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Abstract: Let G be a finite graph and H be an subgraph of
G. If V(H) = V(G) then the subgraph H is called a spanning
subgraph of G. A spanning subgraph H of G is called an F-factor
if each component of H is isomorphic to F. Further if there exists
a subgraph of G whose vertex set is AV(G) and can be partitioned
into F-factors then it is called a A-fold F-factor of G, denoted
by Sx(1, F,G). A large set of A-fold F-factors in G is a partition
{B;}: of all subgraphs of G isomorphic to F, such that cach (X, B;)
forms a A-fold F-factor of G. In this paper, we investigate the large
set of M-fold Ps-factors in K, , and obtain its existence spectrum.
key words: Large set; Hamilton cycle; Ps-factor; LSy(1, Ps, K, »)

1 Introduction

A complete multigraph of order v and index A, denoted by AK,, is a graph
with v vertices, where any two distinct vertices z and y arc joined by A
cdges {z,y}. Let AK,, ny,....n, be a complete multipartite graph whose

vertex set X consists of h disjoint sets Xj,---, X, where | X;| = n; and
any two vertices z and y from different sets X; and X are joined by exactly
A edges {z,y}.

Let G = (V(Q), E(G)) be a finite graph. A subgraph H of G is called a
spanning subgraph of G if V(H) = V(G). Especially, H is called an F-factor
if each component of H is isomorphic to a given graph F. Furthermore,
if there exists a subgraph of G whose vertex set is AV(G) and can be
partitioned into F-factors then it is called a A-fold F-factor of G, denoted
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by Sx(1, F,G). A A-fold F-factorization of G is a set of edge-disjoint A-
fold F-factors of G, whose edge sets partition the edges of G. For A = 1,
it is called an F-factorization of G. Particularly, if F is just an edge of
G, then the F-factor is called a one-factor of G, and the corresponding
F-factorization is called a one-factorization of G.

A t-wise balanced design S)(t, K,v) is a pair (X, B), where X is a v-set,
K is a set of positive integers and B is a collection of subsets of X with
size in K, called blocks, such that each t-subset of X appears exactly in A
blocks of B. When K = {k}, it is called a t-design and briefly denoted by
Sa(t,k,v). For A = 1, the index 1 is often omitted. A S(t, K,v) is called
separable if it can be partitioned into some S(t — 1, %, v), where £k € K. An
Sx(2,3,v) is called a triple system of order v and index A, briefly denoted
by T'S(v, A).

A A-parallel class on a block design (X, B) is a set of some blocks in
B, which forms a partition of AX. A 1l-parallel class is simply called a
parallel class. If the block set of a T'S(v, A) can be partitioned into parallel
classes, then it is called a resolvable triple system of order v and index A and
denoted by RTS(v,A). For A = 1, TS(v,A) and RT'S(v, ) are a Steiner
triple system and a Kirkman triple system, respectively, which we briefly
denote by ST'S(v) and KT'S(v).

A group divisible design, k-GDD(g™), is a trio (X, G, B), where X is a
set of order gm, G is a partition of X into g-subsets, called groups, B is a
collection of k-subsets of X, called blocks, such that |[BN G| < 1 for each
block B € B and G € G, and every 2-subset of X belonging to different
groups appears exactly in one block of B. Furthermore, if the block set
B can be partitioned into parallel classes, then it is called resolvable and
denoted by k-RGDD(g™).

Lemma 1.1. There exists a separable S(2,{2,3},v) for v =0 mod 3 and
v # 6,12,
Proof.

(1). For v = 3 mod 6, there exists a KT'S(v) = (Z,,B), where B
consists o 1;—1 parallel classes P;, and each P; is an S(1,3,v). So, the
KTS(v) is separable.

(2). For v = 0 mod 6 and v # 6,12, there exists a 3-RGDD(2*/?) =
(Z,,G, B) from [1), where B consists of 252 parallel classes P;, each P; is an
S(1,3,v), and G is an S(1,2,v). So, (Z,,GUB) is a separable S(2, {2,3},v)
indeed. =

A k-cycle, denoted by (z1,z2,- -, zk), is a subgraph of K,, which con-
sists of k (< v) distinct points 1, x2, - - -, 7k and k edges {z,, z2},- - -, {Zk-1,
zi},{Zk,z1}. When k = v, it is called a Hamilton cycle of K,. A k-cycle
system of order v and index A, CS(v, k, A), is a collection C of k-cycles of
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K., such that each edge of K, appears exactly in A members of C. Espe-
cially, a CS(v,v,1) is called a Hamilton cycle decomposition of K,.

Lemma 1.2.0 For n > 1, there exist
a Hamilton cycle decomposition of Ko,,4),
a Hamilton cycle decomposition of Ky, \T', and
a one-factorization of Ko,

where T is a one-factor of Ks,,,

K 4-factorization of complete bipartite graph K, , has been applied in
many fields. Particularly, Yamamoto [9] applied it to construct HUBM FS,
scheme. For the path graph P; with k vertices, Ushio[7] completely solved
the existence of Ps-factorizations of Krun. From then on, the existence
problems of K, ,-factorization of Ko, , have been widely rescarched, sec
[2-6,8].

A large set of A-fold F-factors in G, denoted by LS\(1,F,G), is a
partition {B;}; of all subgraphs of G isomorphic to F', such that cach (X, B;)
forms a A-fold F-factor of G. In this paper, we will discuss the existence
of LS,\(1, P, K, ,,) and obtain its spectrum.

2 Main Constructions

An Sx(1, P3, K,,,) consists of 23¢ blocks, and an LSx(1, Ps, K, ,,) consists
of 3—”(2”/\;11 disjoint Sx(1, P3, K, ,)s. The point set of K, ,, is taken as Z,UZ,,.
Suppose that an Sx(1, Ps, K, ) consists of z P3-blocks in the form [a, ¢, b],
and y P3-blocks in the form [g, ¢, b], then

{ 2r+y= M\

=y = Y
T+2y= A =IT=Y=%.

Thus, there exists an LSx(1, P3, Ky,) only if 3[Av and A|3(3). We need
only to consider the following cases:
A=1,v=0mod3; A=3, v=1,2mod 3.

2.1 Case 3|v

Lemma 2.1. There exists an LS(1, Ps, K, ,) for v = 0 mod 3 and v #
6,12.

Construction. By Lemma 1.1, there exists a separable S(2, {2, 3},v)

{(Z4,Pr) : 1 < h < 3t+1} for v =6t +3,
{(Zo,Pr): 1 <h <3t-1}U {(Zy, Q)} for v = 6t > 18,

where (Z,, Q) is a S(1,2,6¢t), and Q = {{i,i+3¢t} : i € Z3;}. Each (Z,,P))
is an $(1, 3,v), which consists of ¥ 3-subsets {a,,b,,¢c, },r € Zy.
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According to natural order a, < b, < ¢,, we define the following three

collections of ordered 3-tuples:

P = {(ar,brycr) 7 € Zg}, PR = {(bryerar) i1 € Zg),

P3 = {(C,-, a1'1br) T € Z%}-
On each P}, define a mapping

Op t (a‘r" br:cr) g (ar+l:br+1acr+l)a

which induces a permutation on Z,: a, — @ry1,br — bry1,6 = Cry1, T E
Zy. Thus, the cyclic group (o)) of order § generated by o), divides all
elements of Z, into three orbits:

(aO’al’ Y T ) (bOsbla b%—l); (CO:clv" ——1)
If z and y in Z, belong to the same orbit, then it is denoted by z €
On(y) or y € Op(z). Take the point set of K, as Z, U Z,. Define the
following collections of P;-blocks on K, ., where k € Z3,s = 1,2,3;1 <

h<|%2],v=6t+3or 6t.
ik = {[a' Uﬁ a) b] [O'I,: b)vcsafk;(c)] : (a., b’c) € P;:}’
B} . = {[a, Uh(b) b, [ah(c)sc’ ‘Th(a)] : (a,b,¢) € Pi},

Ch,k = {[aa O'h(C), b]’ [Ulli(a'))c) Uh(b)] : (a! b) C) € ’P)sz}
For v = 6t, define
Do = {[2¢,2t +1+1,2¢ 4+ 3t], (2 + 1,2t + 4,20 + 1 + 3¢],
[264+1,50+1+¢,20+1+3t),[20+ 2,5t +4,20 + 2+ 3t) : i € Z,},
Eo = {[24,t +1+1,2i + 3t],[2t + 1 + 2¢,2t + 4,5t + 1 + 24,
[2i+ 1,46+ 1+4,2i + 1+ 3¢, [2t + 2+ 22, 5¢ + 4,5t + 2+ 2i] : ¢ € Z,},
Fo={[2,1+7,2i +3¢],[t + 1 + 23,2t + 4,4t + 1 + 2],
[2i4+1,T+i+3t,2 +1+3t), F+ 2+ 23,5t +4,4L + 2+ 23] : 6 € Zy}.
Furthermore, denote D, = Do +z,&; = &g+ and F, = Fo+x, where z €
Z3. Then each of A, \, B}, ,,C}, 1, Dz, €z and F; is an S(1, P3, Ky ,0). And
the following collections form an LS(1, P, K, ,) on Z, U Z.,, respectively:
{A} 1 Bh i Ci gtk € Zar1, L SR <3t 41,8 =1,2,3}, for v =6t + 3;
{‘Ahk’Bhk’Chk keZ2g,1 <h<3t—1 S-—-l 2 3}U
{'Dx,Sx,]-' 1z € Z3}, for v = 6t.
Proof. First, each Aj ;, Bj, ,Cy, ;. is just an S(1, P3, K, ), and D, &; and
F. are also. For example, the point set of Z, covered by 4t Ps-blocks in
Dy is:
{24,2i+3¢,2i+1,2i+1+3¢t,2t 44,5t +i : § € Z,} = [2t,3t—1]U[5¢, 6t 1]
U[3t, 5t — 2]2 U [1, 2t — 1]2 U [3t + 1,5t — 1]2 U [0, 2t ~ 2]2 = [0,6t - 1].
Accordingly, the point set of Z, covered by 4t Ps-blocks in Dy is:
{20+1+4,5t+14+4,20+ 1,20+ 1+3t,26+2,2%+2+3t:i € Z;} =
(2t + 1, 3tu[5¢ + 1, 6E)U[T, 2t — 1]2U[3t + 1,5t — 1}2U[2, 2t]oU[3E + 2, 5¢]»
=[1,6¢] = [6’-6}—_—1]
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For v = 6t + 3, the total number of A, ;, B, ,C; . is 9(2t + 1)(3t + 1);
for v = 6t > 18, the total number of A, A,Bh k,Ch ,c,’Da,Em,}' is 9-2¢(3t -
1) + 9¢, as expected. Below we only need to verlfy that each Pj-block in
the form T = [z,%,y] or T' = [, 2, 7] appears in one S(1, P3, K, ,).

Case 1: v = 6t+3. We need only to consider Ps-blocks in the form T (1"
is similar).

Since P = {P, : 1 < h < 3t+ 1} is a KTS(6t + 3), there cxists a
block B € P which contains {z,y}. Let B = {z,y,2'} € P,. Then for
some s € {1,2,3}, we have (z,y,2’) or (y,z,2') € P§. Furthermore, by the
property of cyclic group (o),

if z € On(z), then 3 k € Zy41, such that of(z) = 2,50 T € Aj ;
if z € On(y), then 3 k € Zoyy4, such that a,’;'(y) =2,80T € B}, ;
if z € On(2'), then 3 k € Zy 11, such that o (2') = z, 50 T € Cj ;.
Case 2: v = 6t > 18. When y—x # 3t, it is the saine to the case v = 6t+3.
So we only consider y = z + 3t, i.e.,
T =[z,Z,z+ 3t or T =7, z,z + 3t],
where {z,z + 3t} € Q, i.e., each pair {z,z + 3t} is not contained in any
Pr (1 £ h £ 3t—1). We need only to verify that the set of ordered
difference d = z — 2 (or d = z — y) covered by the blocks in the form T (or
T') of {D;,E,, Fy : x € Z3,} are both Z3, U Z3,. In fact,
z—z:{U+1-4t+1-i1-i:0<i<t—1}=
[t+2,2¢+1]U[2,t+1]U[2t + 2,3t —1]U[0,1] = [0,3¢ — 1];
z—y:{2t—4,t—13,—-1:0<i<t -1} =
f+1,2u[T,f Ut + 1,3t -T)U0) =[0,3t —1J;
z—x:{2t—l—i,—l—i,t—l—i:OSiSt—1}=
[t,2t —1JU[2¢t,3t - 1JU[0,¢t — 1) =[0,3t —1];
z—y:{2t-2-¢-2—-4,t-2-7:0<i<t-1}=
t-1,2t -2Ju2t - 1,3t —2JU[0,t = 2JU[Bt 1] =[0,3t — 1]. =

Lemma 2.2. There exists an LS(1, P, Ksg).

Proof. By Lemma 1.2., there exists an one-factorization {Fy : 1 < k < 5}
of Kg on Is. Each one-factor Fj consists of three pairs P = {p}c,i’ pi’i},
t € Z3. Take the point sct as Ig X Is. In Kgg, denote the Ps-block
with single point on the left or on the right by [p,P] ( or [P,p]). For
i, € 13, 1 <k <5, define the following colle(,tlon of Ps- blocks

= {[P;. i Pk,g] [Pk qu,J+1] (Px, z+1:P;. J+2] [Pe,it2, Py, J+2]}
Obvnously, for certain & z,y it is an S(1, P3, K 6). Then,

U {Pk uPL d=U {pk.J+27pk,J+2} = Ig.
€2y JE€EZy
For certain &, when i, j run over Zs, Pk,,-,Pk,j_,.l,Pk,i“ and Py ;4o covers

the 2-subsets of I}, once, respectively. Then, fori,j € Zz and 1 < k < 5, all
blocks of A¥ ;. ; Just cover all Ps-blocks of Kg . It is shown that {.A 14,7 €
Z3,1 < k <5} forms an LS(1, P, K 6), which consists of 3 x 3 >< =45
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S(1, P, Kg 6)s. .

Lemma 2.3. There ezists an LS(1, Ps, K12,12).

Proof. By Lemma. 1.2., there exists an one-factorization {Fy : 1 < k < 11}
of K2 on I12. Each one-factor F) consists of six pairs P ; = {p,‘c,i,p,%,i},
i € Zg. For each one-factor Fy, and i € Zg,j =0, 1,2, take the point set as
I 2 % I 2, define the following collection of Ps-blocks:
Af,j = {[p}c,ii Pk.j]’ [p%,iv Pk..7'+1]’ [pl]c,‘i+l’ Pk,j+3]x [P?c,i+h Pk,j+4]’
(P42, Pk 451 2] [Pritas PR agpols (Privas P ajash [Peiss: PR aj 8]}

Since for any j = 0,1,2 we have {5,7 + 1,5+ 3,5 +4,4j + 2,45 + 5} = Zs,
it is easy to sce that each Af'j is just an S(1, P3, Kj2,12) on 12 x I)s. For
certain k,

U {Pllc,i} = U {Pllc,¢+1} = U {p}c,4j+2’pllc,4j+5} =H= %I123

i€Zg i€Zg j€Z3
U {p12c,i} = U {P%,i-u} = U {p£,4j+2!p?c,4j+5} =Iz\H.
i€Z¢ 1€2Zs i€Zg
When i runs over Zg, P iv2, Pri+3, Pr,i+4 and Py iis cover all 2-subsets
of Fy, once. When j runs over {0,1,2}, P ;U P ji3 and Py j41 U Pk jta
cover all 2-subsets of F}, once also.

So, for i € Zg,j = 0,1,2 and 1 < k < 11, all blocks of each Af’j just
cover all Ps-blocks of Kj212. It is showed that {A}; : i € Zg,1 < k <
11,5 =0,1,2} can form an LS(1, Ps, K12,12), which consists of 6 x3x 11 =
198 S(l,Pa,Klz'lz)S. [ ]

Theorem 2.4. There exists an LS(1, Ps, K, ) if and only if 3|v.

Proof. Combining Lemma, 2.1., Lemma 2.2. and Lemma 2.3., we complete
the proof. -

2.2 Case3 v

Theorem 2.5. There erists an LS3(1,Ps, K, ) for v =1,2 mod 3 and
v>2
Construction. By Lemma 1.2., let {Q% : 1 < k < | 23]} be Hamilton
cycle decomposition on K, (odd v) or K,\© (even v), where each (. is a
Hamilton cycle, whereas © = {{e;, fi} : 0 < ¢ < 252} is an one-factor of
K, for even v. Take the point set of K, , as Z, U Z,. For each Hamilton
cycle @ = (ao, @1, -+, av—1) and d € Z,, define the collections of P3-blocks

AE = {[@ira; @i, Bitat1), [@ird, Tiy Gigatr] 11 € Zo}-
Furthermore, for even v and 0 < v < ";22, define

Br = {[§i+r: i fi+r]a [ei+1"i| f’i-l-r], .

[Ei+r,i + %)fi+r], [ei+r)7: + %1fi+r] 1€ Z;-}

Then the following collections form an LS3(1, K2, Ku,v):
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{A:1<k< ¥l de Z,}, for odd v;

{Ab1<k< ”“2 yd € Z,} U{B,:0<r < %2}, for even v.
Proof. First, since each Q. is a Hamilton cycle, whereas © is an one-factor
for even v, so each A%, B, is just an S3(1, P, K, ,). The total number of
these parallel classes is @ = M + %, as expected. Next, we need
to consider the Ps-blocks in the form T = [g,z,Z] (or [y,T, 2]) of K, , on
ZyUZ,.

odd v: Let {2, : 1 < h < ”—g—l-} be a Hamilton cycle decomposition on
K,. For each edge {y,z}, there exists an edge {ait+d,@ita+1} of Q. for
certain k € [1, %51), such that {@iyq,@iyas1}={y,2}. Furthermore, since
{(a;:i€ Z,}=2,, there exists some i, such that T =g;. So, T € Ak,

even v: Let {Q,: 1< h < %5 2} be a Hamilton cyclc decomposmon on
K,\O. For each edge {y, z}, there exists some k € (1, 252, such that {y, z}
appears in 0 or one-factor ©. If the former is right, 1t is the same as case
odd v. On the contrary, since {{i} U {i + ¥} : 0 <i < 252} = Z,,, there
exists some %, such that i =z or i + § = z. So, T € B,. n

Example 1 LS3(1,K1,2, K4,4) = {(Z4 U-Z-q,A(llUB,-) :de Z4,0<r< 1}.

First, let © = {{0,2}, {1,3}} be an one-factor of K;. Then a Hamil-
ton cycle decomposition on K;\© consists of one Hamilton cycle Q; =
{(0,1,2,3)}. So, we can list the construction.

A} = (0,0,1), [, 1,2}, %,2,31,[3,3,01,0,0, 11,1, , 21,2, 2,3} 3,3, 0]}
Al ={[1,0,2],2, 1,§],[§,2,6],[ﬁ,3, 1],(1,0,2],(2,1,3],(3,2,0],[0,3,1]};
A = {203, 3,1,0,[0,2.T], 1,3.2], [2,0,3], (3.1.0], 0.2, 1, [1,3. 2]}
'A3 - {[— 0 6 [-a I)TJ: [T1 2:5]) [§) 31@) [376) Ola [O:T: 1]’[1a§a 2]) [2a§’ 3]}a
B, = {[0,0,2],(0,0,2),[1,1,3],(1,1,3],[0,2,2),[0,2,2],[1,3,3],[1,3,3]};
B, ={(1,0,3],(1,9,3),[0,1,2],[0,1,2],[1,2,3),[1,2,3],[0,3,2],[0,3, 2]}

Example 2 LSg(l,K1,2,1{5’5) = {(Zr, U?s,A(i) :1<k<2,de Z5}
First, a Hamilton cycle decomposition on K5 consists of two Hamilton
cycles Q; = {(0,1,2,3,4)} and Q2 = {(0,2,4,1,3)}. So, we can list the
construction.
" Ao—o{[00_] [1,1,2},12,2,3],(3,3,4],[4,4,0),
[0,0,1),(1,1,2],(2,%,3),[3,3,4], [4,7,0]};
A ={[1,0,2],[2,1,3], [327 [4,3,0],[0,4,T],
(1,0,2],[2,1,3],(3,2,4],[4,3,0],[0,4,1]};
AL = ([2,0,3,3,1,),[3,2,0], 0,3,1], [1, 4,7,
(2,0,3],(3,1,4],[4,2,0],[0,3,1),[1,4,2]};
4 = {(3,0,2),(5,1,0,0,2,T), 11,3, 3], [2,4,3),
[3,0,4), [4,1,0),[0,2,1],[1,3,2], (2,4, 3}};
4—{[—0_]{011[_2_][231[—44 _
[4,0,0[0,1,1],(1,2,2],[2,3,3],[3,4,4]};

A3 ={[0,0,2),[T,1,3],[2,2,4),[3,3,0), 4,4, 1),
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[0,0,2],11,1,3),[2,2,4],[3,3,0], 4,4, 1}};

= ((,0.3,2,1,7,8,2,0, 4,31, 0.4.3)
1,0,3), (2,1, 4], 3,2, 0], [4,3, 1], [0,4, 2)};
- 01,6021 0,3.3,0,43)
2,0,4,[3,,0}[4.%,11,10,3,2, [L43)
A2—F0'][’17['2‘l[‘37[",_ S
3,00, (4T, 11,00,2,2, 1,3, 3] 23,41}
A= (AO.0,12,1,23, 2,3, 8,43,

(4,0,1),00,T,2), 1,2, 3], [2,3,4],3.3,0]}.

3 Conclusion

Theorem 3.1. There ezists an LS\ (1, Ps, K, ) if and only if v > 2, 3|A\v
and 2A|3v(v — 1).
Proof. By Theorem 2.4. and Theorem 2.5.,
when 3|v, LS(1, Ps, K,») = {(Z, U Zu,A,) 1<i < 2Dy exists;
when 3 Jv, LS3(1, P3, Ky ) = {(Zy U Z,,B;) : 1 < < ﬂ”—12} exists.
For any A, by the necessary conditions, we need only to prove the sufficiency.
Case 1: 3 fA. Then 3|v and 2A|3v(v — 1). Define
(k+1)A
Ck= U A170SkSM;,\;11_1)
i=kA+1
then {(Z, UZ,,Ck) : 0 <k < 31 _1} is just an LSx(1, P3, K, ).
Case 2: 3|A. Then |v(v — 1). For 3|v, it is similar to above. For 3 fv,
let A = 3t, define

t(k+1)
Ch= U B, 0<k<gtog,
i=tk+1

then {(Z, UZ,,C): 0 <k < 21 — 1} is just an LSA(1, P3, K, 0). @
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