{\lambda}(t,K,v)$  is a pair  $(X,\mathcal{B})$ , where X is a v-set, K is a set of positive integers and  $\mathcal{B}$  is a collection of subsets of X with size in K, called blocks, such that each t-subset of X appears exactly in  $\lambda$  blocks of  $\mathcal{B}$ . When  $K = \{k\}$ , it is called a t-design and briefly denoted by  $S_{\lambda}(t,k,v)$ . For  $\lambda = 1$ , the index 1 is often omitted. A S(t,K,v) is called separable if it can be partitioned into some S(t-1,k,v), where  $k \in K$ . An  $S_{\lambda}(2,3,v)$  is called a triple system of order v and index  $\lambda$ , briefly denoted by  $TS(v,\lambda)$ .

A  $\lambda$ -parallel class on a block design  $(X, \mathcal{B})$  is a set of some blocks in  $\mathcal{B}$ , which forms a partition of  $\lambda X$ . A 1-parallel class is simply called a parallel class. If the block set of a  $TS(v,\lambda)$  can be partitioned into parallel classes, then it is called a resolvable triple system of order v and index  $\lambda$  and denoted by  $RTS(v,\lambda)$ . For  $\lambda=1$ ,  $TS(v,\lambda)$  and  $RTS(v,\lambda)$  are a Steiner triple system and a Kirkman triple system, respectively, which we briefly denote by STS(v) and KTS(v).

A group divisible design, k- $GDD(g^m)$ , is a trio  $(X, \mathcal{G}, \mathcal{B})$ , where X is a set of order gm,  $\mathcal{G}$  is a partition of X into g-subsets, called groups,  $\mathcal{B}$  is a collection of k-subsets of X, called blocks, such that  $|\mathcal{B} \cap \mathcal{G}| \leq 1$  for each block  $\mathcal{B} \in \mathcal{B}$  and  $\mathcal{G} \in \mathcal{G}$ , and every 2-subset of X belonging to different groups appears exactly in one block of  $\mathcal{B}$ . Furthermore, if the block set  $\mathcal{B}$  can be partitioned into parallel classes, then it is called resolvable and denoted by k- $RGDD(g^m)$ .

**Lemma 1.1.** There exists a separable  $S(2, \{2, 3\}, v)$  for  $v \equiv 0 \mod 3$  and  $v \neq 6, 12$ .

#### Proof.

- (1). For  $v \equiv 3 \mod 6$ , there exists a  $KTS(v) = (Z_v, \mathcal{B})$ , where  $\mathcal{B}$  consists of  $\frac{v-1}{2}$  parallel classes  $\mathcal{P}_i$ , and each  $\mathcal{P}_i$  is an S(1,3,v). So, the KTS(v) is separable.
- (2). For  $v \equiv 0 \mod 6$  and  $v \neq 6, 12$ , there exists a  $3-RGDD(2^{v/2}) = (Z_v, \mathcal{G}, \mathcal{B})$  from [1], where  $\mathcal{B}$  consists of  $\frac{v-2}{2}$  parallel classes  $\mathcal{P}_i$ , each  $\mathcal{P}_i$  is an S(1,3,v), and  $\mathcal{G}$  is an S(1,2,v). So,  $(Z_v, \mathcal{G} \cup \mathcal{B})$  is a separable  $S(2,\{2,3\},v)$  indeed.

A k-cycle, denoted by  $(x_1, x_2, \dots, x_k)$ , is a subgraph of  $K_v$ , which consists of  $k (\leq v)$  distinct points  $x_1, x_2, \dots, x_k$  and k edges  $\{x_1, x_2\}, \dots, \{x_{k-1}, x_k\}, \{x_k, x_1\}$ . When k = v, it is called a Hamilton cycle of  $K_v$ . A k-cycle system of order v and index  $\lambda$ ,  $CS(v, k, \lambda)$ , is a collection C of k-cycles of

 $K_v$ , such that each edge of  $K_v$  appears exactly in  $\lambda$  members of  $\mathcal{C}$ . Especially, a CS(v, v, 1) is called a *Hamilton cycle decomposition* of  $K_v$ .

Lemma 1.2.<sup>[1]</sup> For  $n \ge 1$ , there exist

- a Hamilton cycle decomposition of  $K_{2n+1}$ ,
- a Hamilton cycle decomposition of  $K_{2n}\backslash\Gamma$ , and
- a one-factorization of  $K_{2n}$ ,

where  $\Gamma$  is a one-factor of  $K_{2n}$ ,

 $K_{p,q}$ -factorization of complete bipartite graph  $K_{m,n}$  has been applied in many fields. Particularly, Yamamoto [9] applied it to construct  $HUBMFS_2$  scheme. For the path graph  $P_k$  with k vertices, Ushio[7] completely solved the existence of  $P_3$ -factorizations of  $K_{m,n}$ . From then on, the existence problems of  $K_{p,q}$ -factorization of  $K_{m,n}$  have been widely researched, see [2-6,8].

A large set of  $\lambda$ -fold F-factors in G, denoted by  $LS_{\lambda}(1, F, G)$ , is a partition  $\{\mathcal{B}_i\}_i$  of all subgraphs of G isomorphic to F, such that each  $(X, \mathcal{B}_i)$  forms a  $\lambda$ -fold F-factor of G. In this paper, we will discuss the existence of  $LS_{\lambda}(1, P_3, K_{v,v})$  and obtain its spectrum.

# 2 Main Constructions

An  $S_{\lambda}(1, P_3, K_{v,v})$  consists of  $\frac{2\lambda v}{3}$  blocks, and an  $LS_{\lambda}(1, P_3, K_{v,v})$  consists of  $\frac{3v(v-1)}{2\lambda}$  disjoint  $S_{\lambda}(1, P_3, K_{v,v})$ s. The point set of  $K_{v,v}$  is taken as  $Z_v \cup \overline{Z}_v$ . Suppose that an  $S_{\lambda}(1, P_3, K_{v,v})$  consists of x  $P_3$ -blocks in the form  $[a, \overline{c}, b]$ , and y  $P_3$ -blocks in the form  $[\overline{a}, c, \overline{b}]$ , then

$$\left\{ \begin{array}{ll} 2x+y=\lambda v \\ x+2y=\lambda v \end{array} \right. \Longrightarrow x=y=\frac{\lambda v}{3}.$$

Thus, there exists an  $LS_{\lambda}(1, P_3, K_{v,v})$  only if  $3|\lambda v$  and  $\lambda|3\binom{v}{2}$ . We need only to consider the following cases:

$$\lambda = 1, \ v \equiv 0 \mod 3; \quad \lambda = 3, \ v \equiv 1, 2 \mod 3.$$

### 2.1 Case 3|v

**Lemma 2.1.** There exists an  $LS(1, P_3, K_{v,v})$  for  $v \equiv 0 \mod 3$  and  $v \neq 6, 12$ .

Construction. By Lemma 1.1, there exists a separable  $S(2, \{2, 3\}, v)$ 

$$\{(Z_v, \mathcal{P}_h) : 1 \le h \le 3t + 1\} \text{ for } v = 6t + 3,$$
  
 $\{(Z_v, \mathcal{P}_h) : 1 \le h \le 3t - 1\} \cup \{(Z_v, \mathcal{Q})\} \text{ for } v = 6t \ge 18,$ 

where  $(Z_v, Q)$  is a S(1, 2, 6t), and  $Q = \{\{i, i+3t\} : i \in Z_{3t}\}$ . Each  $(Z_v, \mathcal{P}_h)$  is an S(1, 3, v), which consists of  $\frac{v}{3}$  3-subsets  $\{a_r, b_r, c_r\}, r \in Z_{\frac{v}{3}}$ .

According to natural order  $a_r < b_r < c_r$ , we define the following three collections of ordered 3-tuples:

$$\mathcal{P}_{h}^{1} = \{(a_{r}, b_{r}, c_{r}) : r \in Z_{\frac{v}{3}}\}, \ \mathcal{P}_{h}^{2} = \{(b_{r}, c_{r}, a_{r}) : r \in Z_{\frac{v}{3}}\}, \\
\mathcal{P}_{h}^{3} = \{(c_{r}, a_{r}, b_{r}) : r \in Z_{\frac{v}{3}}\}.$$

On each  $\mathcal{P}_h$ , define a mapping

$$\sigma_h: (a_r, b_r, c_r) \mapsto (a_{r+1}, b_{r+1}, c_{r+1}),$$

which induces a permutation on  $Z_v$ :  $a_r \to a_{r+1}, b_r \to b_{r+1}, c_r \to c_{r+1}, r \in Z_{\frac{v}{3}}$ . Thus, the cyclic group  $\langle \sigma_h \rangle$  of order  $\frac{v}{3}$  generated by  $\sigma_h$  divides all elements of  $Z_v$  into three orbits:

$$(a_0,a_1,\cdots,a_{\frac{\nu}{3}-1}), (b_0,b_1,\cdots,b_{\frac{\nu}{3}-1}), (c_0,c_1,\cdots,c_{\frac{\nu}{3}-1}).$$

If x and y in  $Z_v$  belong to the same orbit, then it is denoted by  $x \in \mathcal{O}_h(y)$  or  $y \in \mathcal{O}_h(x)$ . Take the point set of  $K_{v,v}$  as  $Z_v \cup \overline{Z}_v$ . Define the following collections of  $P_3$ -blocks on  $K_{v,v}$ , where  $k \in Z_{\frac{v}{3}}$ ,  $s = 1, 2, 3; 1 \le h \le \lfloor \frac{v-1}{2} \rfloor$ , v = 6t + 3 or 6t.

$$\begin{split} \mathcal{A}_{h,k}^s &= \{[a, \overline{\sigma_h^k(a)}, b], [\overline{\sigma_h^k(b)}, c, \overline{\sigma_h^k(c)}] : (a, b, c) \in \mathcal{P}_h^s\}, \\ \mathcal{B}_{h,k}^s &= \{[a, \overline{\sigma_h^k(b)}, b], [\overline{\sigma_h^k(c)}, c, \overline{\sigma_h^k(a)}] : (a, b, c) \in \mathcal{P}_h^s\}, \\ \mathcal{C}_{h,k}^s &= \{[a, \overline{\sigma_h^k(c)}, b], [\overline{\sigma_h^k(a)}, c, \overline{\sigma_h^k(b)}] : (a, b, c) \in \mathcal{P}_h^s\}. \end{split}$$

For v = 6t, define

$$\mathcal{D}_0 = \{ [2i, \overline{2t+1+i}, 2i+3t], [2i+1, 2t+i, \overline{2i+1+3t}], \\ [2i+1, \overline{5t+1+i}, 2i+1+3t], [2i+2, 5t+i, \overline{2i+2+3t}] : i \in Z_t \},$$

$$\mathcal{E}_0 = \{ [2i, \overline{t+1+i}, 2i+3t], [2t+1+2i, 2t+i, \overline{5t+1+2i}],$$

$$[2i+1,\overline{4t+1+i},2i+1+3t],[\overline{2t+2+2i},5t+i,\overline{5t+2+2i}]:i\in Z_t\},$$

$$\mathcal{F}_0 = \{ [2i, \overline{1+i}, 2i+3t], [\overline{t+1+2i}, 2t+i, \overline{4t+1+2i}], [2i+1, \overline{1+i+3t}, 2i+1+3t], [\overline{t+2+2i}, 5t+i, \overline{4t+2+2i}] : i \in \mathbb{Z}_t \}.$$

Furthermore, denote  $\mathcal{D}_x = \mathcal{D}_0 + x$ ,  $\mathcal{E}_x = \mathcal{E}_0 + x$  and  $\mathcal{F}_x = \mathcal{F}_0 + x$ , where  $x \in Z_{3t}$ . Then each of  $\mathcal{A}^s_{h,k}$ ,  $\mathcal{B}^s_{h,k}$ ,  $\mathcal{C}^s_{h,k}$ ,  $\mathcal{D}_x$ ,  $\mathcal{E}_x$  and  $\mathcal{F}_x$  is an  $S(1, P_3, K_{v,v})$ . And the following collections form an  $LS(1, P_3, K_{v,v})$  on  $Z_v \cup \overline{Z}_v$  respectively:

$$\{ \mathcal{A}_{h,k}^{s}, \mathcal{B}_{h,k}^{s}, \mathcal{C}_{h,k}^{s} : k \in \mathbb{Z}_{2t+1}, 1 \leq h \leq 3t+1, s=1,2,3 \}, \text{ for } v=6t+3; \\ \{ \mathcal{A}_{h,k}^{s}, \mathcal{B}_{h,k}^{s}, \mathcal{C}_{h,k}^{s} : k \in \mathbb{Z}_{2t}, 1 \leq h \leq 3t-1, s=1,2,3 \} \cup \\ \{ \mathcal{D}_{x}, \mathcal{E}_{x}, \mathcal{F}_{x} : x \in \mathbb{Z}_{3t} \}, \text{ for } v=6t.$$

**Proof.** First, each  $\mathcal{A}_{h,k}^s$ ,  $\mathcal{B}_{h,k}^s$ ,  $\mathcal{C}_{h,k}^s$  is just an  $S(1, P_3, K_{v,v})$ , and  $\mathcal{D}_x$ ,  $\mathcal{E}_x$  and  $\mathcal{F}_x$  are also. For example, the point set of  $Z_v$  covered by 4t  $P_3$ -blocks in  $\mathcal{D}_0$  is:

$$\{2i, 2i+3t, 2i+1, 2i+1+3t, 2t+i, 5t+i: i \in Z_t\} = [2t, 3t-1] \cup [5t, 6t-1]$$

$$\cup [3t, 5t-2]_2 \cup [1, 2t-1]_2 \cup [3t+1, 5t-1]_2 \cup [0, 2t-2]_2 = [0, 6t-1].$$

Accordingly, the point set of  $\overline{Z}_{v}$  covered by  $4t P_3$ -blocks in  $\mathcal{D}_0$  is:

$$\{ \overline{2t+1+i}, \overline{5t+1+i}, \overline{2i+1}, \overline{2i+1}, \overline{2i+1+3t}, \overline{2i+2}, \overline{2i+2+3t} : i \in Z_t \} = [2t+1, 3t] \cup [5t+1, \overline{6t}] \cup [1, \overline{2t-1}]_2 \cup [3t+1, \overline{5t-1}]_2 \cup [2, \overline{2t}]_2 \cup [3t+2, \overline{5t}]_2 = [1, \overline{6t}] = [0, \overline{6t-1}].$$

For v = 6t + 3, the total number of  $\mathcal{A}_{h,k}^s$ ,  $\mathcal{B}_{h,k}^s$ ,  $\mathcal{C}_{h,k}^s$  is 9(2t+1)(3t+1); for  $v = 6t \ge 18$ , the total number of  $\mathcal{A}^s_{h,k}, \dot{\mathcal{B}}^s_{h,k}, \dot{\mathcal{C}}^s_{h,k}, \dot{\mathcal{D}}_x, \mathcal{E}_x, \mathcal{F}_x$  is  $9 \cdot 2t(3t - t)$ 1) + 9t, as expected. Below we only need to verify that each  $P_3$ -block in the form  $T = [x, \overline{z}, y]$  or  $T' = [\overline{x}, z, \overline{y}]$  appears in one  $S(1, P_3, K_{v,v})$ . Case 1: v = 6t + 3. We need only to consider  $P_3$ -blocks in the form T (T'is similar).

Since  $\mathcal{P} = \{\mathcal{P}_h : 1 \leq h \leq 3t + 1\}$  is a KTS(6t + 3), there exists a block  $B \in \mathcal{P}$  which contains  $\{x,y\}$ . Let  $B = \{x,y,z'\} \in \mathcal{P}_h$ . Then for some  $s \in \{1, 2, 3\}$ , we have (x, y, z') or  $(y, x, z') \in \mathcal{P}_h^s$ . Furthermore, by the property of cyclic group  $\langle \sigma_h \rangle$ ,

if  $z \in \mathcal{O}_h(x)$ , then  $\exists k \in \mathbb{Z}_{2t+1}$ , such that  $\sigma_h^k(x) = z$ , so  $T \in \mathcal{A}_{h,k}^s$ ; if  $z \in \mathcal{O}_h(y)$ , then  $\exists k \in \mathbb{Z}_{2t+1}$ , such that  $\sigma_h^k(y) = z$ , so  $T \in \mathcal{B}_{h,k}^s$ ;

if  $z \in \mathcal{O}_h(z')$ , then  $\exists k \in \mathbb{Z}_{2t+1}$ , such that  $\sigma_h^k(z') = z$ , so  $T \in \mathcal{C}_{h,k}^s$ . Case 2:  $v = 6t \ge 18$ . When  $y - x \ne 3t$ , it is the same to the case v = 6t + 3.

$$T = [x, \overline{z}, x + 3t]$$
 or  $T' = [\overline{x}, z, \overline{x + 3t}],$ 

where  $\{x, x + 3t\} \in \mathcal{Q}$ , i.e., each pair  $\{x, x + 3t\}$  is not contained in any  $\mathcal{P}_h$   $(1 \leq h \leq 3t - 1)$ . We need only to verify that the set of ordered difference d = z - x (or  $\overline{d} = z - y$ ) covered by the blocks in the form T (or T') of  $\{\mathcal{D}_x, \mathcal{E}_x, \mathcal{F}_x : x \in Z_{3t}\}$  are both  $Z_{3t} \cup \overline{Z}_{3t}$ . In fact,

$$\begin{split} z-x : & \{2t+1-i,t+1-i,1-i:0\leq i\leq t-1\} = \\ & [t+2,2t+1] \cup [2,t+1] \cup [2t+2,3t-1] \cup [0,1] = [0,3t-1]; \\ z-y : & \{2t-i,\overline{t-i},\overline{-i}:0\leq i\leq t-1\} = \\ & [t+1,\overline{2t}] \cup [\overline{1},\overline{t}] \cup [\overline{2t+1},\overline{3t-1}] \cup [\overline{0}] = [\overline{0},\overline{3t-1}]; \\ z-x : & \{2t-1-i,-1-i,t-1-i:0\leq i\leq t-1\} = \\ & [t,2t-1] \cup [2t,3t-1] \cup [0,t-1] = [0,3t-1]; \\ z-y : & \{2t-2-i,\overline{-2-i},\overline{t-2-i}:0\leq i\leq t-1\} = \\ & [t-1,\overline{2t-2}] \cup [\overline{2t-1},\overline{3t-2}] \cup [\overline{0},\overline{t-2}] \cup [\overline{3t-1}] = [\overline{0},\overline{3t-1}]. \quad \blacksquare \end{split}$$

# **Lemma 2.2.** There exists an $LS(1, P_3, K_{6,6})$ .

So we only consider y = x + 3t, i.e.,

**Proof.** By Lemma 1.2., there exists an one-factorization  $\{F_k : 1 \le k \le 5\}$ of  $K_6$  on  $I_6$ . Each one-factor  $F_k$  consists of three pairs  $P_{k,i} = \{p_{k,i}^1, p_{k,i}^2\}$ ,  $i \in \mathbb{Z}_3$ . Take the point set as  $I_6 \times I_6$ . In  $K_{6,6}$ , denote the  $P_3$ -block with single point on the left or on the right by [p, P] ( or [P, p]). For  $i, j \in \mathbb{Z}_3, 1 \le k \le 5$ , define the following collection of  $\mathbb{P}_3$ -blocks:

 $\mathcal{A}_{i,j}^k = \{[p_{k,i}^1, P_{k,j}], [p_{k,i}^2, P_{k,j+1}], [P_{k,i+1}, p_{k,j+2}^1], [P_{k,i+2}, p_{k,j+2}^2]\}.$  Obviously, for certain k, i, j it is an  $S(1, P_3, K_{6,6})$ . Then,

$$\bigcup_{i \in Z_3} \{ p_{k,i}^1, p_{k,i}^2 \} = \bigcup_{j \in Z_3} \{ p_{k,j+2}^1, p_{k,j+2}^2 \} = I_6.$$

For certain k, when i, j run over  $Z_3$ ,  $P_{k,j}$ ,  $P_{k,j+1}$ ,  $P_{k,i+1}$  and  $P_{k,i+2}$  covers the 2-subsets of  $F_k$  once, respectively. Then, for  $i, j \in \mathbb{Z}_3$  and  $1 \leq k \leq 5$ , all blocks of  $\mathcal{A}_{i,j}^k$  just cover all  $P_3$ -blocks of  $K_{6,6}$ . It is shown that  $\{\mathcal{A}_{i,j}^k: i,j\in Z_3, 1\leq k\leq 5\}$  forms an  $LS(1,P_3,K_{6,6})$ , which consists of  $3\times 3\times 5=45$   $S(1, P_3, K_{6,6})$ s.

Lemma 2.3. There exists an  $LS(1, P_3, K_{12,12})$ .

**Proof.** By Lemma 1.2., there exists an one-factorization  $\{F_k: 1 \le k \le 11\}$  of  $K_{12}$  on  $I_{12}$ . Each one-factor  $F_k$  consists of six pairs  $P_{k,i} = \{p_{k,i}^1, p_{k,i}^2\}$ ,  $i \in Z_6$ . For each one-factor  $F_k$  and  $i \in Z_6$ , j = 0, 1, 2, take the point set as  $I_{12} \times I_{12}$ , define the following collection of  $P_3$ -blocks:

 $\mathcal{A}_{i,j}^k = \{[p_{k,i}^1, P_{k,j}], [p_{k,i}^2, P_{k,j+1}], [p_{k,i+1}^1, P_{k,j+3}], [p_{k,i+1}^2, P_{k,j+4}],$ 

 $[P_{k,i+2}, p_{k,4j+2}^1], [P_{k,i+3}, p_{k,4j+2}^2], [P_{k,i+4}, p_{k,4j+5}^1], [P_{k,i+5}, p_{k,4j+5}^2]\}.$  Since for any j=0,1,2 we have  $\{j,j+1,j+3,j+4,4j+2,4j+5\}=Z_6$ , it is easy to see that each  $\mathcal{A}_{i,j}^k$  is just an  $S(1,P_3,K_{12,12})$  on  $I_{12}\times I_{12}$ . For certain k,

$$\bigcup_{i \in Z_6}^{\text{III } k,} \{p_{k,i}^1\} = \bigcup_{i \in Z_6} \{p_{k,i+1}^1\} = \bigcup_{j \in Z_3} \{p_{k,4j+2}^1, p_{k,4j+5}^1\} = H = \frac{1}{2}I_{12};$$

$$\bigcup_{i \in Z_6} \{p_{k,i}^2\} = \bigcup_{i \in Z_6} \{p_{k,i+1}^2\} = \bigcup_{i \in Z_6} \{p_{k,4j+2}^2, p_{k,4j+5}^2\} = I_{12} \backslash H.$$

When *i* runs over  $Z_6$ ,  $P_{k,i+2}$ ,  $P_{k,i+3}$ ,  $P_{k,i+4}$  and  $P_{k,i+5}$  cover all 2-subsets of  $F_k$  once. When *j* runs over  $\{0,1,2\}$ ,  $P_{k,j} \cup P_{k,j+3}$  and  $P_{k,j+1} \cup P_{k,j+4}$  cover all 2-subsets of  $F_k$  once also.

So, for  $i \in Z_6, j = 0, 1, 2$  and  $1 \le k \le 11$ , all blocks of each  $\mathcal{A}_{i,j}^k$  just cover all  $P_3$ -blocks of  $K_{12,12}$ . It is showed that  $\{\mathcal{A}_{i,j}^k : i \in Z_6, 1 \le k \le 11, j = 0, 1, 2\}$  can form an  $LS(1, P_3, K_{12,12})$ , which consists of  $6 \times 3 \times 11 = 198 \ S(1, P_3, K_{12,12})$ s.

Theorem 2.4. There exists an  $LS(1, P_3, K_{v,v})$  if and only if 3|v.

**Proof.** Combining Lemma 2.1., Lemma 2.2. and Lemma 2.3., we complete the proof.

# 2.2 Case 3 ∦v

Theorem 2.5. There exists an  $LS_3(1, P_3, K_{v,v})$  for  $v \equiv 1, 2 \mod 3$  and  $v \geq 2$ .

Construction. By Lemma 1.2., let  $\{\Omega_k: 1 \leq k \leq \lfloor \frac{v-1}{2} \rfloor \}$  be Hamilton cycle decomposition on  $K_v$  (odd v) or  $K_v \setminus \Theta$  (even v), where each  $\Omega_k$  is a Hamilton cycle, whereas  $\Theta = \{\{e_i, f_i\}: 0 \leq i \leq \frac{v-2}{2} \}$  is an one-factor of  $K_v$  for even v. Take the point set of  $K_{v,v}$  as  $Z_v \cup \overline{Z}_v$ . For each Hamilton cycle  $\Omega_k = (a_0, a_1, \dots, a_{v-1})$  and  $d \in Z_v$ , define the collections of  $P_3$ -blocks  $A_d^k = \{[\overline{a}_{i+d}, a_i, \overline{a}_{i+d+1}], [a_{i+d}, \overline{a}_i, a_{i+d+1}]: i \in Z_v\}.$ 

Furthermore, for even v and  $0 \le r \le \frac{v-2}{2}$ , define

$$\begin{split} \mathcal{B}_r &= \{ [\overline{e}_{i+r}, i, \overline{f}_{i+r}], [e_{i+r}, \overline{i}, \overline{f}_{i+r}], \\ & [\overline{e}_{i+r}, i + \frac{v}{2}, \overline{f}_{i+r}], [e_{i+r}, \overline{i + \frac{v}{2}}, f_{i+r}] : i \in Z_{\frac{v}{2}} \}. \end{split}$$

Then the following collections form an  $LS_3(1, K_{1,2}, K_{\nu,\nu})$ :

```
\begin{array}{l} \{\mathcal{A}_d^k: 1 \leq k \leq \frac{v-1}{2}, d \in Z_v\}, \text{ for odd } v; \\ \{\mathcal{A}_d^k: 1 \leq k \leq \frac{v-2}{2}, d \in Z_v\} \cup \{\mathcal{B}_r: 0 \leq r \leq \frac{v-2}{2}\}, \text{ for even } v. \end{array}
```

**Proof.** First, since each  $\Omega_k$  is a Hamilton cycle, whereas  $\Theta$  is an one-factor for even v, so each  $\mathcal{A}_d^k, \mathcal{B}_r$  is just an  $S_3(1, P_3, K_{v,v})$ . The total number of these parallel classes is  $\frac{v(v-1)}{2} = \frac{v(v-2)}{2} + \frac{v}{2}$ , as expected. Next, we need to consider the  $P_3$ -blocks in the form  $T = [\overline{y}, x, \overline{z}]$  (or  $[y, \overline{x}, z]$ ) of  $K_{v,v}$  on  $Z_v \cup \overline{Z}_v$ .

odd v: Let  $\{\Omega_h : 1 \leq h \leq \frac{v-1}{2}\}$  be a Hamilton cycle decomposition on  $K_v$ . For each edge  $\{y, z\}$ , there exists an edge  $\{a_{i+d}, a_{i+d+1}\}$  of  $\Omega_k$  for certain  $k \in [1, \frac{v-1}{2}]$ , such that  $\{a_{i+d}, a_{i+d+1}\} = \{y, z\}$ . Furthermore, since  $\{\overline{a}_i : i \in Z_v\} = \overline{Z}_v$ , there exists some i, such that  $\overline{x} = \overline{a}_i$ . So,  $T \in \mathcal{A}_d^k$ .

 $\{\overline{a}_i: i\in Z_v\}=\overline{Z}_v$ , there exists some i, such that  $\overline{x}=\overline{a}_i$ . So,  $T\in \mathcal{A}_d^k$ .

<u>even v</u>: Let  $\{\Omega_h: 1\leq h\leq \frac{v-2}{2}\}$  be a Hamilton cycle decomposition on  $K_v\backslash\Theta$ . For each edge  $\{y,z\}$ , there exists some  $k\in[1,\frac{v-2}{2}]$ , such that  $\{y,z\}$  appears in  $\Omega_k$  or one-factor  $\Theta$ . If the former is right, it is the same as case odd v. On the contrary, since  $\{\{i\}\cup\{i+\frac{v}{2}\}: 0\leq i\leq \frac{v-2}{2}\}=Z_v$ , there exists some i, such that i=x or  $i+\frac{v}{2}=x$ . So,  $T\in\mathcal{B}_r$ .

Example 1  $LS_3(1, K_{1,2}, K_{4,4}) = \{(Z_4 \cup \overline{Z}_4, A_d^1 \cup \mathcal{B}_r) : d \in Z_4, 0 \le r \le 1\}$ . First, let  $\Theta = \{\{0, 2\}, \{1, 3\}\}$  be an one-factor of  $K_4$ . Then a Hamilton cycle decomposition on  $K_4 \setminus \Theta$  consists of one Hamilton cycle  $\Omega_1 = \{(0, 1, 2, 3)\}$ . So, we can list the construction.

 $\begin{array}{l} \mathcal{A}_{0}^{1} = \{[\overline{0},0,\overline{1}],[\overline{1},1,\overline{2}],[\overline{2},2,\overline{3}],[\overline{3},3,\overline{0}],[0,\overline{0},1],[1,\overline{1},2],[2,\overline{2},3],[3,\overline{3},0]\};\\ \mathcal{A}_{1}^{1} = \{[\overline{1},0,\overline{2}],[\overline{2},1,\overline{3}],[\overline{3},2,\overline{0}],[\overline{0},3,\overline{1}],[1,\overline{0},2],\{2,\overline{1},3],[3,\overline{2},0],[0,\overline{3},1]\};\\ \mathcal{A}_{2}^{1} = \{[\overline{2},0,\overline{3}],[\overline{3},1,\overline{0}],[\overline{0},2,\overline{1}],[\overline{1},3,\overline{2}],[2,\overline{0},3],[3,\overline{1},0],[0,\overline{2},1],[1,\overline{3},2]\};\\ \mathcal{A}_{3}^{1} = \{[\overline{3},0,\overline{0}],[\overline{0},1,\overline{1}],[1,2,\overline{2}],[\overline{2},3,\overline{3}],[3,\overline{0},0],[0,\overline{1},1],[1,\overline{2},2],[2,\overline{3},3]\};\\ \mathcal{B}_{0} = \{[\overline{0},0,\overline{2}],[0,\overline{0},2],[\overline{1},1,\overline{3}],[1,\overline{1},3],[\overline{0},2,\overline{2}],[0,\overline{2},2],[\overline{1},3,\overline{3}],[1,\overline{3},3]\};\\ \mathcal{B}_{1} = \{[\overline{1},0,\overline{3}],[1,\overline{0},3],[\overline{0},1,\overline{2}],[0,\overline{1},2],[\overline{1},2,\overline{3}],[1,\overline{2},3],[\overline{0},3,\overline{2}],[0,\overline{3},2]\}. \end{array}$ 

Example 2  $LS_3(1, K_{1,2}, K_{5,5}) = \{(Z_5 \cup \overline{Z}_5, A_d^k) : 1 \le k \le 2, d \in Z_5\}.$ 

First, a Hamilton cycle decomposition on  $K_5$  consists of two Hamilton cycles  $\Omega_1 = \{(0, 1, 2, 3, 4)\}$  and  $\Omega_2 = \{(0, 2, 4, 1, 3)\}$ . So, we can list the construction.

$$\begin{split} \mathcal{A}_0^1 &= \{ [\overline{0},0,\overline{1}], [\overline{1},1,\overline{2}], [\overline{2},2,\overline{3}], [\overline{3},3,\overline{4}], [\overline{4},4,\overline{0}], \\ & [0,\overline{0},1], [1,\overline{1},2], [2,\overline{2},3], [3,\overline{3},4], [4,\overline{4},0] \}; \\ \mathcal{A}_1^1 &= \{ [\overline{1},0,\overline{2}], [\overline{2},1,\overline{3}], [\overline{3},2,\overline{4}], [\overline{4},3,\overline{0}], [\overline{0},4,\overline{1}], \\ & [1,\overline{0},2], [2,\overline{1},3], [3,\overline{2},4], [4,\overline{3},0], [0,\overline{4},1] \}; \\ \mathcal{A}_2^1 &= \{ [\overline{2},0,\overline{3}], [\overline{3},1,\overline{4}], [\overline{4},2,\overline{0}], [\overline{0},3,\overline{1}], [\overline{1},4,\overline{2}], \\ & [2,\overline{0},3], [3,\overline{1},4], [4,\overline{2},0], [0,\overline{3},1], [1,\overline{4},2] \}; \\ \mathcal{A}_3^1 &= \{ [\overline{3},0,\overline{4}], [\overline{4},1,\overline{0}], [\overline{0},2,\overline{1}], [\overline{1},3,\overline{2}], [\overline{2},4,\overline{3}], \\ & [3,\overline{0},4], [4,\overline{1},0], [0,\overline{2},1], [1,\overline{3},2], [2,\overline{4},3] \}; \\ \mathcal{A}_4^1 &= \{ [\overline{4},0,\overline{0}], [\overline{0},1,\overline{1}], [\overline{1},2,2], [\overline{2},3,\overline{3}], [\overline{3},4,\overline{4}], \\ & [4,\overline{0},0], [0,\overline{1},1], [1,\overline{2},2], [2,\overline{3},3], [3,\overline{4},4] \}; \\ \mathcal{A}_0^2 &= \{ [\overline{0},0,\overline{2}], [\overline{1},1,\overline{3}], [\overline{2},2,\overline{4}], [\overline{3},3,\overline{0}], [\overline{4},4,\overline{1}], \end{split} \right.$$

$$\begin{array}{c} [0,\overline{0},2],[1,\overline{1},3],[2,\overline{2},4],[3,\overline{3},0],[4,\overline{4},1]\};\\ \mathcal{A}_{1}^{2}=\{[\overline{1},0,\overline{3}],[\overline{2},1,\overline{4}],[\overline{3},2,\overline{0}],[\overline{4},3,\overline{1}],[\overline{0},4,\overline{2}],\\ [1,\overline{0},3],[2,\overline{1},4],[3,\overline{2},0],[4,\overline{3},1],[0,\overline{4},2]\};\\ \mathcal{A}_{2}^{2}=\{[\overline{2},0,\overline{4}],[\overline{3},1,\overline{0}],[\overline{4},2,\overline{1}],[\overline{0},3,\overline{2}],[\overline{1},4,\overline{3}],\\ [2,\overline{0},4],[3,\overline{1},0],[4,\overline{2},1],[0,\overline{3},2],[1,\overline{4},3]\};\\ \mathcal{A}_{3}^{2}=\{[\overline{3},0,\overline{0}],[\overline{4},1,\overline{1}],[\overline{0},2,\overline{2}],[\overline{1},3,\overline{3}],[\overline{2},4,\overline{4}],\\ [3,\overline{0},0],[4,\overline{1},1],[0,\overline{2},2],[1,\overline{3},3],[2,\overline{4},4]\};\\ \mathcal{A}_{4}^{2}=\{[\overline{4},0,\overline{1}],[\overline{0},1,\overline{2}],[\overline{1},2,\overline{3}],[\overline{2},3,\overline{4}],[\overline{3},4,\overline{0}],\\ [4,\overline{0},1],[0,\overline{1},2],[1,\overline{2},3],[2,\overline{3},4],[3,\overline{4},0]\}. \end{array}$$

### 3 Conclusion

**Theorem 3.1.** There exists an  $LS_{\lambda}(1, P_3, K_{v,v})$  if and only if  $v \geq 2$ ,  $3|\lambda v$  and  $2\lambda|3v(v-1)$ .

Proof. By Theorem 2.4. and Theorem 2.5.,

when  $3|v, LS(1, P_3, K_{v,v}) = \{(Z_v \cup \overline{Z}_v, A_i) : 1 \le i \le \frac{3v(v-1)}{2}\}$  exists; when  $3 \not|v, LS_3(1, P_3, K_{v,v}) = \{(Z_v \cup \overline{Z}_v, B_i) : 1 \le i \le \frac{v(v-1)}{2}\}$  exists.

For any  $\lambda$ , by the necessary conditions, we need only to prove the sufficiency. Case 1: 3  $/\lambda$ . Then 3|v and  $2\lambda|3v(v-1)$ . Define

$$C_k = \bigcup_{i=k\lambda+1}^{(k+1)\lambda} A_i, \ 0 \le k \le \frac{3v(v-1)}{2\lambda} - 1,$$

then  $\{(Z_v \cup \overline{Z}_v, \mathcal{C}_k) : 0 \le k \le \frac{3v(v-1)}{2\lambda} - 1\}$  is just an  $LS_\lambda(1, P_3, K_{v,v})$ . Case 2:  $3|\lambda$ . Then  $\frac{2\lambda}{3}|v(v-1)$ . For 3|v, it is similar to above. For  $3\not|v$ , let  $\lambda = 3t$ , define

$$C_k = \bigcup_{i=t+1}^{t(k+1)} \mathcal{B}_i, \ 0 \le k \le \frac{v(v-1)}{2t} - 1,$$

then  $\{(Z_v \cup \overline{Z}_v, C_k): 0 \le k \le \frac{v(v-1)}{2t} - 1\}$  is just an  $LS_\lambda(1, P_3, K_{v,v})$ .

# References

- C.J. Colbourn and J.H. Dinitz, The CRC Handbook of Combinatorial Designs, (part I, 6.3, p.89; part IV, 50.2, p.491; part VI, 4.8, p.665; 4.2, p.654), CRC Press, Inc., 1996.
- [2] B. Du,  $K_{1,p^2}$ -factorization of complete bipartite graphs, Discrete Math, 1998, 187: 273-279.
- [3] B. Du,  $K_{1,pq}$ -factorization of complete bipartite graphs, Austral J Combin, 2002, 26: 85-92.

- [4] B. Du, Wang  $J_{,k}$ -factorization of complete bipartite graphs, Discrete Math, 2002, 259: 301-306.
- [5] B. Du, J. Wang,  $K_{p,q}$ -factorization of complete bipartite grahps, Science in China, Ser. A, 47(2004), 473-479.
- [6] N. Martin, Complete biparpite factorization by complete bipartite graphs, Discrete Math, 1997, 167/168: 461-480.
- [7] K. Ushio, P<sub>3</sub>-factorization of complete bipartite graphs, Discrete Math, 1988, 72: 361-366.
- [8] H. Wang, On  $K_{1,k}$ -factorization of a complete bipartite graphs, Discrete Math, 1994, 126: 359-364.
- [9] S. Yamamoto, S. Tazawa, K. Ushio, et al, Design of a balanced multiple-valued file organization scheme with the least redundancy, ACM Trans Database System, 1979, 4: 518-530.