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Abstract

In this paper, we prove an interesting property of rook
polynomials for 2-D square boards and extend that for rook
polynomials for 3-D cubic, and r-D “hypercubic”, boards. In
particularly, we prove that for r-D rook polynomials the
modulus of the sum of their roots equals their degree. We end
with some further questions, mainly for the 2-D and 3-D case,
that could serve as future projects.
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1. Introduction
Rook polynomials, usually denoted by R,, , , are a special class of polynomials

which their study begun in the 1950’s. During that time, Kaplansky and
Riordan studied the concepl as part of their studies in graph theory, the ménage
problem, etc, and provided the first comprehensive analysis and main results
(see [10),[13]). Nowadays, we know that rook polynomials have a close
connection to graph theory (matching polynomials), special polynomials
(Laguerre polynomials), and group representations (see (8],[4] and [9],

respectively).
In general, a rook polynomial for a 2-D m X n chessboard is defined by:

min{m,n}

R,,(x)= Z ek ()
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where 7" is the number of ways one can place k non-attacking rooks on an

(m,n)

m X n chessboard. It is not hard to see that r, is actually given by:

(m,n) m
7 = ¢ P(n,k). (2)

For example, using formula (2), the number of ways one can place 2 rooks on a
L (22) _ 2 | 2)_ i - (22 _ g .
2X2boardis 1, = 5 2! 2= 2 (see Fig.1). Similarly, 1, " =4 and

(2.2
Ty =1.

b

Hence, the rook polynomial R, , that corresponds to a 2X 2 board is given by:
R,,(x)=2x" +4x+1

In a similar way, one also computes Ry 4, R, ;and R; 5. Namely:

Fig.1

R,,(x)=6x"+18x +9x+1
R, ,(x)=24x" +96x° +72x* +16x+1
R, (x) =120x° +600x" +2400x” +450x> +36x+1.

The polynomial R, is trivially computed to be R, | (x) = x + 1. Hereafter, we

will focus on “square” boards. We examine 2-D square boards in Section 2, 3-D
cubic boards in Section 3 and r-D hypercubic boards in Section 4.

2. Rook Polynomials in 2-D
By a simple counting argument, as we will see below, one can show that the
maximum number of rooks could be placed on an 71X board is m. Most

importantly, though, notice that the rook polynomials above ( Rz‘2 5 R3‘3 , e1c)

have the following interesting property:
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IS(R,, )l = deg(R,, ) 3
where S(R,, ,,) denotes the sum of the roots of R, ,, and deg(R,, ,,) denotes
the degree of R, . Indeed, the roots of R, ,are x; = %@ ,

X, = 22 » which gives 1x, + X, | =1 -21=2 =deg(R,,). In

Theorem 2.2 below, we prove that this is indeed true for any rook polynomial
R, ,,. Furthermore, as we will see in the next section, the same fact is true for

rook polynomials R in 3-D (and R’ polynomials in r-D). But first, as we
M m

m,m,m
said in the beginning of the section, one can also show inductively that the
maximum number of non-attacking rooks one can place on an m X nm board B
ism.

Proposition 2.1: Let B be an mXm board. Then, the maximum number of
non-attacking rooks one can place on B is .

Proof: Since there are m rows available on the board and no two rooks can lie in
the same row, it is immediate that there can be at most m rooks on the board. o

Theorem 2.2: Let R, , be any rook polynomial for an 72 X m board. Then,

m,m

IS(R,, )| = Degree( R

1
m,m )

Proof:Let R, , (x)=a,x" +a,_x"" ++--+a,x+1 be the rook
polynomial for an mXm board. Then, by Vieta’s Formulas we know that S(

a,._ . .
R, . )=— —2=L But, for the right-hand-side of the last equation, we know
am
that:
a,,, = the number of ways to place m - 1 rooks on the mXm board
and
a,, = the number of ways to place m rooks on the mXm board .

Hence, using equation (2), we find that:
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am-l

a

m

a,., m—-1Am-1 m'm
=m

Therefore, ISCR, )l = I— |=l-mt=m=deg(R,,,). o

m.m )

Remark 2.3: Notice also that the real roots of R,, ,, (x) are always negative, in

accordance to Descartes’ Rule of Signs.

Motivated by the discussion above, we would like to extend the discussion
in 3-D and see, most importantly, that Theorem 2.2 is true in 3-D as well.

3. Rook Polynomials in 3-D

In general, and in analogy 2 {0 the 2-D case, a rook polynomial in 3-D is defined
by:

min{m,n.d}

Rm‘n,d (x) = Z rk(m.n.d)xk @)
k=0

where r™"?) is the number of ways one can place k non-attacking rooks in an

mXnXd chessboard (see Fig.2). In [16], rk('”'"'d) is actually shown to be:

e =(’]’:)P(n,k)1>(d,k). )

For example, R, istrivially R, ,(x) =x+1,and R, ,, is given by (see
Fig.2(a)):
R,,,(x)=4x" +8x+1
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(a) Fig. 2 (b)

A few more examples are:

R, ;,(x)=36x" +108x* +27x+1
R, ,(x)=576x" +2304x" +864x" + 64x+1
Ry 55 (x) = 14400x° +72000x* +36000x’ +4000x* +125x +1.

Below, we can actually show that in the 3-D case the maximum number of rooks
foran mXmXmis m.

Proposition 3.1: Let B be an m X m X m board. Then, the maximum number of
non-attacking rooks one can place in Bism .

Proof: Since there are m level-planes available in the board and no two rooks
can lie on the same level-plane (see Fig.2(b)), it is immediate that there can be at
most m rooks in the board. (n}

Now, we prove the 3-D analogue of Theorem 2.2.

Theorem 3.2: Let R, . be any rook polynomial for an m X mXm board.
Then, IS(R,, , , )| = deg(R,, . .).
Proof:Let R, . (x)=a,x" +a,_ x"" +++-+a,x+1 be the rook

polynomial for an mXmXm board. Then, by Vieta’s Formulas we know that

S(R, )= "— m-1 But, for the right-hand-side of the last equation, we
a!"
know that:
a,._, = the number of ways to place m - 1 rooks on the mXmXm board
and
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a,, = the number of ways to place m rooks on the mXmXm board .

Hence, using equation (5), we find that:

( " ][P(m,m-— 1)]2 m (_m'J
a,., m-—1 1
= “Tmnr
“n (m)[P(m, m)]’ '
m

Therefore, IS( R

a
= l—c;'—'—ll=l-ml=m=deg(R

m

m,m,m )' m,m,m )

4. Rook Polynomials in r-D

The question now is whether the property of rook polynomials described in
Theorems 2.2 and 3.2 is true in -D. Consider an r-dimensional hypercubic
board. As in the cases before (see footnote 2), a rook position is signified by the

coordinate point (i},I, ,...,i,), and forbidden positions would be determined

r
by the ( J = r orthogonal hyperplanes of dimension r - 1. 3 [For
r —

.....
————
r

that in the 2-D and 3-D cases the formulas for the rook polynomials are

RZ(x)= i("’]mm,kn x* and R (x) = i['”)[mm,k)] 2k,
k=0 k k=0 k

respectively, and notice that the powers of term P(m,k) increase accordingly.
Hence, we are able to prove4 the following:

Theorem 4.1: Let R,; be any rook polynomial for an r-D hypercubic board.
Then, R, is given by:

R (x)= ﬁ(’ZJ[P(m,k)l iyt
k=0

Proof: By induction on the dimension r of the board. For r = 2, the claim is true
since we have the formula for the 2-D rook polynomials. Suppose the claim is
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n m .-
true for r = 5. That is, we have R, (x) = Z( ‘ J[P(m,k)] ' x* . We show
k=0
that is true for r = s + 1. In order to place & rooks in an (s+1)-D board , we

m -
utilize the fact that we know we have (k )[P(m,k)] *! many ways to choose
the positions for each rook in the hyperplane s-D board. Going one dimension
higher now, we only need to select k tower positions from the m available, and

permute them, in order to obtain all possible rook placements in the s-D board.
Therefore, the number of ways to place & rooks in an (s+1)-D board is

((’Z][P(m,k)] i ]P(m,k) = (’:][P(m,k)] * Hence, the rook

. r - m -1k
polynomial for an r-D board is given by R, (x) = z ‘ [P(m,k)] " x" .o
k=0

Some examples of rook polynomials in r-D are:

Ri(x)=x+1
Ry(x)=(™)x*+(2-2"x+1
R;(x)=(6"x*+(3-6"™)x*+(3-3 " )x+1

Ri(x)=4 MHx*+3- 24X +(6-12" x> +(4-4Hx+1.

Finally, using Theorem 4.1 we can show that the connection of the sum of the
roots with the degree generalizes in r-D:

Theorem 4.2: Let R, be any rook polynomial for an r-D board. Then, IS(R, )I
= deg( R ,:, ).

a
Proof: With the notation as in Theorem 2.2, we have: IS( R,:, N=1- ol o
a

m
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( m J[P(m,m _ 1)]r-l m .(ﬂl)r_

- \m -1 _l 1
(mJ[P(m, m)]r_l ‘ 1 ' (m !)I‘_
m

=l —ml=m=deg(R, ). O

4, Further Questions

Some further questions, mainly for the 2-D and 3-D case, that could
serve as future projects are the following:

(a) Connection between rook polynomials and rook matrices: It well
known that the non-  attacking rook configurations in 2D could also
be represented by matrices. For example,

R 10
g .
o <o)
The question is whether any connections/relations exist between the rook
matrices and rook polynomials (perhaps between eigenvalues, roots, etc),
considering the fact that both represent configurations of non-attacking rooks.
Consider also the fact that a connection exist between the eigenvalues of

circulant matrices and the roots of polynomials (see [11]) and, as it seems, rook
matrices are special cases of circulant matrices.

(b) Connection to Laguerre Polynomials: Rook polyromials relate to Laguerre
polynomials as follows (see [3]):

R, ,(x)=nx"Ly™"(-x")
In other words, the L7™"(—x"") is generator for R,, ,(x). Could some of the

root properties of the rook polynomials shed more light to some of the root
properties of the Laguerre polynomials, and vice versa?

(c) Other “chess-based” polynomials: A similar analysis and similar questions
could be raised, as we did in this paper, perhaps for other similar type
polynomials such as the Quecn, or Bishop, polynomials, etc.

(d) Rooks attacking in Lines: Experimenting in 3-D with rooks that are

prohibited to attack in the union of the orthogonal lines spanning out of (i,j,k), as
in real chess, and not in the union of the three planes (see Fig.3(b)), we found

338



that there are no known formulas for the rook polynomials yet, and generating
the first few “by hand” is a cumbersome process. A program we built, that uses

a “brute force” algorithm, produced for us the first four polynomials, R, ,,
R,,,,R3;55 and R, , ,, which are given by:
R, (x)=x+1
Ry, (x)=2x* +8x’+16x* +8x+1
R;3,(x)=12x" +1086x°+756x" +2412x° +3834x° +
3078x* +1278x> +270x% +27x +1
R,,.(x)=576x" +9216x"°+110592x" +847872x" +
4215744x" +13153536x"" +25941504x" +
32971008x° +27534816x" +15326208x" +
5728896x° +143769x° +239760x* +
25920x* +1728x + 64x +1

First, notice that the maximum number of rooks that could be placed on an

mXmXm board turns out to be m?>. Second, notice that for the first four
polynomials above the modulus of the sum of the roots equals the degree. We

believe that the program will not need too much time to find R 5.5.5» but for the

cases of R6,6.6 and R7.7.7 , we projected that the program will need several days

and weeks respectively to compute them. Now, since the above polynomials
were empirically produced, firstly, one needs to verify that the above
polynomials are correct. Then, could a more efficient algorithm be built?
Currently, we are looking at a way of representing the non-attacking
configurations for the 3-D board with certain tri-partite graphs to achieve a
better algorithm. (In 2-D there are several efficient algorithms, see [12]). And
more importantly, could a general formula that generates all these polynomials
be produced?

Notes:

1. Which, clearly, is also equal to the maximum number of rooks for the
mXxXmXm board.

2. The analogy here is as follows: In 2-D, placing a rook in the (i,j) position
prohibits any further rook placement anywhere in the union of the ith row or jth
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2
column (i.e., the union of the two lines (the (IJ = 2 orthogonal hyperplanes)

that span out of (i) of the 2-D board, see Fig.3(a)). In 3-D, placing a rook in the
(i,j.k) position prohibits any further rook placement anywhere in the union of the

3
three planes (the (2J = 3 orthogonal hyperplanes) that span out of (i,/,k) of the
3-D board, see Fig.3(b)).

. y, \
i 7 3 2
N e 2

T e e e e | i o o e

) P

& e

(a) Fig.3 (b)

3. Conversely, we know that the r-many hyperplanes in »-D intersect at the
(unique) point (i}, 4, ,...,I, ) by a standard Theorem from Linear Algebra,
which says that the r X r system

@3 % F X Tostr X, =b

Ay X, + g Xy +it 0y, %, = b,

@ F e Xy ik a0 =h

has a unique solution if and only if det A # 0, where A is the coefficient matrix. (I

essence, det A # 0 means that the hyperplanes are not co-hyperplanar. In our case,
they are orthogonal).

4. The proof here was based on the proof in [16, p.22], and extended his
argument from 3-D to r-D  inductively.
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